A Compact and Robust RFID Tag Based on an AMC Structure
Abstract
:1. Introduction
2. AMC Design
3. Results and Comparison
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hall, P.S.; Hao, Y.; Nechayev, Y.I.; Alomainy, A.; Constantinou, C.C.; Parini, C.; Kamarudin, M.R.; Salim, T.Z.; Hee, D.T.M.; Dubrovka, R.; et al. Antennas and propagation for on-body communication systems. IEEE Antennas Propag. Mag. 2007, 49, 41–58. [Google Scholar] [CrossRef]
- Serra, A.A.; Nepa, P.; Manara, G. A Wearable Two-Antenna System on a Life Jacket for Cospas-Sarsat Personal Locator Beacons. IEEE Trans. Antennas Propag. 2012, 60, 1035–1042. [Google Scholar] [CrossRef]
- Michel, A.; Karathanasis, K.; Nepa, P.; Volakis, J.L. Accuracy of a multi-probe conformal sensor in estimating the dielectric constant in deep biological tissues. IEEE Sens. J. 2015, 15, 5217–5221. [Google Scholar] [CrossRef]
- Marrocco, G. RFID antennas for the UHF remote monitoring of human subjects. IEEE Trans. Antennas Propag. 2007, 55, 1862–1870. [Google Scholar] [CrossRef]
- Kiourti, A.; Lee, C.; Volakis, J.L. Fabrication of textile antennas and circuits with 0.1 mm precision. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 151–153. [Google Scholar] [CrossRef]
- Moro, R.; Agneessens, S.; Rogier, H.; Dierck, A.; Bozzi, M. Textile microwave components in substrate integrated waveguide technology. IEEE Trans. Microw. Theory Techn. 2015, 63, 422–432. [Google Scholar] [CrossRef]
- Casula, G.A.; Michel, A.; Montisci, G.; Nepa, P.; Valente, G. Energy-based considerations for ungrounded wearable UHF antenna design. IEEE Sens. J. 2017, 17, 687–694. [Google Scholar] [CrossRef]
- Casula, G.A.; Michel, A.; Nepa, P.; Montisci, G.; Mazzarella, G. Robustness of wearable UHF-band PIFAs to human-body proximity. IEEE Trans. Antennas Propag. 2016, 64, 2050–2055. [Google Scholar] [CrossRef]
- Michel, A.; Colella, R.; Casula, G.A.; Nepa, P.; Catarinucci, L.; Montisci, G.; Mazzarella, G.; Manara, G. Design considerations on the placement of a wearable UHF-RFID PIFA on a compact ground plane. IEEE Trans. Antennas Propag. 2018, 66, 3142–3147. [Google Scholar] [CrossRef]
- Casula, G.A.; Montisci, G.; Valente, G.; Gatto, G. A robust printed antenna for UHF wearable applications. IEEE Trans. Antennas Propag. 2018, 66, 4337–4342. [Google Scholar] [CrossRef]
- Casula, G.A.; Montisci, G. A design rule to reduce the human body effect on wearable PIFA antennas. Electronics 2019, 8, 244. [Google Scholar] [CrossRef]
- Casula, G.A.; Montisci, G.; Rogier, H. A wearable textile RFID tag based on an eighth-mode substrate integrated waveguide cavity. IEEE Access 2020, 8, 11116–11123. [Google Scholar] [CrossRef]
- Zhu, S.; Langley, R. Dual-band wearable textile antenna on an EBG substrate. IEEE Trans. Antennas Propag. 2009, 57, 926–935. [Google Scholar] [CrossRef]
- Kim, S.; Ren, Y.J.; Lee, H.; Rida, A.; Nikolaou, S.; Tentzeris, M.M. Monopole antenna with inkjet-printed EBG array on paper substrate for wearable applications. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 663–666. [Google Scholar] [CrossRef]
- Raad, H.R.; Abbosh, A.I.; Al-Rizzo, H.M.; Rucker, D.G. Flexible and compact AMC based antenna for telemedicine applications. IEEE Trans. Antennas Propag. 2013, 61, 524–531. [Google Scholar] [CrossRef]
- Park, I.Y.; Kim, D. Artificial magnetic conductor loaded long range passive RFID tag antenna mountable on metallic objects. Electron Lett. 2014, 50, 335–336. [Google Scholar] [CrossRef]
- Sanusi, O.M.; Ghaffar, F.A.; Shamim, A.; Vaseem, M.; Wang, Y.; Roy, L. Development of a 2.45 GHz Antenna for Flexible Compact Radiation Dosimeter Tags. IEEE Trans. Antennas Propag. 2019, 67, 5063–5072. [Google Scholar] [CrossRef]
- Hong, J.H.; Chiu, C.-W.; Wang, H.-C. Design of Circularly Polarized Tag Antenna with Artificial Magnetic Conductor for on-Body Applications. Prog. Electromagn. Res. C 2018, 81, 89–99. [Google Scholar] [CrossRef]
- Kim, D.; Yeo, J. Low-Profile RFID Tag Antenna Using Compact AMC Substrate for Metallic Objects. IEEE Antennas Wirel. Propag. Lett. 2008, 7, 718–720. [Google Scholar]
- De Cos, M.E.; Las-Heras, F. Dual-Band Antenna/AMC Combination for RFID. Int. J. Antenn. Propag. 2012, 2012, 804536. [Google Scholar] [CrossRef]
- Michel, A.; Franchina, V.; Nepa, P.; Salvatore, A. A UHF RFID Tag Embeddable in Small Metal Cavities. IEEE Trans. Antennas Propag. 2019, 67, 1374–1379. [Google Scholar] [CrossRef]
- Yang, E.S.; Son, H.W. Dual-polarised metal-mountable UHF RFID tag antenna for polarisation diversity. Electron. Lett. 2016, 52, 496–498. [Google Scholar] [CrossRef]
- Bong, F.-L.; Lim, E.-H.; Lo, F.-L. Compact orientation insensitive dipolar patch for metal-mountable UHF RFID tag design. IEEE Trans. Antennas Propag. 2018, 66, 1788–1795. [Google Scholar] [CrossRef]
- Hamani, A.; Yagoub, M.C.E.; Vuong, T.-P.; Touhami, R. A Novel Broadband Antenna Design for UHF RFID Tags on Metallic Surface Environments. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 91–94. [Google Scholar] [CrossRef]
- Ng, W.-H.; Lim, E.-H.; Bong, F.-L.; Chung, B.-K. Compact Folded Crossed-Dipole for On-Metal Polarization Diversity UHF Tag. IEEE J. Radio Freq. Identif. 2020, 4, 115–123. [Google Scholar] [CrossRef]
- Althobaiti, T.; Sharif, A.; Ouyang, J.; Ramzan, N.; Abbasi, Q.H. Planar Pyramid Shaped UHF RFID Tag Antenna with Polarisation Diversity for IoT Applications Using Characteristics Mode Analysis. IEEE Access 2020, 8, 103684–103696. [Google Scholar] [CrossRef]
- Inserra, D.; Wen, G. Compact crossed dipole antenna with meandered series power divider for UHF RFID tag and handheld reader devices. IEEE Trans. Antennas Propag. 2019, 67, 4195–4199. [Google Scholar] [CrossRef]
- Bhaskar, S.; Singh, A.K. Linearly tapered meander line cross dipole circularly polarized antenna for UHF RFID tag applications. Int. J. RF Microw. Comput. Aided Eng. 2019, 29, e21563. [Google Scholar] [CrossRef]
- Tran, H.H.; Ta, S.X.; Park, I. A compact circularly polarized crossed dipole antenna for an RFID tag. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 674–677. [Google Scholar] [CrossRef]
- Chen, H.-D.; Sim, C.-Y.-D.; Tsai, C.-H.; Kuo, C. Compact circularly polarized meandered-loop antenna for UHF-band RFID tag. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1602–1605. [Google Scholar] [CrossRef]
- Hsu, H.-T.; Huang, T.-J. A 1 × 2 Dual-Band Antenna Array for Radio-Frequency Identification (RFID) Handheld Reader Applications. IEEE Trans. Antennas Propag. 2014, 62, 5260–5267. [Google Scholar] [CrossRef]
- Sharif, A.; Kumar, R.; Althobaiti, T.; Alotaibi, A.A.; Safi, L.; Ramzan, N.; Imran, M.A.; Abbasi, Q.H. Bio-Inspired Circular-Polarized UHF RFID Tag Design Using Characteristic Mode Analysis. IEEE Sens. J. 2023, 23, 10847–10855. [Google Scholar] [CrossRef]
- Romputtal, A.; Phongcharoenpanich, C. IoT-Linked Integrated NFC and Dual Band UHF/2.45 GHz RFID Reader Antenna Scheme. IEEE Access 2019, 7, 177832–177843. [Google Scholar] [CrossRef]
- Hammad, H.F. New Technique for Segmenting RFID Bandwidth for IoT Applications. IEEE J. Radio Freq. Identif. 2021, 5, 446–450. [Google Scholar] [CrossRef]
- Anee, R.-E.-A.; Karmakar, N.C. Chipless RFID Tag Localization. IEEE Trans. Microw. Theory Tech. 2013, 61, 4008–4017. [Google Scholar] [CrossRef]
- Cappelli, I.; Fort, A.; Mugnaini, M.; Panzardi, E.; Pozzebon, A.; Tani, M.; Vignoli, V. Battery-Less HF RFID Sensor Tag for Soil Moisture Measurements. IEEE Trans. Instrum. Meas. 2021, 70, 9504113. [Google Scholar] [CrossRef]
- Lasantha, L.; Karmakar, N.C.; Ray, B. Chipless RFID Sensors for IoT Sensing and Potential Applications in Underground Mining—A Review. IEEE Sens. J. 2023, 23, 9033–9048. [Google Scholar] [CrossRef]
- Alam, M.S.; Misran, N.; Yatim, B.; Islam, M.T. Development of electromagnetic band gap structures in the perspective of microstrip antenna design. Int. J. Antenn. Propag. 2013, 2013, 22. [Google Scholar] [CrossRef]
- Liu, Z.-G.; Ge, Z.-C.; Chen, X.-Y. Research progress on Fabry-Perot resonator antenna. J. Zhejiang Univ. Sci. A 2009, 10, 583–588. [Google Scholar] [CrossRef]
- Bala, B.D.; Rahim, M.K.A.; Murad, N.A. Complementary electric-LC resonator antenna for WLAN applications. Appl. Phys. A 2014, 117, 635–639. [Google Scholar] [CrossRef]
- Alu, A.; Engheta, N. Guided modes in a waveguide filled with a pair of Single-Negative (SNG), Double-Negative (DNG), and/or Double-Positive (DPS) layers. IEEE Trans Microw Theory Techniq. 2004, 52, 199–210. [Google Scholar] [CrossRef]
- Cheribi, H.; Ghanem, F.; Kimouche, H. Metamaterial-based frequency reconfigurable antenna. Electron. Lett. 2013, 49, 315–316. [Google Scholar] [CrossRef]
- Jose, J. Frequency selective bistable switching in metamaterial based photonic bandgap medium. Opt. Commun. 2014, 328, 116–120. [Google Scholar] [CrossRef]
- Hu, F.; Zou, T.; Quan, B.; Xu, X.; Bo, S.; Chen, T.; Wang, L.; Gu, C.; Li, J. Polarization-dependent terahertz metamaterial absorber with high absorption in two orthogonal directions. Opt. Commun. 2014, 332, 321–326. [Google Scholar] [CrossRef]
- Nouh, M.; Aldraihem, O.; Baz, A. Vibration characteristics of metamaterial beams with periodic local resonances. J. Vib. Acoust. 2014, 136, 061012. [Google Scholar] [CrossRef]
- GuoHe, W.; Li, L.; Teng, B.T.; Sun, X. A wideband and dual resonant terahertz metamaterial using a modified SRR structure. Prog. Electromagn. Res. 2012, 134, 289–299. [Google Scholar]
- Costa, F.; Monorchio, A. Multiband electromagnetic wave absorber based on reactive impedance ground planes. IET Microw. Antenn. Propag. 2010, 4, 1720–1727. [Google Scholar] [CrossRef]
- Genovesi, S.; Monorchio, A.; Mittra, R.; Manara, G. A sub-boundary approach for enhanced particle swarm optimization and its application to the design of artificial magnetic conductors. IEEE Trans. Antennas Propag. 2007, 55, 766–770. [Google Scholar] [CrossRef]
- Rao, K.; Nikitin, P.; Lam, S. Antenna design for UHF RFID tags: A review and a practical application. IEEE Trans. Antennas Propag. 2005, 53, 3870–3876. [Google Scholar] [CrossRef]
Ref. | Lx Ly | Hz | εr | fres (MHz) | Ptx (dBm) | Gtx (dBi) | Pchip (dBm) | Gtag (dBi) | Rm (m) | Rt (m) | M | B | A |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[16] | 100 × 60 mm2 (0.289 × 0.174 λ02) | 10 mm (0.029 λ0) | 4.5 | 868 | 30 | 6 | −17 | - | 12.2 | - | Yes | No | Yes |
[17] | 100 × 20 mm2 (0.817 × 0.163 λ02) | 9.24 mm (0.075 λ0) | 3.5 | 2450 | 32 | 6 | −14 | 4.4 | 1 | - | No | Yes | Yes |
[18] | 215 × 211 mm2 (0.656 × 0.644 λ02) | 6.4 mm (0.020 λ0) | 4.4 | 915 | 36 | - | −16.7 | 5 | 15.7 | 17.7 | No | Yes | Yes |
[19] | 34.44 × 67 mm2 (0.105 × 0.204 λ02) | 3.63 mm (0.011 λ0) | 6.45 | 915 | 33 | - | −17 | −2 | 4.8 | - | Yes | No | Yes |
[20] | 44.1 × 44.1 mm2 (0.323 × 0.323 λ02) | 1.524 mm (0.011 λ0) | 3.28 | 2200 | - | - | - | 2.9 | - | - | Yes | No | Yes |
[21] | 25 × 25 mm2 (0.072 × 0.072 λ02) | 2.5 mm (0.007 λ0) | 9 | 868 | 35.2 | - | −18.5 | - | 0.98 | 1.3 | Yes | No | No |
[22] | 40 × 40 mm2 (0.122 × 0.122 λ02) | 1.6 mm (0.005 λ0) | 3.3 | 915 | 36 | - | −19.9 | −5.5 | 7.7 | - | Yes | No | No |
[23] | 30 × 30 mm2 (0.092 × 0.092 λ02) | 1.6 mm (0.005 λ0) | 1.06 | 915 | 36 | - | −19.9 | −12 | 3.5 | - | Yes | No | No |
[24] | 104 × 31 mm2 (0.301 × 0.090 λ02) | 7.6 mm (0.022 λ0) | 4.4 | 868 | 36 | - | −18.5 | 1.5 | 11.8 | - | Yes | No | No |
[25] | 64 × 64 mm2 (0.195 × 0.195 λ02) | 2 mm (0.005 λ0) | 4.4 | 915 | 36 | - | −17 | - | 10.2 | 12 | Yes | No | No |
[26] | 50 × 50 mm2 (0.153 × 0.153 λ02) | 2 mm (0.006 λ0) | 4.4 | 915 | 36 | 6 | −19.5 | −4.9 | 8.5 | - | Yes | No | No |
[27] | 56 × 56 mm2 (0.171 × 0.171 λ02) | 0.4 mm (0.0012 λ0) | 4.6 | 915 | 36 | 9 | −14 | 1.4 | 9.9 | 10 | No | No | No |
[28] | 58 × 58 mm2 (0.177 × 0.177 λ02) | 1.6 mm (0.005 λ0) | 4.4 | 915 | 36 | 8 | −17.4 | 1.28 | 15.6 | 15 | No | No | No |
[29] | 35.6 × 35.6 mm2 (0.109 × 0.109 λ02) | 0.508 mm (0.0015 λ0) | 3.38 | 915 | 35.2 | 14 | −15 | - | 7.6 | - | No | No | No |
[30] | 58.6 × 58.6 mm2 (0.181 × 0.181 λ02) | 0.4 mm (0.0012 λ0) | 4.4 | 925 | 30 | 9 | −17 | 1.7 | 20.5 | 19.9 | No | No | No |
This work | 76 × 76 mm2 (0.22 × 0.22 λ02) | 3.245 mm (0.009 λ0) | 6 | 868 | 30 | 5.16 | −17.3 | 0.7 | - | 11 | Yes | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casula, G.A.; Muntoni, G.; Maxia, P.; Montisci, G. A Compact and Robust RFID Tag Based on an AMC Structure. Sensors 2024, 24, 1468. https://doi.org/10.3390/s24051468
Casula GA, Muntoni G, Maxia P, Montisci G. A Compact and Robust RFID Tag Based on an AMC Structure. Sensors. 2024; 24(5):1468. https://doi.org/10.3390/s24051468
Chicago/Turabian StyleCasula, Giovanni Andrea, Giacomo Muntoni, Paolo Maxia, and Giorgio Montisci. 2024. "A Compact and Robust RFID Tag Based on an AMC Structure" Sensors 24, no. 5: 1468. https://doi.org/10.3390/s24051468
APA StyleCasula, G. A., Muntoni, G., Maxia, P., & Montisci, G. (2024). A Compact and Robust RFID Tag Based on an AMC Structure. Sensors, 24(5), 1468. https://doi.org/10.3390/s24051468