Application of Chlorophyll Fluorescence Analysis Technique in Studying the Response of Lettuce (Lactuca sativa L.) to Cadmium Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Experimental Design
2.2. Measurement Items and Methods
2.2.1. Measurement of SPAD Values
2.2.2. Measurement of Chlorophyll Fluorescence Kinetics Characteristics
2.2.3. Statistical Analysis Methods
3. Results and Discussion
3.1. Effects of Cadmium Stress on the SPAD Values of Lettuce Seedling Leaves
3.2. Effects of Cadmium Stress on the Chlorophyll Fluorescence Parameters of Lettuce Seedling Leaves
3.2.1. Effects of Cadmium Stress on the Fv/Fm and PIabs of Lettuce Seedling Leaves
3.2.2. Effects of Cadmium Stress on the PSII Acceptor Side Electron Transport and Energy Allocation Ratio in Lettuce Seedling Leaves
3.2.3. Effects of Cadmium Stress on the Activity of Photosystem II (PSII) Reaction Centers in Lettuce Seedling Leaves
3.3. Effects of Cadmium Stress on the Rapid Chlorophyll Fluorescence Kinetics Characteristics of Lettuce Seedling Leaves
3.3.1. Effects of Cadmium Stress on the Induction Kinetics Curve of Rapid Chlorophyll Fluorescence in Lettuce Seedling Leaves
3.3.2. Standardization of the O-P and O-J Phases of the OJIP Curve
3.4. Analysis of the Correlation between Chlorophyll Fluorescence Parameters and SPAD Values
3.5. Establishment of a SPAD Value Estimation Model for Lettuce Leaves under Cadmium Stress
3.6. Model Validation
4. Conclusions
- (1)
- Cadmium stress with concentrations of 1 mg/kg and 5 mg/kg has a promoting effect on the SPAD value of lettuce seedling leaves, while cadmium stress concentrations of 10 mg/kg and 20 mg/kg have an inhibitory effect on the SPAD value of lettuce seedling leaves. Moreover, with prolonged exposure time to stress, the inhibitory effect became more pronounced.
- (2)
- Cadmium stress affects both the donor and acceptor sides of PSII in lettuce seedling leaves, damaging the electron transport chain and reducing the energy entering the electron transfer in the photosynthetic system. Additionally, it also damages the OEC, inhibiting water photolysis and reducing the electrons supplied by OEC to PSII, resulting in a decrease in electron transfer efficiency and a decline in photosynthetic rate. However, lettuce seedling leaves can mitigate the damage caused by cadmium stress to the PSII reaction center by increasing thermal dissipation.
- (3)
- The model based on ETO/RC effectively predicts the SPAD values of lettuce seedling leaves and can be considered an effective method for estimating leaf chlorophyll content under cadmium stress.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, T.; Zhang, Y.Y.; Gong, Y.W.; Ma, J.; Wei, H.; Wu, X.; Zhao, L.; Hou, H. Status of cadmium accumulation in agricultural soils across China (1975–2016): From temporal and spatial variations to risk assessment. Chemosphere 2019, 230, 136–143. [Google Scholar] [CrossRef]
- Chai, G.Q.; Liu, G.H.; Zhou, W.; Zhang, X.; Li, L.; Fan, C. Evaluation of Pollution Risk and Source Analysis of Heavy Metals in Greenhouse Soils in Wumeng Mountain Area, Guizhou Province. J. Agric. Sci. Technol. 2022, 24, 144–153. [Google Scholar]
- Zhao, F.J.; Ma, Y.B.; Zhu, Y.G.; Tang, Z.; McGrath, S.P. Soil Contamination in China: Current Status and Mitigation Strategies. Environ. Sci. Technol. 2014, 49, 750–759. [Google Scholar] [CrossRef]
- Xu, K.; Zhang, X.L.; Hu, H.; Li, S.; Lu, C.; Cheng, J. Toxicological effects of modified nano-carbon black on earthworms in Cd-contaminated soil. Chin. J. Appl. Environ. Biol. 2020, 26, 543–550. [Google Scholar]
- Fang, Y.; Sun, J.; Sun, M.; Shi, X.; He, Z.; Gong, Z.; Yao, M.; Su, Y.; Xu, X.; Sui, H. Research Progress on Cadmium Toxicity Hazards and Control Measures. J. Toxicol. 2022, 36, 517–520. [Google Scholar]
- Wang, X.; Wang, W.; Yang, L.; Jin, L.; Song, Y.; Jiang, S.; Qin, L. Transport pathways of cadmium (Cd) and its regulatory mechanisms in plant. Acta Ecol. Sin. 2015, 35, 7921–7929. [Google Scholar]
- Zhang, Y.; Ren, Y.; Lin, X.; Wang, Y.; He, J. Effects of Different Irrigation Methods on the Growth and Yield of Rice under Cadmium Pollution. Jiangsu Agric. Sci. 2017, 45, 51–54. [Google Scholar]
- Virgile, B.; Clémentine, F.; Antoine, P.; Banerjee, M.; Raoul, F. Effects of contaminants and trophic cascade regulation on food chain stability: Application to cadmium soil pollution on small mammals—Raptor systems. Ecol. Model. 2018, 382, 33–42. [Google Scholar]
- Liu, K.; Song, Y.; Zhang, L.; Gong, F. Comprehensive Comparison of Quality between Purple Leaf Lettuce and Green Leaf Lettuce. J. Chang. Veg. 2021, 51–53. [Google Scholar] [CrossRef]
- Tang, X.; Yan, P.; Ji, P.; Gao, P.; Nguyen, T.H.; Tong, Y. Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.). Ecotoxicol. Environ. Saf. 2016, 125, 102–106. [Google Scholar] [CrossRef]
- Yan, H.; Li, X.; Xu, Z.; Lin, G. Applications of Fluorescence Analysis Technology on Study of Crop Response to Cadmium Stress. Spectrosc. Spectr. Anal. 2020, 40, 3118–3122. [Google Scholar]
- Yang, F.; Tang, L.; He, H.; Kong, F.; Wang, W.; Cheng, W. Studies on low temperature adaptability of two strawberries cultivars by chlorophyll fluorescence technology. China Fruits 2021, 13–19. [Google Scholar] [CrossRef]
- Wu, C.A.; Meng, Q.W.; Zou, Q.; Shao, S.; Wang, W. Comparative Study on the Photooxidative Response in Different Wheat Cultivar Leaves. Acta Agron. Sin. 2003, 29, 339–344. [Google Scholar]
- Porcar-Castell, A.; Tyystjärvi, E.; Atherton, J.; van der Tol, C.; Flexas, J.; Pfündel, E.E.; Moreno, J.; Frankenberg, C.; Berry, J.A. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: Mechanisms and challenges. J. Exp. Bot. 2014, 65, 4065–4095. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.N.; Yu, H.Y.; Zhang, L.; Ren, S.; Sui, Y.; Yu, L. Rice Blast Prediction Model Based on Analysis of Chlorophyll Fluorescence Spectrum. Spectrosc. Spectr. Anal. 2014, 34, 1003–1006. [Google Scholar]
- Gan, L.; Luo, Y.; Dai, Z.; Wang, L.; Huang, Y. Responses of Distylium chinense to Cd Stress in Cd Accumulation, Growth and Chlorophyll Fluorescence Dynamics. J. Ecol. Rural Environ. 2017, 33, 665–672. [Google Scholar]
- Mei, W.; Zhi, Q.; Dan, C.; Liu, L.; Hamid, Y.; Zhang, S.; Shan, A.; Kang, K.J.; Feng, Y.; Yang, X. Combined cadmium and fluorine inhibit lettuce growth through reducing root elongation, photosynthesis, and nutrient absorption. Environ. Sci. Pollut. Res. Int. 2022, 29, 91255–91267. [Google Scholar]
- Wan, X.; Zhang, F.; Xia, X.; Yin, W. Effects of Cadmium on Photosynthesis and Chlorophyll Fluorescence Parameters of Solution-Cultured Poplar Plants. Sci. Silvae Sin. 2008, 44, 73–78. [Google Scholar]
- Tao, L.; Zhang, N.M. Growth Response of Three Leafy Vegetables to Cd Pollution and Their Cd Accumulation Characteristics. Chin. Agric. Sci. Bull. 2018, 34, 99–106. [Google Scholar]
- Berens, M.L.; Wolinska, K.W.; Spaepen, S.; Ziegler , J.; Nobori , T.; Nair, A.; Krüler, V.; Winkelmüller, T.M.; Wang, Y.; Mine, A.; et al. Balancing trade-offs between biotic and abiotic stress responses through leaf age-dependent variation in stress hormone cross-talk. Proc. Natl. Acad. Sci. USA 2019, 116, 2364–2373. [Google Scholar] [CrossRef]
- Ghotbi-Ravandi, A.A.; Shahbazi, M.; Pessarakli, M.; Shariati, M. Monitoring the photosystem II behavior of wild and cultivated barley in response to progressive water stress and rehydration using OJIP chlorophyll a fluorescence transient. J. Plant Nutr. 2016, 39, 1174–1185. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Z.Q.; Yang, L.; Luo, J.; Zhang, F. Effects of High Temperature and High Humidity Conditions at Seedling Stage on the Chlorophyll Fluorescence Characteristics in the Center of Photosystem II of Cucumber Leaves. Chin. J. Agrometeorol. 2022, 43, 912–922. [Google Scholar]
- Xu, J.; Hu, B.H.; Ge, T.; Chen, Q. Effects of Cadmium Stress on Seed Germination and Physiological Characteristics of Lettuce Seedling. Hubei Agric. Sci. 2014, 53, 4892–4896. [Google Scholar]
- Chen, X.; Tao, H.; Wu, Y.; Xu, X. Effects of Cadmium on metabolism of photosynthetic pigment and photosynthetic system in Lactuca sativa L. revealed by physiological and proteomics analysis. Sci. Hortic. 2022, 305, 111371. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.; Chen, W.; Wang, M.; Peng, C. Variation Characteristics of Vegetables Cadmium Uptake Factors and Its Relations to Environmental Factors. Environ. Sci. 2017, 38, 399–404. [Google Scholar]
- Zhou, J.; Cheng, K.; Gao, R.; Duan, H.; Pu, H.; Jin, Z. Photosynthesis and Other Physiological Characteristics of Cinnamomum camphora seedlings under Cadmium Stress. Sci. Silvae Sin. 2020, 56, 193–201. [Google Scholar]
- Devrim, C.; Dev, T.B.; Shi, W.M.; Kronzucker, H.J. How Plant Root Exudates Shape the Nitrogen Cycle. Trends Plant Sci. 2017, 22, 661–673. [Google Scholar]
- Zhou, L.; Zhou, L.; Wu, H.; Kong, L.; Li, J.; Qiao, J.; Chen, L. Analysis of Cadmium Contamination in Lettuce (Lactuca sativa L.) Using Visible-Near Infrared Reflectance Spectroscopy. Sensors 2023, 23, 9562. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Han, Y.; Liu, J.; Gao, F.; Liang, Q.; Yu, P.; Liu, C.; Zhang, X.; Su, B. Physiological adaptations to cadmium stresses and cadmium accumulation in lettuce. Agro-Environ. Sci. 2018, 37, 1610–1618. [Google Scholar]
- Kalaji, H.M.; Jajoo, A.; Oukarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Łukasik, I.; Goltsev, V.; Ladle, R.J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant. 2016, 38, 102. [Google Scholar] [CrossRef]
- Hou, W.; Sun, A.; Chen, H.; Yang, F.; Pan, J.; Guan, M. Effects of chilling and high temperatures on photosynthesis and chlorophyll fluorescence in leaves of watermelon seedlings. Biol. Plant. 2016, 60, 148–154. [Google Scholar] [CrossRef]
- Meng, L.; Song, J.; Bai, Z.; Cao, K.; Zhang, Y.; Yang, Q. Effects of far-red light on photosynthesis and chlorophyll fluorescence characteristics of lettuce. Jiangsu J. Agric. Sci. 2022, 38, 181–189. [Google Scholar]
- Zhou, B.; Mao, L.; Hua, Z.; Lu, J. Effects on photochemical fluorescence properties under salt-alkaline stresses about Sinocaly-canthus chinensis. Acta Agric. Zhejiangensis 2021, 33, 1416–1425. [Google Scholar]
- Wei, D.D.; Wang, B.Q.; Dai, L. Influence of Cadmium Pollution on Chlorophyll Fluorescence Characteristics in Two Leguminous Plants. J. Shanxi Agric. Sci. 2021, 49, 1205–1211. [Google Scholar]
- Meng, L.; Wen, J.; Zhang, J.; Li, Q. Influence of cadmium stress on PSII chlorophyll fluorescence characteristics in the leaves of Acer palmatum. Jiangsu J. Agric. Sci. 2014, 30, 398–404. [Google Scholar]
- Zushi, K.; Matsuzoe, N. Using of chlorophyll a fluorescence OJIP transients for sensing salt stress in the leaves and fruits of tomato. Sci. Hortic. 2017, 219, 216–221. [Google Scholar] [CrossRef]
- Ding, J.N.; Wang, H.; Yu, S.P. Application of Rapid Fluorescence Analysis Technology on study on Glycine Soja Response to PAHs (Phenanthrene). Spectrosc. Spectr. Anal. 2022, 42, 2207–2212. [Google Scholar]
- Zhu, T.; Li, L.; Duan, Q.; Liu, X.; Chen, M. Progress in our understanding of plant responses to the stress of heavy metal cadmium. Plant Signal. Behav. 2021, 16, 1836884. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, H.F.; Cao, S.J. Effects of cadmium stress on the growth and physiological characteristics of hydrangea. Contemp. Hortic. 2023, 46, 12–14. [Google Scholar]
- Li, F.; Zhang, H.; Yang, T.; Wang, J.; Gu, H. Relationship Between Fluorescence Parameters and Chlorophyll Content in Soybean Leaves at Pod Filling Stage. J. Nucl. Agric. Sci. 2022, 36, 2519–2527. [Google Scholar]
- Yang, C.; Du, S.M.; Zhang, D.Q.; Li, X.; Shi, Y.; Shao, Y.; Wang, H.; Fang, B. Method for estimating relative chlorophyll content in wheat leaves based on chlorophyll fluorescence parameters. Chin. J. Appl. Ecol. 2021, 32, 175–181. [Google Scholar]
- Wang, Z.L.; Fan, Y.; Lyu, H.S.; Xu, Y.Y.; Dong, G.Q. Estimation of summer maize crop coefficient and evapotranspiration based on meteorology-physiology. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2020, 36, 141–148. [Google Scholar]
Parameter | Parameter Description |
---|---|
Fo | Initial fluorescence |
Fm | Maximum fluorescence |
Fv | Variable fluorescence |
Ft | The variable fluorescence intensity at each point |
Fv/Fm | The maximum quantum yield of photosystem II |
PIabs | The performance index based on absorbed light energy |
Vj | The relative variable fluorescence intensity at the J point |
N | The number of oxidized–reduced turnovers of QA |
Sm | The PSII acceptor side electron transfer complex |
ψo | The probability of captured excitons transferring electrons into the electron transport chain |
ϕEo | The quantum yield of electron transport |
ϕDo | The quantum ratio used for thermal dissipation |
ϕRo | The quantum yield for reduction of the PSI acceptor side end electron acceptors |
ABS/RC | The light energy absorbed per reaction center |
DIo/RC | The heat dissipation per reaction center |
TRo/RC | The energy captured by a reaction center for reducing QA |
ETo/RC | The energy captured by a reaction center for electron transfer |
QA | Primary bound plastoquinone |
QB | Secondary bound plastoquinone |
O | Minimal fluorescence |
K | Fluorescence at 0.3 ms |
J | Fluorescence at 2 ms |
I | Fluorescence at 30 ms |
P | Peak fluorescence |
Parameters | Fitting Model | R2 | Significance | F | Standard Error |
---|---|---|---|---|---|
ABS/RC | 0.503 | ** | 11.135 | 1.746 | |
DIO/RC | 0.386 | ** | 14.442 | 1.898 | |
TRO/RC | 0.502 | ** | 11.107 | 1.747 | |
ETO/RC | 0.684 | ** | 23.818 | 1.392 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Zhou, L.; Wu, H.; Jing, T.; Li, T.; Li, J.; Kong, L.; Zhu, F. Application of Chlorophyll Fluorescence Analysis Technique in Studying the Response of Lettuce (Lactuca sativa L.) to Cadmium Stress. Sensors 2024, 24, 1501. https://doi.org/10.3390/s24051501
Zhou L, Zhou L, Wu H, Jing T, Li T, Li J, Kong L, Zhu F. Application of Chlorophyll Fluorescence Analysis Technique in Studying the Response of Lettuce (Lactuca sativa L.) to Cadmium Stress. Sensors. 2024; 24(5):1501. https://doi.org/10.3390/s24051501
Chicago/Turabian StyleZhou, Lina, Leijinyu Zhou, Hongbo Wu, Tingting Jing, Tianhao Li, Jinsheng Li, Lijuan Kong, and Fengwu Zhu. 2024. "Application of Chlorophyll Fluorescence Analysis Technique in Studying the Response of Lettuce (Lactuca sativa L.) to Cadmium Stress" Sensors 24, no. 5: 1501. https://doi.org/10.3390/s24051501
APA StyleZhou, L., Zhou, L., Wu, H., Jing, T., Li, T., Li, J., Kong, L., & Zhu, F. (2024). Application of Chlorophyll Fluorescence Analysis Technique in Studying the Response of Lettuce (Lactuca sativa L.) to Cadmium Stress. Sensors, 24(5), 1501. https://doi.org/10.3390/s24051501