Multisensor Integrated Platform Based on MEMS Charge Variation Sensing Technology for Biopotential Acquisition
Abstract
:1. Introduction
2. Materials: The QVAR Sensor
2.1. Operational Principles
- Electrodes: The electrodes are always necessary to read the signals. Usually, they are made of copper, silver, tin, or gold and can change in dimensions. They can be directly coupled to the skin, as with the wet electrodes, or isolated from the skin using electrostatic induction. Apart from the case of specific acquisitions from the scalp, where gold cup electrodes in conjunction with conductive paste were used, we always used wet silver–silver chloride (Ag/AgCl) patch electrodes directly on the skin, which guarantee good and stable electrical and electrochemical properties and excellent signal acquisition performance. It is important to reduce the series resistance introduced by the electrodes to a minimum, but the high input impedance of the QVAR sensor helps in this.
- AFE: This is an analog front-end, which performs the conditioning and the amplification. External amplification is not always necessary.
- ADC: This is a 12-bit analog-to-digital converter.
- Digital processing unit: This is composed of a finite-state machine and a machine learning core.
2.2. Electrical Features
2.3. Potentiality and Limits of the QVAR Sensor
3. Methods: Biopotential Acquisition by QVAR Sensors
3.1. The Starting Point: Method of ECG Acquisition
3.2. The Starting Point: Method of EOG Acquisition
4. Results and Applications
4.1. Acquisition of α-Wave and β-Wave EEGs
4.2. Acquisition of sEMG
4.3. Case Study: Domestic Monitoring of Vital Signs in Hypoglycemia
4.4. Case Study: Domestic Monitoring of Non-EEG Biopotential for REM/NREM Sleep Screening
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zampogna, A.; Mileti, I.; Palermo, E.; Celletti, C.; Paoloni, M.; Manoni, A.; Mazzetta, I.; Dalla Costa, G.; Pérez-López, C.; Camerota, F.; et al. Fifteen Years of Wireless Sensors for Balance Assessment in Neurological Disorders. Sensors 2020, 20, 3247. [Google Scholar] [CrossRef] [PubMed]
- Jani, A.B.; Bagree, R.; Roy, A.K. Design of a Low-Power, Low-Cost ECG & EMG Sensor for Wearable Biometric and Medical Application. In Proceedings of the 2017 IEEE SENSORS, Glasgow, UK, 29 October 2017–1 November 2017; pp. 1–3. [Google Scholar]
- Mazzetta, I.; Zampogna, A.; Suppa, A.; Gumiero, A.; Pessione, M.; Irrera, F. Wearable Sensors System for an Improved Analysis of Freezing of Gait in Parkinson’s Disease Using Electromyography and Inertial Signals. Sensors 2019, 19, 948. [Google Scholar] [CrossRef] [PubMed]
- Mai, N.-D.; Hoang Long, N.M.; Chung, W.-Y. 1D-CNN-Based BCI System for Detecting Emotional States Using a Wireless and Wearable 8-Channel Custom-Designed EEG Headset. In Proceedings of the 2021 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Virtual, 20–23 June 2021; pp. 1–4. [Google Scholar]
- Ogino, M.; Kanoga, S.; Muto, M.; Mitsukura, Y. Analysis of Prefrontal Single-Channel EEG Data for Portable Auditory ERP-Based Brain–Computer Interfaces. Front. Hum. Neurosci. 2019, 13, 250. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.R.; Zialcita, M.L. EEG in the Elderly: Seizures vs. Syncope. Clin. Electroencephalogr. 2000, 31, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Livia Fantini, M.; Gagnon, J.-F.; Petit, D.; Rompré, S.; Décary, A.; Carrier, J.; Montplaisir, J. Slowing of Electroencephalogram in Rapid Eye Movement Sleep Behavior Disorder: Electroencephalogram in RBD. Ann. Neurol. 2003, 53, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Diadem. Available online: https://www.bitbrain.com/neurotechnology-products/dry-eeg/diadem (accessed on 13 December 2021).
- BrainBit. Available online: http://brainbit.com/ (accessed on 13 December 2021).
- Dry EEG Headsets|Products|CGX. Available online: https://www.cgxsystems.com/products (accessed on 13 December 2021).
- Li, D.; Puglia, M.P.; Lapointe, A.P.; Ip, K.I.; Zierau, M.; McKinney, A.; Vlisides, P.E. Age-Related Changes in Cortical Connectivity During Surgical Anesthesia. Front. Aging Neurosci. 2020, 11, 371. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.; Chelian, S.; Mcburnett, W.; Tsou, W.; Kruse, A. An Investigation of Computer-Based Brain Training on the Cognitive and EEG Performance of Employees. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019. [Google Scholar]
- Kim, H.; Yoshimura, N.; Koike, Y. Classification of Movement Intention Using Independent Components of Premovement EEG. Front. Hum. Neurosci. 2019, 13, 63. [Google Scholar] [CrossRef]
- DSI 7 Flex. Available online: https://wearablesensing.com/products/dsi-7-flex/ (accessed on 13 December 2021).
- Product. Available online: https://mentalab.com/product (accessed on 2 February 2022).
- Apicella, A.; Arpaia, P.; Mastrati, G.; Moccaldi, N. High-Wearable EEG-Based Detection of Emotional Valence for Scientific Measurement of Emotions. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Nakamura, T.; Alqurashi, Y.D.; Morrell, M.J.; Mandic, D.P. Hearables: Automatic Overnight Sleep Monitoring with Standardized In-Ear EEG Sensor. IEEE Trans. Biomed. Eng. 2020, 67, 203–212. [Google Scholar] [CrossRef]
- Hölle, D.; Meekes, J.; Bleichner, M.G. Mobile Ear-EEG to Study Auditory Attention in Everyday Life. Behav. Res. 2021, 53, 2025–2036. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, C.; Bennett, M.T.; Krahn, A.D. Extended ECG Monitoring. In Cardiac Arrhythmias, Pacing and Sudden Death; Cardiovascular Medicine; Kowey, P., Piccini, J.P., Naccarelli, G., Reiffel, J.A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 49–60. ISBN 978-3-319-58000-5. [Google Scholar]
- Bulková, V. Long-Term ECG Monitoring. Vnitr. Lek. 2021, 67, 16–21. [Google Scholar] [CrossRef]
- Bender, E. Prolonged Holter-ECG Monitoring Found to Improve Detection of Atrial Fibrillation After Acute Stroke. Neurol. Today 2017, 17, 8. [Google Scholar] [CrossRef]
- Bayoumy, K.; Gaber, M.; Elshafeey, A.; Mhaimeed, O.; Dineen, E.H.; Marvel, F.A.; Martin, S.S.; Muse, E.D.; Turakhia, M.P.; Tarakji, K.G.; et al. Smart Wearable Devices in Cardiovascular Care: Where We Are and How to Move Forward. Nat. Rev. Cardiol. 2021, 18, 581–599. [Google Scholar] [CrossRef]
- Brunelli, D.; Tadesse, A.M.; Vodermayer, B.; Nowak, M.; Castellini, C. Low-cost wearable multichannel surface EMG acquisition for prosthetic hand control. In Proceedings of the 6th International Workshop on Advances in Sensors and Interfaces (IWASI), Gallipoli, Italy, 18–19 June 2015; pp. 94–99. [Google Scholar] [CrossRef]
- Fang, Y.; Liu, H.; Li, G.; Zhu, X. A Multichannel Surface EMG System for Hand Motion Recognition. Int. J. Humanoid Robot. 2015, 12, 1550005. [Google Scholar] [CrossRef]
- MYO Armband. Available online: https://wearables.com/products/myo (accessed on 10 February 2023).
- Liu, Y.; Huang, H. Towards a high-stability EMG recognition system for prosthesis control: A one-class classification based non-target EMG pattern filtering scheme. In Proceedings of the 2009 IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, 11–14 October 2009; pp. 4752–4757. [Google Scholar]
- Huang, P.; Wang, H.; Wang, Y.; Liu, Z.; Samuel, O.W.; Yu, M.; Li, X.; Chen, S.; Li, G. Identification of Upper-Limb Movements Based on Muscle Shape Change Signals for Human-Robot Interaction. Comput. Math. Methods Med. 2020, 2020, 5694265. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Fisher, M.H.; Wolczowski, A.; Bell, G.D.; Burn, D.; Gao, R. Towards an EMG Controlled Prosthetic Hand Using a 3D Electromagnetic Positioning System. In Proceedings of the 2005 IEEE Instrumentation and Measurement Technology Conference Proceedings, Ottawa, ON, Canada, 16–19 May 2005; pp. 261–266. [Google Scholar]
- Trignotm Wireless Biofeedback System User’s Guide Delsys Incorporated. 2021. Available online: https://www.delsys.com/ (accessed on 13 March 2023).
- Mini Wave Infinity. 2004. Available online: https://www.cometasystems.com/miniwave/ (accessed on 13 March 2023).
- Ultium EMG Brochure. 2019. Available online: https://www.noraxon.com/our-products/ultium-emg/ (accessed on 21 November 2022).
- Shimmer User Manual Revision 3p. 2017. Available online: http://www.shimmersensing.com/images/uploads/docs/Shimmer_User_Manual_rev3p.pdf (accessed on 10 February 2023).
- Wu, Y.-D.; Ruan, S.-J.; Lee, Y.-H. An Ultra-Low Power Surface EMG Sensor for Wearable Biometric and Medical Applications. Biosensors 2021, 11, 411. [Google Scholar] [CrossRef]
- Casson, A.J. Wearable EEG and Beyond. Biomed. Eng. Lett. 2019, 9, 53–71. [Google Scholar] [CrossRef] [PubMed]
- Manoni, A.; Gumiero, A.; Zampogna, A.; Ciarlo, C.; Panetta, L.; Suppa, A.; Della Torre, L.; Irrera, F. Long-Term Polygraphic Monitoring through MEMS and Charge Transfer for Low-Power Wearable Applications. Sensors 2022, 22, 2566. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.K.; Shah, S.U.; Villa-Lopez, E.; Murillo, M.; Arenas, N.; Oshima, K.; Chang, R.-K.; Lauzon, M.; Guo, X.; Pillutla, P. Comparison of Electrocardiogram Quality and Clinical Interpretations Using Prepositioned ECG Electrodes and Conventional Individual Electrodes. J. Electrocardiol. 2020, 59, 126–133. [Google Scholar] [CrossRef]
- Hossain, M.B.; Bashar, S.K.; Walkey, A.J.; McManus, D.D.; Chon, K.H. An Accurate QRS Complex and P Wave Detection in ECG Signals Using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Approach. IEEE Access 2019, 7, 128869–128880. [Google Scholar] [CrossRef]
- Cai, Z.; Li, J.; Zhang, X.; Shen, Q.; Murray, A.; Liu, C. How Accurate Are ECG Parameters from Wearable Single-Lead ECG System for 24-Hours Monitoring. In Proceedings of the 2019 Computing in Cardiology (CinC), Singapore, 8–11 September 2019; pp. 1–4. [Google Scholar]
- Witvliet, M.P.; Karregat, E.P.M.; Himmelreich, J.C.L.; de Jong, J.S.S.G.; Lucassen, W.A.M.; Harskamp, R.E. Usefulness, Pitfalls and Interpretation of Handheld Single-lead Electrocardiograms. J. Electrocardiol. 2021, 66, 33–37. [Google Scholar] [CrossRef]
- Jurcak, V.; Tsuzuki, D.; Dan, I. 10/20, 10/10, and 10/5 Systems Revisited: Their Validity as Relative Head-Surface-Based Positioning Systems. Neuroimage 2007, 34, 1600–1611. [Google Scholar] [CrossRef]
- Zeng, H.; Song, A.; Yan, R.; Qin, H. EOG Artifact Correction from EEG Recording Using Stationary Subspace Analysis and Empirical Mode Decomposition. Sensors 2013, 13, 14839–14859. [Google Scholar] [CrossRef]
- Belkhiria, C.; Peysakhovich, V. Electro-Encephalography and Electro-Oculography in Aeronautics: A Review Over the Last Decade (2010–2020). Front. Neuroergon. 2020, 1, 3. [Google Scholar] [CrossRef]
- Creel, D.J. The Electrooculogram. Handb. Clin. Neurol. 2019, 160, 495–499. [Google Scholar] [CrossRef]
- Peever, J.; Fuller, P.M. The Biology of REM Sleep. Curr. Biol. 2017, 27, R1237–R1248. [Google Scholar] [CrossRef]
- Artanto, D.; Sulistyanto, M.P.; Pranowo, I.D.; Pramesta, E.E. Drowsiness detection system based on eye-closure using a low-cost EMG and ESP8266. In Proceedings of the 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE), Yogyakarta, Indonesia, 2 November 2017; pp. 235–238. [Google Scholar] [CrossRef]
- Shin, S.; Baek, Y.; Lee, J.; Eun, Y.; Son, S.H. Korean sign language recognition using EMG and IMU sensors based on group-dependent NN models. In Proceedings of the IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 27 November–1 December 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Mikami, S.; Saito, M.; Okada, K.; Gotouda, A. Newly developed ultraminiature wearable electromyogram system useful for analyses of masseteric activity during the whole day. J. Prosthodont. Res. 2018, 62, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Gruebler, A.; Suzuki, K. Design of a Wearable Device for Reading Positive Expressions from Facial EMG Signals. IEEE Trans. Affect. Comput. 2014, 5, 227–237. [Google Scholar] [CrossRef]
- Available online: https://www.mikroe.com/emg-click (accessed on 21 November 2022).
- Yosef, T. Hypoglycemia Among Type 1 Diabetes Patients After Insulin Use in Southwest Ethiopia. Front. Endocrinol. 2021, 12, 684570. [Google Scholar] [CrossRef]
- McCrimmon, R.J.; Sherwin, R.S. Hypoglycemia in Type 1 Diabetes. Diabetes 2010, 59, 2333–2339. [Google Scholar] [CrossRef] [PubMed]
- Loumpardia, P.; Huda, M.S.B. Symptoms of Hypoglycaemia. In Blood Glucose Levels; Szablewski, L., Ed.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Marques, J.L.B.; George, E.; Peacey, S.R.; Harris, N.D.; Macdonald, I.A.; Cochrane, T.; Heller, S.R. Altered ventricular repolarization during hypoglycaemia in patients with diabetes. Diabet. Med. 1997, 14, 648–654. [Google Scholar] [CrossRef]
- Kallergis, E.M.; Goudis, C.A.; Simantirakis, E.N.; Kochiadakis, G.E.; Vardas, P.E. Mechanisms, Risk Factors, and Management of Acquired Long QT Syndrome: A Comprehensive Review. Sci. World J. 2012, 2012, 212178. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, S.; Auderset, A.; Burckhardt, M.; Szinnai, G.; Hess, M.; Zumsteg, U.; Denhaerynck, K.; Donner, B. Autonomic cardiac regulation during spontaneous nocturnal hypoglycemia in children with type 1 diabetes. Pediatr. Diabetes 2021, 22, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Mylona, M.; Liatis, S.; Anastasiadis, G.; Kapelios, C.; Kokkinos, A. Severe iatrogenic hypoglycaemia requiring medical assistance is associated with concurrent prolongation of the QTc interval. Diabetes Res. Clin. Pract. 2020, 161, 108038. [Google Scholar] [CrossRef] [PubMed]
- Diouri, O.; Cigler, M.; Vettoretti, M.; Mader, J.K.; Choudhary, P.; Renard, E. Hypoglycaemia detection and prediction techniques: A systematic review on the latest developments. Diabetes Metab. Res. 2021, 37, e3449. [Google Scholar] [CrossRef]
- Elvebakk, O.; Tronstad, C.; I Birkeland, K.; Jenssen, T.G.; Bjørgaas, M.R.; Gulseth, H.L.; Kalvøy, H.; O Høgetveit, J.; Martinsen, G. A multiparameter model for non-invasive detection of hypoglycemia. Physiol. Meas. 2019, 40, 085004. [Google Scholar] [CrossRef] [PubMed]
- Porumb, M.; Stranges, S.; Pescapè, A.; Pecchia, L. Precision Medicine and Artificial Intelligence: A Pilot Study on Deep Learning for Hypoglycemic Events Detection based on ECG. Sci. Rep. 2020, 10, 170. [Google Scholar] [CrossRef]
- Bekkink, M.O.; Koeneman, M.; de Galan, B.E.; Bredie, S.J. Early Detection of Hypoglycemia in Type 1 Diabetes Using Heart Rate Variability Measured by a Wearable Device. Diabetes Care 2019, 42, 689–692. [Google Scholar] [CrossRef]
- Hsu, C.J.; Chen, S.T. IDF21-0409 Hypoglycemia and heart rate variability: Synchronous detection by Holter and continuous glucose monitors. Diabetes Res. Clin. Pract. 2022, 186, 109534. [Google Scholar] [CrossRef]
- Ngo, C.Q.; Chai, R.; Nguyen, T.V.; Jones, T.W.; Nguyen, H.T. Nocturnal Hypoglycemia Detection using EEG Spectral Moments under Natural Occurrence Conditions. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 7177–7180. [Google Scholar] [CrossRef]
- Ngo, C.Q.; Chai, R.; Nguyen, T.V.; Jones, T.W.; Nguyen, H.T. Electroencephalogram Spectral Moments for the Detection of Nocturnal Hypoglycemia. IEEE J. Biomed. Health Inform. 2020, 24, 1237–1245. [Google Scholar] [CrossRef]
- Ngo, C.Q.; Chai, R.; Jones, T.W.; Nguyen, H.T. The Effect of Hypoglycemia on Spectral Moments in EEG Epochs of Different Durations in Type 1 Diabetes Patients. IEEE J. Biomed. Health Inform. 2021, 25, 2857–2865. [Google Scholar] [CrossRef]
- Sateia, M.J. International Classification of Sleep Disorders—Third Edition. Chest 2014, 146, 1387–1394. [Google Scholar] [CrossRef] [PubMed]
- Gorantla, S.; Rodriguez, C.L. The Diagnostic Challenge of Dream-Enactment Behaviors. J. Clin. Sleep Med. 2020, 16, 1837–1838. [Google Scholar] [CrossRef] [PubMed]
- Masi, G.; Ampriamo, G.; Priano, L.; Ferraris, C. New Perspectives in Nonintrusive Sleep Monitoring for Neurodegenerative Diseases—A Narrative Review. Electronics 2023, 12, 1098. [Google Scholar] [CrossRef]
- Korotun, M.; Quintero, L.; Hahn, S.S. Rapid Eye Movement Behavior Disorder and Other Parasomnias. Clin. Geriatr. Med. 2021, 37, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Mieno, Y.; Hayashi, M.; Hirochi, M.; Ikeda, A.; Kako, H.; Ina, T.; Maeda, Y.; Maeda, S.; Inoue, T.; Souma, T.; et al. Availability of Home Sleep Apnea Test Equipment LS-140 on a Comparison with Polysomnography. Fujita Med. J. 2022, 8, 17–24. [Google Scholar] [CrossRef] [PubMed]
- White, C.; Hill, E.A.; Morrison, I.; Riha, R.L. Diagnostic Delay in REM Sleep Behavior Disorder (RBD). J. Clin. Sleep Med. 2012, 8, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Postuma, R.B.; Gagnon, J.-F.; Montplaisir, J.Y. REM Sleep Behavior Disorder: From Dreams to Neurodegeneration. Neurobiol. Dis. 2012, 46, 553–558. [Google Scholar] [CrossRef]
- Manoni, A.; Loreti, F.; Radicioni, V.; Pellegrino, D.; Torre, L.D.; Gumiero, A.; Halicki, D.; Palange, P.; Irrera, F. A New Wearable System for Home Sleep Apnea Testing, Screening, and Classification. Sensors 2020, 20, 7014. [Google Scholar] [CrossRef]
- Arulvallal, S.; Snekhalatha, U.; Rajalakshmi, T. Design and Development of Wearable Device for Continuous Monitoring of Sleep APNEA Disorder. In Proceedings of the 2019 International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur, India, 4–6 April 2019; pp. 0050–0053. [Google Scholar]
- Sarmiento, K.F.; Folmer, R.L.; Stepnowsky, C.J.; Whooley, M.A.; Boudreau, E.A.; Kuna, S.T.; Atwood, C.W.; Smith, C.J.; Yarbrough, W.C. National Expansion of Sleep Telemedicine for Veterans: The TeleSleep Program. J. Clin. Sleep Med. 2019, 15, 1355–1364. [Google Scholar] [CrossRef]
- Hwang, D.; Chang, J.W.; Benjafield, A.V.; Crocker, M.E.; Kelly, C.; Becker, K.A.; Kim, J.B.; Woodrum, R.R.; Liang, J.; Derose, S.F. Effect of Telemedicine Education and Telemonitoring on Continuous Positive Airway Pressure Adherence. The Tele-OSA Randomized Trial. Am. J. Respir. Crit. Care Med. 2018, 197, 117–126. [Google Scholar] [CrossRef]
- Berry, R.B.; Brooks, R.; Gamaldo, C.; Harding, S.; Lloyd, R.; Marcus, C.; Vaughn, B. Harding AASM Scoring Manual Version 2.2; American Academy of Sleep Medicine: Darein, IL, USA, 2015; Volume 7. [Google Scholar]
- Kanady, J.C.; Drummond, S.P.A.; Mednick, S.C. Actigraphic Assessment of a Polysomnographic-Recorded Nap: A Validation Study. J. Sleep Res. 2011, 20, 214–222. [Google Scholar] [CrossRef]
- Kosmadopoulos, A.; Sargent, C.; Darwent, D.; Zhou, X.; Roach, G.D. Alternatives to Polysomnography (PSG): A Validation of Wrist Actigraphy and a Partial-PSG System. Behav. Res. 2014, 46, 1032–1041. [Google Scholar] [CrossRef]
- Long, X.; Fonseca, P.; Foussier, J.; Haakma, R.; Aarts, R.M. Sleep and Wake Classification with Actigraphy and Respiratory Effort Using Dynamic Warping. IEEE J. Biomed. Health Inform. 2014, 18, 1272–1284. [Google Scholar] [CrossRef] [PubMed]
- Assessing Sleep Using Hip and Wrist Actigraphy—Slater—2015—Sleep and Biological Rhythms—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/sbr.12103 (accessed on 28 September 2022).
- Kagawa, M.; Suzumura, K.; Matsui, T. Sleep Stage Classification by Non-Contact Vital Signs Indices Using Doppler Radar Sensors. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 4913–4916. [Google Scholar]
- Ye, Y.; Yang, K.; Jiang, J.; Ge, B. Automatic Sleep and Wake Classifier with Heart Rate and Pulse Oximetry: Derived Dynamic Time Warping Features and Logistic Model. In Proceedings of the 2016 Annual IEEE Systems Conference (SysCon), Orlando, FL, USA, 18–21 April 2016; pp. 1–6. [Google Scholar]
- Osterbauer, B.; Koempel, J.A.; Ward, S.L.D.; Fisher, L.M.; Don, D.M. A Comparison Study of The Fitbit Activity Monitor and PSG For Assessing Sleep Patterns and Movement In Children. J. Otolaryngol. Adv. 2016, 1, 24–35. [Google Scholar] [CrossRef]
- Chinoy, E.D.; Cuellar, J.A.; Jameson, J.T.; Markwald, R.R. Performance of Four Commercial Wearable Sleep-Tracking Devices Tested Under Unrestricted Conditions at Home in Healthy Young Adults. Nat. Sci. Sleep 2022, 14, 493–516. [Google Scholar] [CrossRef] [PubMed]
- Stone, J.D.; Rentz, L.E.; Forsey, J.; Ramadan, J.; Markwald, R.R.; Finomore, V.S.; Galster, S.M.; Rezai, A.; Hagen, J.A. Evaluations of Commercial Sleep Technologies for Objective Monitoring During Routine Sleeping Conditions. Nat. Sci. Sleep 2020, 12, 821–842. [Google Scholar] [CrossRef]
- de Zambotti, M.; Cellini, N.; Goldstone, A.; Colrain, I.M.; Baker, F.C. Wearable Sleep Technology in Clinical and Research Settings. Med. Sci. Sports Exerc. 2019, 51, 1538–1557. [Google Scholar] [CrossRef]
- Gavriloff, D.; Sheaves, B.; Juss, A.; Espie, C.A.; Miller, C.B.; Kyle, S.D. Sham Sleep Feedback Delivered via Actigraphy Biases Daytime Symptom Reports in People with Insomnia: Implications for Insomnia Disorder and Wearable Devices. J. Sleep Res. 2018, 27, e12726. [Google Scholar] [CrossRef]
- Imtiaz, S.A. A Systematic Review of Sensing Technologies for Wearable Sleep Staging. Sensors 2021, 21, 1562. [Google Scholar] [CrossRef] [PubMed]
- Wulterkens, B.M.; Fonseca, P.; Hermans, L.W.; Ross, M.; Cerny, A.; Anderer, P.; Long, X.; van Dijk, J.P.; Vandenbussche, N.; Pillen, S.; et al. It Is All in the Wrist: Wearable Sleep Staging in a Clinical Population versus Reference Polysomnography. Nat. Sci. Sleep 2021, 13, 885–897. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, P.; van Gilst, M.M.; Radha, M.; Ross, M.; Moreau, A.; Cerny, A.; Anderer, P.; Long, X.; van Dijk, J.P.; Overeem, S. Automatic Sleep Staging Using Heart Rate Variability, Body Movements, and Recurrent Neural Networks in a Sleep Disordered Population. Sleep 2020, 43, zsaa048. [Google Scholar] [CrossRef] [PubMed]
- Korkalainen, H.; Aakko, J.; Duce, B.; Kainulainen, S.; Leino, A.; Nikkonen, S.; Afara, I.O.; Myllymaa, S.; Töyräs, J.; Leppänen, T. Deep Learning Enables Sleep Staging from Photoplethysmogram for Patients with Suspected Sleep Apnea. Sleep 2020, 43, zsaa098. [Google Scholar] [CrossRef]
- Yuda, E.; Yoshida, Y.; Sasanabe, R.; Tanaka, H.; Shiomi, T.; Hayano, J. Sleep Stage Classification by a Combination of Actigraphic and Heart Rate Signals. J. Low Power Electron. Appl. 2017, 7, 28. [Google Scholar] [CrossRef]
Electrical Parameters @ VDD = 1.8 V, T = 25 °C | Typ. |
---|---|
Supply voltage | 1.71 V to 3.6 V |
I/O pins supply voltage | 1.08 V to 3.6 V |
Current consumption | 190 uA |
Current consumption in power-down mode | 2.6 uA |
Digital high-level input voltage | 0.7 × VDDIO |
Digital low-level input voltage | 0.3 × VDDIO |
Digital high-level output voltage | VDDIO—0.2 V |
Digital low-level output voltage | 0.2 V |
Electrical Characteristics @ VDD = 1.8 V, T = 25 °C | Typ. |
---|---|
ODR (Configurable output data rate) | 120 to 240 Hz |
Input range (DC-coupled) | ±460 mV |
Offset (input referred) | ±3 mV |
Noise (shorted input) | 54 uVRMS |
QVAR gain | 78 LSB/mV |
CMRR | 54 dB |
Input impedance (configurable) | 235 to 2400 MΩ |
ECG/EEG Parameters | QVAR System | Gold Standard | Discrepancy % |
---|---|---|---|
QTc (ms) | 329 | 334 | 1.4 |
RR (ms) | 948.4 | 957.6 | 0.95 |
SDNN | 149.9 | 149.1 | 0.5 |
LF:HF | 0.595 | 0.590 | 0.84 |
CF (Hz) | 102.13 | 102.28 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irrera, F.; Gumiero, A.; Zampogna, A.; Boscari, F.; Avogaro, A.; Gazzanti Pugliese di Cotrone, M.A.; Patera, M.; Della Torre, L.; Picozzi, N.; Suppa, A. Multisensor Integrated Platform Based on MEMS Charge Variation Sensing Technology for Biopotential Acquisition. Sensors 2024, 24, 1554. https://doi.org/10.3390/s24051554
Irrera F, Gumiero A, Zampogna A, Boscari F, Avogaro A, Gazzanti Pugliese di Cotrone MA, Patera M, Della Torre L, Picozzi N, Suppa A. Multisensor Integrated Platform Based on MEMS Charge Variation Sensing Technology for Biopotential Acquisition. Sensors. 2024; 24(5):1554. https://doi.org/10.3390/s24051554
Chicago/Turabian StyleIrrera, Fernanda, Alessandro Gumiero, Alessandro Zampogna, Federico Boscari, Angelo Avogaro, Michele Antonio Gazzanti Pugliese di Cotrone, Martina Patera, Luigi Della Torre, Nicola Picozzi, and Antonio Suppa. 2024. "Multisensor Integrated Platform Based on MEMS Charge Variation Sensing Technology for Biopotential Acquisition" Sensors 24, no. 5: 1554. https://doi.org/10.3390/s24051554
APA StyleIrrera, F., Gumiero, A., Zampogna, A., Boscari, F., Avogaro, A., Gazzanti Pugliese di Cotrone, M. A., Patera, M., Della Torre, L., Picozzi, N., & Suppa, A. (2024). Multisensor Integrated Platform Based on MEMS Charge Variation Sensing Technology for Biopotential Acquisition. Sensors, 24(5), 1554. https://doi.org/10.3390/s24051554