Spatial and Spectral Reconstruction of Breast Lumpectomy Hyperspectral Images
Abstract
:1. Introduction
2. Methodology
2.1. Breast Lumpectomy Dataset
2.2. Framework for Spatial–Spectral Reconstruction
2.2.1. Generating Snapshot and RGB Images
2.2.2. Reconstruction Network
- 1.
- Hyperspectral Image Fusion
- 2.
- Spatial Reconstruction
- 3.
- Spectral Reconstruction
Input | Architecture | Loss Function |
---|---|---|
RGB-HSI | Conv(3 × 3, l, L) Conv(3 × 3, l, L) Conv(3 × 3, l, L) | - MSE (spatial) MSE (spectral) + fusion |
2.2.3. Implementation
2.3. Experiments
2.3.1. Blurring
2.3.2. Noise
2.3.3. Dead Pixels
2.3.4. Specular Reflection
2.4. Performance Evaluation
2.4.1. RMSE
2.4.2. PSNR
2.4.3. ERGAS
2.4.4. SAM
3. Results
3.1. Unblurring
3.2. Denoising
3.3. Dead Pixels Removal
3.4. Specular Reflection Correction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Langhans, L.; Jensen, M.B.; Talman, M.L.M.; Vejborg, I.; Kroman, N.; Tvedskov, T.F. Reoperation rates in ductal carcinoma in situ vs. invasive breast cancer after wire-guided breast-conserving surgery. JAMA Surg. 2017, 152, 378–384. [Google Scholar] [CrossRef]
- Merrill, A.L.; Coopey, S.B.; Tang, R.; McEvoy, M.P.; Specht, M.C.; Hughes, K.S.; Gadd, M.A.; Smith, B.L. Implications of new lumpectomy margin guidelines for breast-conserving surgery: Changes in reexcision rates and predicted rates of residual tumor. Ann. Surg. Oncol. 2016, 23, 729–734. [Google Scholar] [CrossRef]
- Merrill, A.L.; Tang, R.; Plichta, J.K.; Rai, U.; Coopey, S.B.; McEvoy, M.P.; Hughes, K.S.; Specht, M.C.; Gadd, M.A.; Smith, B.L. Should new “no ink on tumor” lumpectomy margin guidelines be applied to ductal carcinoma in situ (DCIS)? A retrospective review using shaved cavity margins. Ann. Surg. Oncol. 2016, 23, 3453–3458. [Google Scholar] [CrossRef]
- Alrahbi, S.; Chan, P.M.; Ho, B.C.; Seah, M.D.; Chen, J.J.; Tan, E.Y. Extent of margin involvement, lymphovascular invasion, and extensive intraductal component predict for residual disease after wide local excision for breast cancer. Clin. Breast Cancer 2015, 15, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Landercasper, J.; Ellis, R.L.; Mathiason, M.A.; Marcou, K.A.; Jago, G.S.; Dietrich, L.L.; Johnson, J.M.; De Maiffe, B.M. A community breast center report card determined by participation in the national quality measures for breast centers program. Breast J. 2010, 16, 472–480. [Google Scholar] [CrossRef]
- Van Den Bruele, A.B.; Jasra, B.; Smotherman, C.; Crandall, M.; Samiian, L. Cost-effectiveness of surgeon performed intraoperative specimen ink in breast conservation surgery. J. Surg. Res. 2018, 231, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Taghian, A.; Mohiuddin, M.; Jagsi, R.; Goldberg, S.; Ceilley, E.; Powell, S. Current perceptions regarding surgical margin status after breast-conserving therapy: Results of a survey. Ann. Surg. 2005, 241, 629. [Google Scholar] [CrossRef]
- Smitt, M.C.; Nowels, K.; Carlson, R.W.; Jeffrey, S.S. Predictors of reexcision findings and recurrence after breast conservation. Int. J. Radiat. Oncol. Biol. Phys. 2003, 57, 979–985. [Google Scholar] [CrossRef]
- Qiu, S.Q.; Dorrius, M.D.; de Jongh, S.J.; Jansen, L.; de Vries, J.; Schröder, C.P.; Zhang, G.J.; de Vries, E.G.; van der Vegt, B.; van Dam, G.M. Micro-computed tomography (micro-CT) for intraoperative surgical margin assessment of breast cancer: A feasibility study in breast conserving surgery. Eur. J. Surg. Oncol. 2018, 44, 1708–1713. [Google Scholar] [CrossRef]
- Mojahed, D.; Ha, R.S.; Chang, P.; Gan, Y.; Yao, X.; Angelini, B.; Hibshoosh, H.; Taback, B.; Hendon, C.P. Fully automated postlumpectomy breast margin assessment utilizing convolutional neural network based optical coherence tomography image classification method. Acad. Radiol. 2020, 27, e81–e86. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, P.; Lan, L.; Lloyd, F.P.; Goergen, C.J.; Chen, S.; Cheng, J.X. Assessing breast tumor margin by multispectral photoacoustic tomography. Biomed. Opt. Express 2015, 6, 1273–1281. [Google Scholar] [CrossRef]
- Jong, L.J.S.; de Kruif, N.; Geldof, F.; Veluponnar, D.; Sanders, J.; Peeters, M.J.T.V.; van Duijnhoven, F.; Sterenborg, H.J.; Dashtbozorg, B.; Ruers, T.J. Discriminating healthy from tumor tissue in breast lumpectomy specimens using deep learning-based hyperspectral imaging. Biomed. Opt. Express 2022, 13, 2581–2604. [Google Scholar] [CrossRef]
- Jong, L.J.S.; Post, A.L.; Veluponnar, D.; Geldof, F.; Sterenborg, H.J.; Ruers, T.J.; Dashtbozorg, B. Tissue Classification of Breast Cancer by Hyperspectral Unmixing. Cancers 2023, 15, 2679. [Google Scholar] [CrossRef]
- Jong, L.J.; de Kruif, N.; Geldof, F.; Veluponnar, D.; Sanders, J.; Peeters, M.J.V.; van Duijnhoven, F.; Sterenborg, H.; Dashtbozorg, B.; Ruers, T. Resection margin assessment in breast lumpectomy specimens using deep learning-based hyperspectral imaging (Conference Presentation). In Proceedings of the Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XXI, SPIE, San Francisco, CA, USA, 28–29 January 2023; p. PC123680F. [Google Scholar]
- Kho, E.; Dashtbozorg, B.; De Boer, L.L.; Van de Vijver, K.K.; Sterenborg, H.J.; Ruers, T.J. Broadband hyperspectral imaging for breast tumor detection using spectral and spatial information. Biomed. Opt. Express 2019, 10, 4496–4515. [Google Scholar] [CrossRef] [PubMed]
- Kho, E.; Dashtbozorg, B.; Sanders, J.; Vrancken Peeters, M.J.T.; van Duijnhoven, F.; Sterenborg, H.J.; Ruers, T.J. Feasibility of ex vivo margin assessment with hyperspectral imaging during breast-conserving surgery: From imaging tissue slices to imaging lumpectomy specimen. Appl. Sci. 2021, 11, 8881. [Google Scholar] [CrossRef]
- Keating, J.J.; Fisher, C.; Batiste, R.; Singhal, S. Advances in intraoperative margin assessment for breast cancer. Curr. Surg. Rep. 2016, 4, 15. [Google Scholar] [CrossRef]
- Barberio, M.; Collins, T.; Bencteux, V.; Nkusi, R.; Felli, E.; Viola, M.G.; Marescaux, J.; Hostettler, A.; Diana, M. Deep learning analysis of in vivo hyperspectral images for automated intraoperative nerve detection. Diagnostics 2021, 11, 1508. [Google Scholar] [CrossRef] [PubMed]
- Felli, E.; Al-Taher, M.; Collins, T.; Nkusi, R.; Felli, E.; Baiocchini, A.; Lindner, V.; Vincent, C.; Barberio, M.; Geny, B.; et al. Automatic liver viability scoring with deep learning and hyperspectral imaging. Diagnostics 2021, 11, 1527. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Li, P.; Yin, M.; Li, Y.; Wu, J. Burn wound assessment system using near-infrared hyperspectral imaging and deep transfer features. Infrared Phys. Technol. 2020, 111, 103558. [Google Scholar] [CrossRef]
- Eggert, D.; Bengs, M.; Westermann, S.; Gessert, N.; Gerstner, A.O.; Mueller, N.A.; Bewarder, J.; Schlaefer, A.; Betz, C.; Laffers, W. In vivo detection of head and neck tumors by hyperspectral imaging combined with deep learning methods. J. Biophotonics 2022, 15, e202100167. [Google Scholar] [CrossRef] [PubMed]
- Fabelo, H.; Halicek, M.; Ortega, S.; Shahedi, M.; Szolna, A.; Piñeiro, J.F.; Sosa, C.; O’Shanahan, A.J.; Bisshopp, S.; Espino, C.; et al. Deep learning-based framework for in vivo identification of glioblastoma tumor using hyperspectral images of human brain. Sensors 2019, 19, 920. [Google Scholar] [CrossRef] [PubMed]
- Halicek, M.; Fabelo, H.; Ortega, S.; Callico, G.M.; Fei, B. In-vivo and ex vivo tissue analysis through hyperspectral imaging techniques: Revealing the invisible features of cancer. Cancers 2019, 11, 756. [Google Scholar] [CrossRef]
- Blanch-Perez-del Notario, C.; Luthman, S.; Lefrant, R.; Gonzalez, P.; Lambrechts, A. Compact high-speed snapshot hyperspectral imager in the SWIR range (1.1–1.65 nm) and its potential in sorting/recycling industry. In Proceedings of the Algorithms, Technologies, and Applications for Multispectral and Hyperspectral Imaging XXVIII, SPIE, Orlando, FL, USA, 3–7 April 2022; Volume 12094, pp. 47–55. [Google Scholar]
- Buttingsrud, B.; Alsberg, B.K. Superresolution of hyperspectral images. Chemom. Intell. Lab. Syst. 2006, 84, 62–68. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, C. Hyperspectral Image Processing; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Akhtar, N.; Shafait, F.; Mian, A. Bayesian sparse representation for hyperspectral image super resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3631–3640. [Google Scholar]
- Kawakami, R.; Matsushita, Y.; Wright, J.; Ben-Ezra, M.; Tai, Y.W.; Ikeuchi, K. High-resolution hyperspectral imaging via matrix factorization. In Proceedings of the CVPR 2011, IEEE, Colorado Springs, CO, USA, 20–25 June 2011; pp. 2329–2336. [Google Scholar]
- Xie, W.; Jia, X.; Li, Y.; Lei, J. Hyperspectral image super-resolution using deep feature matrix factorization. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6055–6067. [Google Scholar] [CrossRef]
- Ma, L.; Rathgeb, A.; Mubarak, H.; Tran, M.; Fei, B. Unsupervised super-resolution reconstruction of hyperspectral histology images for whole-slide imaging. J. Biomed. Opt. 2022, 27, 056502. [Google Scholar] [CrossRef]
- Li, Y.; Hu, J.; Zhao, X.; Xie, W.; Li, J. Hyperspectral image super-resolution using deep convolutional neural network. Neurocomputing 2017, 266, 29–41. [Google Scholar] [CrossRef]
- Avagyan, S.; Katkovnik, V.; Egiazarian, K. Modified SSR-NET: A Shallow Convolutional Neural Network for Efficient Hyperspectral Image Super-Resolution. Front. Remote Sens. 2022, 3, 889915. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, W.; Wang, Q.; Li, X. SSR-NET: Spatial–spectral reconstruction network for hyperspectral and multispectral image fusion. IEEE Trans. Geosci. Remote Sens. 2020, 59, 5953–5965. [Google Scholar] [CrossRef]
- Maity, A.; Pattanaik, A.; Sagnika, S.; Pani, S. A comparative study on approaches to speckle noise reduction in images. In Proceedings of the 2015 International Conference on Computational Intelligence and Networks, IEEE, Riga, Latvia, 3–5 June 2015; pp. 148–155. [Google Scholar]
- Dorrepaal, R.; Malegori, C.; Gowen, A. Tutorial: Time series hyperspectral image analysis. J. Infrared Spectrosc. 2016, 24, 89–107. [Google Scholar] [CrossRef]
- Helmy, A.; El-Tawel, G.S. An integrated scheme to improve pan-sharpening visual quality of satellite images. Egypt. Inform. J. 2015, 16, 121–131. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE). Geosci. Model Dev. Discuss. 2014, 7, 1525–1534. [Google Scholar]
- Poobathy, D.; Chezian, R.M. Edge detection operators: Peak signal to noise ratio based comparison. Int. J. Image Graph. Signal Process. 2014, 10, 55–61. [Google Scholar] [CrossRef]
- Renza, D.; Martinez, E.; Arquero, A. A new approach to change detection in multispectral images by means of ERGAS index. IEEE Geosci. Remote Sens. Lett. 2012, 10, 76–80. [Google Scholar] [CrossRef]
- Kuching, S. The performance of maximum likelihood, spectral angle mapper, neural network and decision tree classifiers in hyperspectral image analysis. J. Comput. Sci. 2007, 3, 419–423. [Google Scholar]
- Li, P.; Ebner, M.; Noonan, P.; Horgan, C.; Bahl, A.; Ourselin, S.; Shapey, J.; Vercauteren, T. Deep learning approach for hyperspectral image demosaicking, spectral correction and high-resolution RGB reconstruction. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2022, 10, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Chervyakov, N.; Lyakhov, P.; Nagornov, N. Analysis of the quantization noise in discrete wavelet transform filters for 3D medical imaging. Appl. Sci. 2020, 10, 1223. [Google Scholar] [CrossRef]
- Tang, S.; Xu, Y.; Huang, L.; Sun, L. Hyperspectral Image Super-Resolution via Adaptive Dictionary Learning and Double L 1 Constraint. Remote Sens. 2019, 11, 2809. [Google Scholar] [CrossRef]
- Esbona, K.; Li, Z.; Wilke, L.G. Intraoperative imprint cytology and frozen section pathology for margin assessment in breast conservation surgery: A systematic review. Ann. Surg. Oncol. 2012, 19, 3236–3245. [Google Scholar] [CrossRef]
Metrics | Kernel 5 × 5 | Kernel 15 × 15 | Kernel 25 × 25 | Kernel 35 × 35 | |
---|---|---|---|---|---|
Reconstructed | PSNR | 38.6 ± 2.13 | 37.4 ± 2.19 | 36.4 ± 2.27 | 35.8 ± 2.32 |
RMSE | 0.012 ± 0.004 | 0.013 ± 0.004 | 0.014 ± 0.004 | 0.015 ± 0.005 | |
ERGAS | 0.100 ± 0.015 | 0.105 ± 0.017 | 0.115 ± 0.020 | 0.123 ± 0.023 | |
SAM | 1.34 ± 0.136 | 1.43 ± 0.166 | 1.54 ± 0.194 | 1.61 ± 0.212 | |
Upsampled | PSNR | 37.5 ± 1.93 | 33.7 ± 2.05 | 32.2 ± 2.16 | 31.5 ± 2.24 |
RMSE | 0.011 ± 0.003 | 0.016 ± 0.005 | 0.019 ± 0.006 | 0.021 ± 0.007 | |
ERGAS | 0.091 ± 0.015 | 0.131 ± 0.024 | 0.157 ± 0.032 | 0.172 ± 0.036 | |
SAM | 1.13 ± 0.125 | 1.36 ± 0.176 | 1.51 ± 0.213 | 1.60 ± 0.232 |
Metrics | 0.01 | 0.03 | 0.05 | 0.07 |
---|---|---|---|---|
PSNR | 38.5 ± 2.14 | 37.7 ± 3.59 | 37.2 ± 4.50 | 35.4 ± 6.61 |
RMSE | 0.012 ± 0.003 | 0.014 ± 0.008 | 0.016 ± 0.011 | 0.022 ± 0.021 |
ERGAS | 0.096 ± 0.016 | 0.108 ± 0.042 | 0.121 ± 0.063 | 0.168 ± 0.130 |
SAM | 1.34 ± 0.133 | 1.34 ± 0.133 | 1.35 ± 0.132 | 1.35 ± 0.132 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jong, L.-J.S.; Appelman, J.G.C.; Sterenborg, H.J.C.M.; Ruers, T.J.M.; Dashtbozorg, B. Spatial and Spectral Reconstruction of Breast Lumpectomy Hyperspectral Images. Sensors 2024, 24, 1567. https://doi.org/10.3390/s24051567
Jong L-JS, Appelman JGC, Sterenborg HJCM, Ruers TJM, Dashtbozorg B. Spatial and Spectral Reconstruction of Breast Lumpectomy Hyperspectral Images. Sensors. 2024; 24(5):1567. https://doi.org/10.3390/s24051567
Chicago/Turabian StyleJong, Lynn-Jade S., Jelmer G. C. Appelman, Henricus J. C. M. Sterenborg, Theo J. M. Ruers, and Behdad Dashtbozorg. 2024. "Spatial and Spectral Reconstruction of Breast Lumpectomy Hyperspectral Images" Sensors 24, no. 5: 1567. https://doi.org/10.3390/s24051567
APA StyleJong, L. -J. S., Appelman, J. G. C., Sterenborg, H. J. C. M., Ruers, T. J. M., & Dashtbozorg, B. (2024). Spatial and Spectral Reconstruction of Breast Lumpectomy Hyperspectral Images. Sensors, 24(5), 1567. https://doi.org/10.3390/s24051567