Unveiling Morphine: A Rapid and Selective Fluorescence Sensor for Forensic and Medical Analysis
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Software
2.3. Instrumentation
2.4. Synthesizing the Sensor
2.5. Standard Solutions
2.6. Biological Sample Preparation
2.7. Measurements of Photophysical Properties
2.8. FTIR and Raman Spectroscopy
2.9. CCD-RSM Design
3. Results and Discussion
3.1. Fourier-Transform Infrared Spectroscopy
3.2. Raman Spectroscopy
3.3. Fluorescence Spectroscopy
3.4. Comprehensive Urine Analysis
3.5. Evaluating Morphine Sensors in Comparison
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elmizadeh, H.; Bardajee, G.R.; Moaddeli, A. Ultrasensitive and rapid detection of methamphetamine in forensic biological fluids using fluorescent apta-nanobiosensors based on CdTe quantum dots. Microchem. J. 2023, 189, 108519. [Google Scholar] [CrossRef]
- Armenian, P.; Vo, K.T.; Barr-Walker, J.; Lynch, K.L. Fentanyl, fentanyl analogs and novel synthetic opioids: A comprehensive review. Neuropharmacology 2018, 134, 121–132. [Google Scholar] [CrossRef]
- Zanfrognini, B.; Pigani, L.; Zanardi, C. Recent advances in the direct electrochemical detection of drugs of abuse. J. Solid State Electrochem. 2020, 24, 2603–2616. [Google Scholar] [CrossRef]
- Bruijns, B.; Tiggelaar, R.; Knotter, J.; van Dam, A. Use of Lateral Flow Assays in Forensics. Sensors 2023, 23, 6201. [Google Scholar] [CrossRef]
- Park, J.; Hong, S.; Min, S.; Lee, N.Y.; Chung, H.; Han, E. Awareness survey on drug crime scene investigation and drug detection kits among drug-related police officers. J. Forensic Leg. Med. 2023, 94, 102470. [Google Scholar] [CrossRef]
- de Araujo, W.R.; Cardoso, T.M.G.; da Rocha, R.G.; Santana, M.H.P.; Muñoz, R.A.A.; Richter, E.M.; Paixão, T.R.L.C.; Coltro, W.K.T. Portable analytical platforms for forensic chemistry: A review. Anal. Chim. Acta 2018, 1034, 1–21. [Google Scholar] [CrossRef]
- Boroujerdi, R.; Paul, R. Graphene-Based Electrochemical Sensors for Psychoactive Drugs. Nanomaterials 2022, 12, 2250. [Google Scholar] [CrossRef]
- Volkow, N.D.; Jones, E.B.; Einstein, E.B.; Wargo, E.M. Prevention and Treatment of Opioid Misuse and Addiction: A Review. JAMA Psychiatry 2019, 76, 208–216. [Google Scholar] [CrossRef]
- Anzar, N.; Suleman, S.; Parvez, S.; Narang, J. A review on Illicit drugs and biosensing advances for its rapid detection. Process Biochem. 2022, 113, 113–124. [Google Scholar] [CrossRef]
- dos Santos, B.P.; Eller, S.; Borges, G.R.; de Gouveia, G.C.; Sebben, V.C.; Arbo, M.D.; de Oliveira, T.F. A multi-analyte LC-MS/MS method for the determination of 57 pharmaceuticals and illicit drugs in plasma, and its application to poisoning cases. J. Pharm. Biomed. Anal. 2023, 222, 115082. [Google Scholar] [CrossRef] [PubMed]
- Zafar Razzacki, S.; Thwar, P.K.; Yang, M.; Ugaz, V.M.; Burns, M.A. Integrated microsystems for controlled drug delivery. Adv. Drug Deliv. Rev. 2004, 56, 185–198. [Google Scholar] [CrossRef]
- Kumar, C.S.S.R.; Mohammad, F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 2011, 63, 789–808. [Google Scholar] [CrossRef]
- Peltonen, L. Practical guidelines for the characterization and quality control of pure drug nanoparticles and nano-cocrystals in the pharmaceutical industry. Adv. Drug Deliv. Rev. 2018, 131, 101–115. [Google Scholar] [CrossRef]
- Busacca, C.A.; Fandrick, D.R.; Song, J.J.; Senanayake, C.H. The Growing Impact of Catalysis in the Pharmaceutical Industry. Adv. Synth. Catal. 2011, 353, 1825–1864. [Google Scholar] [CrossRef]
- Boroujerdi, R.; Paul, R.; Abdelkader, A. Rapid Detection of Amitriptyline in Dried Blood and Dried Saliva Samples with Surface-Enhanced Raman Spectroscopy. Sensors 2022, 22, 8257. [Google Scholar] [CrossRef]
- Ashbourne, J.F.; Olson, K.R.; Khayam-Bashi, H. Value of rapid screening for acetaminophen in all patients with intentional drug overdose. Ann. Emerg. Med. 1989, 18, 1035–1038. [Google Scholar] [CrossRef]
- Boroujerdi, R.; Abdelkader, A.; Paul, R. Highly selective detection of ethanol in biological fluids and alcoholic drinks using indium ethylenediamine functionalized graphene. Sens. Diagn. 2022, 1, 566–578. [Google Scholar] [CrossRef]
- Pomes, L.M.; Guglielmetti, M.; Bertamino, E.; Simmaco, M.; Borro, M.; Martelletti, P. Optimising migraine treatment: From drug-drug interactions to personalized medicine. J. Headache Pain 2019, 20, 56. [Google Scholar] [CrossRef]
- Seymour, R.M.; Routledge, P.A. Important Drug-Drug Interactions in the Elderly. Drugs Aging 1998, 12, 485–494. [Google Scholar] [CrossRef]
- Kuhlman, J.J., Jr.; McCaulley, R.; Valouch, T.J.; Behonick, G.S. Fentanyl Use, Misuse, and Abuse: A Summary of 23 Postmortem Cases. J. Anal. Toxicol. 2003, 27, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, A.R.; Arya, R.; Rosen, J.G.; Thompson, E.; Welwean, R.; Tardif, J.; Rich, J.D.; Park, J.N. Overdose Detection Technologies to Reduce Solitary Overdose Deaths: A Literature Review. Int. J. Environ. Res. Public Health 2023, 20, 1230. [Google Scholar] [CrossRef]
- Ahmed, S.R.; Chand, R.; Kumar, S.; Mittal, N.; Srinivasan, S.; Rajabzadeh, A.R. Recent biosensing advances in the rapid detection of illicit drugs. TrAC Trends Anal. Chem. 2020, 131, 116006. [Google Scholar] [CrossRef]
- Mahajan, G. Role of urine drug testing in the current opioid epidemic. Analgesia 2017, 125, 2094–2104. [Google Scholar] [CrossRef]
- Florea, A.; de Jong, M.; De Wael, K. Electrochemical strategies for the detection of forensic drugs. Curr. Opin. Electrochem. 2018, 11, 34–40. [Google Scholar] [CrossRef]
- Dehdashtian, S.; Gholivand, M.B.; Shamsipur, M.; Kariminia, S. Construction of a sensitive and selective sensor for morphine using chitosan coated Fe3O4 magnetic nanoparticle as a modifier. Mater. Sci. Eng. C 2016, 58, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Pu, S.; Zhou, M.; Tang, T.; Cheng, H.; Yan, X.; Hu, G. Boron-cluster-based porous BCN material modified electrode for electrochemical determination of morphine in serum. Microchim. Acta 2023, 190, 307. [Google Scholar] [CrossRef]
- Hagel, J.M.; Facchini, P.J. Dioxygenases catalyze the O-demethylation steps of morphine biosynthesis in opium poppy. Nat. Chem. Biol. 2010, 6, 273–275. [Google Scholar] [CrossRef] [PubMed]
- Klee, W.A.; Streaty, R.A. Narcotic Receptor Sites in Morphine-dependent Rats. Nature 1974, 248, 61–63. [Google Scholar] [CrossRef]
- Holbrook, T.L.; Galarneau, M.R.; Dye, J.L.; Quinn, K.; Dougherty, A.L. Morphine Use after Combat Injury in Iraq and Post-Traumatic Stress Disorder. N. Engl. J. Med. 2010, 362, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Ekström, M.; Ferreira, D.; Chang, S.; Louw, S.; Johnson, M.J.; Eckert, D.J.; Fazekas, B.; Clark, K.J.; Agar, M.R.; Currow, D.C.; et al. Effect of Regular, Low-Dose, Extended-release Morphine on Chronic Breathlessness in Chronic Obstructive Pulmonary Disease: The BEAMS Randomized Clinical Trial. JAMA 2022, 328, 2022–2032. [Google Scholar] [CrossRef]
- Gilson, A.M.; Ryan, K.M.; Joranson, D.E.; Dahl, J.L. A reassessment of trends in the medical use and abuse of opioid analgesics and implications for diversion control: 1997–2002. J. Pain Symptom Manag. 2004, 28, 176–188. [Google Scholar] [CrossRef] [PubMed]
- Nicolakis, J.; Gmeiner, G.; Reiter, C.; Seltenhammer, M.H. Aspiration in lethal drug abuse—A consequence of opioid intoxication. Int. J. Leg. Med. 2020, 134, 2121–2132. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.T.; Mun, C.J.; Remeniuk, B.; Finan, P.H.; Campbell, C.M.; Buenaver, L.F.; Robinson, M.; Fulton, B.; Tompkins, D.A.; Tremblay, J.-M.; et al. Experimental sleep disruption attenuates morphine analgesia: Findings from a randomized trial and implications for the opioid abuse epidemic. Sci. Rep. 2020, 10, 20121. [Google Scholar] [CrossRef]
- Narita, M.; Mizuo, K.; Mizoguchi, H.; Sakata, M.; Narita, M.; Tseng, L.F.; Suzuki, T. Molecular evidence for the functional role of dopamine D3 receptor in the morphine-induced rewarding effect and hyperlocomotion. J. Neurosci. 2003, 23, 1006–1012. [Google Scholar] [CrossRef]
- Wise, R.A. Drug-activation of brain reward pathways. Drug Alcohol Depend. 1998, 51, 13–22. [Google Scholar] [CrossRef]
- Chieng, B.; Williams, J.T. Increased opioid inhibition of GABA release in nucleus accumbens during morphine withdrawal. J. Neurosci. 1998, 18, 7033–7039. [Google Scholar] [CrossRef]
- Olds, M.E. Reinforcing effects of morphine in the nucleus accumbens. Brain Res. 1982, 237, 429–440. [Google Scholar] [CrossRef]
- Mayberry, H.L.; Bavley, C.C.; Karbalaei, R.; Peterson, D.R.; Bongiovanni, A.R.; Ellis, A.S.; Downey, S.H.; Toussaint, A.B.; Wimmer, M.E. Transcriptomics in the nucleus accumbens shell reveal sex- and reinforcer-specific signatures associated with morphine and sucrose craving. Neuropsychopharmacology 2022, 47, 1764–1775. [Google Scholar] [CrossRef]
- Zarrabian, S.; Riahi, E.; Karimi, S.; Razavi, Y.; Haghparast, A. The potential role of the orexin reward system in future treatments for opioid drug abuse. Brain Res. 2020, 1731, 146028. [Google Scholar] [CrossRef]
- Di Chiara, G.; Bassareo, V. Reward system and addiction: What dopamine does and doesn’t do. Curr. Opin. Pharmacol. 2007, 7, 69–76. [Google Scholar] [CrossRef]
- Reisi, Z.; Bani-Ardalan, M.; Zarepour, L.; Haghparast, A. Involvement of D1/D2 dopamine receptors within the nucleus accumbens and ventral tegmental area in the development of sensitization to antinociceptive effect of morphine. Pharmacol. Biochem. Behav. 2014, 118, 16–21. [Google Scholar] [CrossRef]
- Sardari, M.; Seddighfar, M.; Sardari, S. Dopamine receptors in the anterior cingulate cortex implicate in nicotine enhanced morphine analgesia. Psychopharmacology 2021, 238, 3311–3323. [Google Scholar] [CrossRef]
- Strandberg, J.J.; Kugelberg, F.C.; Alkass, K.; Gustavsson, A.; Zahlsen, K.; Spigset, O.; Druid, H. Toxicological analysis in rats subjected to heroin and morphine overdose. Toxicol. Lett. 2006, 166, 11–18. [Google Scholar] [CrossRef]
- Noufal, Y.; Kringel, D.; Toennes, S.W.; Dudziak, R.; Lötsch, J. Pharmacological data science perspective on fatal incidents of morphine treatment. Pharmacol. Ther. 2023, 241, 108312. [Google Scholar] [CrossRef]
- Hupka, Y.; Beike, J.; Roegener, J.; Brinkmann, B.; Blaschke, G.; Köhler, H. HPLC with laser-induced native fluorescence detection for morphine and morphine glucuronides from blood after immunoaffinity extraction. Int. J. Leg. Med. 2005, 119, 121–128. [Google Scholar] [CrossRef]
- Tagliaro, F.; Franchi, D.; Dorizzi, R.; Marigo, M. High-performance liquid chromatographic determination of morphine in biological samples: An overview of separation methods and detection techniques. J. Chromatogr. B Biomed. Sci. Appl. 1989, 488, 215–228. [Google Scholar] [CrossRef]
- Buratti, E.; Cippitelli, M.; Mietti, G.; Scendoni, R.; Froldi, R.; Cerioni, A.; Cingolani, M. Validation of an HPLC–HR-MS Method for the Determination and Quantification of Six Drugs (Morphine, Codeine, Methadone, Alprazolam, Clonazepam and Quetiapine) in Nails. J. Anal. Toxicol. 2023, 47, 488–493. [Google Scholar] [CrossRef]
- Sachs, H.; Arnold, W. Results of Comparative Determination of Morphine in Human Hair Using RIA and GC/MS. Clin. Chem. Lab. Med. 1989, 27, 873–878. [Google Scholar] [CrossRef] [PubMed]
- Meatherall, R. GC-MS Confirmation of Codeine, Morphine, 6-Acetylmorphine, Hydrocodone, Hydromorphone, Oxycodone, and Oxymorphone in Urine. J. Anal. Toxicol. 1999, 23, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Ghazali, A.R.; Soon, C.K.; Othman, N.A.B. Stability of Extracted Morphine from Human Urine Samples at 4 °C for 7 Days. Bul. Sains Kesihat. 2023, 7, 20–23. [Google Scholar]
- Bahrami, G.; Ehzari, H.; Mirzabeigy, S.; Mohammadi, B.; Arkan, E. Fabrication of a sensitive electrochemical sensor based on electrospun magnetic nanofibers for morphine analysis in biological samples. Mater. Sci. Eng. C 2020, 106, 110183. [Google Scholar] [CrossRef]
- Beitollahi, H.; Garkani Nejad, F.; Tajik, S.; Di Bartolomeo, A. Screen-Printed Graphite Electrode Modified with Graphene-Co3O4 Nanocomposite: Voltammetric Assay of Morphine in the Presence of Diclofenac in Pharmaceutical and Biological Samples. Nanomaterials 2022, 12, 3454. [Google Scholar] [CrossRef] [PubMed]
- Qiu, B.; Chen, X.; Chen, H.-L.; Chen, G.-N. Electrochemiluminescence determination of codeine or morphine with an organically modified silicate film immobilizing Ru(bpy)32+. Luminescence 2007, 22, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Ya, Y.; Xiaoshu, W.; Qing, D.; Lin, J.; Yifeng, T. Label-free immunosensor for morphine based on the electrochemiluminescence of luminol on indium–tin oxide coated glass functionalized with gold nanoparticles. Anal. Methods 2015, 7, 4502–4507. [Google Scholar] [CrossRef]
- Fei, W.; Chen, F.; Sun, L.; Li, Q.; Yang, J.; Wu, Y. Ultrasensitive electrochemiluminescent immunoassay for morphine using a gold electrode modified with CdS quantum dots, polyamidoamine, and gold nanoparticles. Microchim. Acta 2014, 181, 419–425. [Google Scholar] [CrossRef]
- Yin, Q.; Wang, Y.; Li, X.; Yang, D.; Yang, Y.; Yang, C.; Zhu, Y. Dual-Emission Carbon-Dot Ratiometric Fluorescence Sensor for Morphine Recognition in Biological Samples. Biosensors 2023, 13, 143. [Google Scholar] [CrossRef]
- Shcherbakova, E.G.; Zhang, B.; Gozem, S.; Minami, T.; Zavalij, P.Y.; Pushina, M.; Isaacs, L.D.; Anzenbacher, P., Jr. Supramolecular Sensors for Opiates and Their Metabolites. J. Am. Chem. Soc. 2017, 139, 14954–14960. [Google Scholar] [CrossRef]
- Li, W.; Li, X.; Yang, T.; Guo, X.; Song, Y. Detection of saliva morphine using surface-enhanced Raman spectroscopy combined with immunochromatographic assay. J. Raman Spectrosc. 2020, 51, 642–648. [Google Scholar] [CrossRef]
- Zhao, L.; Wei, Y.; Fu, H.; Yang, R.; Zhao, Q.; Zhang, H.; Cai, W. Solid chip-based detection of trace morphine in solutions via portable surface-enhanced Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 302, 122977. [Google Scholar] [CrossRef]
- Feng, S.; Chen, W.; Huang, W.; Cheng, M.; Lin, J.; Li, Y.; Chen, R. Surface-enhanced Raman spectroscopy of morphine in silver colloid. Chin. Opt. Lett. 2009, 7, 1055–1057. [Google Scholar] [CrossRef]
- Cortade, D.L.; Wang, S.X. Quantitative and rapid detection of morphine and hydromorphone at the point of care by an automated giant magnetoresistive nanosensor platform. Anal. Bioanal. Chem. 2022, 414, 7211–7221. [Google Scholar] [CrossRef] [PubMed]
- Rohani Bastami, T.; Bayat, M.; Paolesse, R. Naked-Eye Detection of Morphine by Au@Ag Nanoparticles-Based Colorimetric Chemosensors. Sensors 2022, 22, 2072. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, A.; Köhler, G.; Knapp, M.; Gaubitzer, E.; Puchinger, M.; Edetsberger, M. Emerging applications of fluorescence spectroscopy in medical microbiology field. J. Transl. Med. 2009, 7, 99. [Google Scholar] [CrossRef] [PubMed]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Pan, H.; Yu, H.; Wang, Y.; Liu, R.; Lei, H. Investigating variations of fluorescent dissolved organic matter in wastewater treatment using synchronous fluorescence spectroscopy combined with principal component analysis and two-dimensional correlation. Environ. Technol. 2018, 39, 2495–2502. [Google Scholar] [CrossRef]
- Kloosterman, A.; Mapes, A.; Geradts, Z.; van Eijk, E.; Koper, C.; van den Berg, J.; Verheij, S.; van der Steen, M.; van Asten, A. The interface between forensic science and technology: How technology could cause a paradigm shift in the role of forensic institutes in the criminal justice system. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140264. [Google Scholar] [CrossRef]
- Yu, H.; Lee, H.; Cheong, J.; Woo, S.W.; Oh, J.; Oh, H.-K.; Lee, J.-H.; Zheng, H.; Castro, C.M.; Yoo, Y.-E.; et al. A rapid assay provides on-site quantification of tetrahydrocannabinol in oral fluid. Sci. Transl. Med. 2021, 13, eabe2352. [Google Scholar] [CrossRef]
- Hammett-Stabler, C.A.; Pesce, A.J.; Cannon, D.J. Urine drug screening in the medical setting. Clin. Chim. Acta 2002, 315, 125–135. [Google Scholar] [CrossRef]
- Griss, R.; Schena, A.; Reymond, L.; Patiny, L.; Werner, D.; Tinberg, C.E.; Baker, D.; Johnsson, K. Bioluminescent sensor proteins for point-of-care therapeutic drug monitoring. Nat. Chem. Biol. 2014, 10, 598–603. [Google Scholar] [CrossRef]
- Nelson, N.; Sander, D.; Dandin, M.; Prakash, S.B.; Sarje, A.; Abshire, P. Handheld Fluorometers for Lab-on-a-Chip Applications. IEEE Trans. Biomed. Circuits Syst. 2009, 3, 97–107. [Google Scholar] [CrossRef]
- Thomson-Laing, G.; Puddick, J.; Wood, S.A. Predicting cyanobacterial biovolumes from phycocyanin fluorescence using a handheld fluorometer in the field. Harmful Algae 2020, 97, 101869. [Google Scholar] [CrossRef]
- Boroujerdi, R.; Abdelkader, A.; Paul, R. Highly sensitive and selective detection of the antidepressant amitriptyline using functionalised graphene-based sensor. ChemNanoMat 2022, 8, e202200209. [Google Scholar] [CrossRef]
- Vermeire, A.; Remon, J.P. Stability and compatibility of morphine. Int. J. Pharm. 1999, 187, 17–51. [Google Scholar] [CrossRef] [PubMed]
- Beck, O.; Carlsson, S.; Tusic, M.; Olsson, R.; Franzen, L.; Hulten, P. Laboratory and clinical evaluation of on-site urine drug testing. Scand. J. Clin. Lab. Investig. 2014, 74, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.; Stephanson, N.; Öhman, I.; Terzuoli, T.; Lindh, J.D.; Beck, O. Direct and efficient liquid chromatographic-tandem mass spectrometric method for opiates in urine drug testing—Importance of 6-acetylmorphine and reduction of analytes. Drug Test. Anal. 2014, 6, 317–324. [Google Scholar] [CrossRef]
- Kranenburg, R.F.; Ou, F.; Sevo, P.; Petruzzella, M.; de Ridder, R.; van Klinken, A.; Hakkel, K.D.; van Elst, D.M.J.; van Veldhoven, R.; Pagliano, F.; et al. On-site illicit-drug detection with an integrated near-infrared spectral sensor: A proof of concept. Talanta 2022, 245, 123441. [Google Scholar] [CrossRef] [PubMed]
- Dagar, M.; Yadav, S.; Sai, V.V.R.; Satija, J.; Bhatia, H. Emerging trends in point-of-care sensors for illicit drugs analysis. Talanta 2022, 238, 123048. [Google Scholar] [CrossRef]
- Vinks, A.A.; Punt, N.C.; Menke, F.; Kirkendall, E.; Butler, D.; Duggan, T.J.; Cortezzo, D.E.; Kiger, S.; Dietrich, T.; Spencer, P.; et al. Electronic Health Record–Embedded Decision Support Platform for Morphine Precision Dosing in Neonates. Clin. Pharmacol. Ther. 2020, 107, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Khani, R.; Ghiamati, E.; Boroujerdi, R.; Rezaeifard, A.; Zaryabi, M.H. A new and highly selective turn-on fluorescent sensor with fast response time for the monitoring of cadmium ions in cosmetic, and health product samples. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 163, 120–126. [Google Scholar] [CrossRef]
- Asfaram, A.; Ghaedi, M.; Goudarzi, A.; Rajabi, M. Response surface methodology approach for optimization of simultaneous dye and metal ion ultrasound-assisted adsorption onto Mn doped Fe3O4-NPs loaded on AC: Kinetic and isothermal studies. Dalton Trans. 2015, 44, 14707–14723. [Google Scholar] [CrossRef]
- Kicsi, A.; Cojocaru, C.; Macoveanu, M.; Bilba, D. Response surface methodology applied for zinc removal from aqueous solutions using sphagnum peat moss as sorbent. J. Environ. Prot. Ecol. 2010, 11, 614–622. [Google Scholar]
- Parsaee, Z.; Karachi, N.; Abrishamifar, S.M.; Kahkha, M.R.R.; Razavi, R. Silver-choline chloride modified graphene oxide: Novel nano-bioelectrochemical sensor for celecoxib detection and CCD-RSM model. Ultrason. Sonochemistry 2018, 45, 106–115. [Google Scholar] [CrossRef]
- Yilgor, I.; Yilgor, E.; Guler, I.G.; Ward, T.C.; Wilkes, G.L. FTIR investigation of the influence of diisocyanate symmetry on the morphology development in model segmented polyurethanes. Polymer 2006, 47, 4105–4114. [Google Scholar] [CrossRef]
- Sharma, S.K.; Sharma, G.; Sharma, A.; Bhardwaj, K.; Preeti, K.; Singh, K.; Kumar, A.; Pal, V.K.; Choi, E.H.; Singh, S.P.; et al. Synthesis of silica and carbon-based nanomaterials from rice husk ash by ambient fiery and furnace sweltering using a chemical method. Appl. Surf. Sci. Adv. 2022, 8, 100225. [Google Scholar] [CrossRef]
- Oh, S.Y.; Yoo, D.I.; Shin, Y.; Kim, H.C.; Kim, H.Y.; Chung, Y.S.; Park, W.H.; Youk, J.H. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr. Res. 2005, 340, 2376–2391. [Google Scholar] [CrossRef]
- Li, J.; Li, M.; Zhou, L.-L.; Lang, S.-Y.; Lu, H.-Y.; Wang, D.; Chen, C.-F.; Wan, L.-J. Click and patterned functionalization of graphene by Diels–Alder reaction. J. Am. Chem. Soc. 2016, 138, 7448–7451. [Google Scholar] [CrossRef]
- Sousa, C.; Silva, P.J. BBr3-Assisted Cleavage of Most Ethers Does Not Follow the Commonly Assumed Mechanism. Eur. J. Org. Chem. 2013, 2013, 5195–5199. [Google Scholar] [CrossRef]
- Huberty, J.S.; Madix, R.J. An FTIR study of the bonding of methoxy on Ni(100): Effects of coadsorbed sulfur, carbon monoxide and hydrogen. Surf. Sci. 1996, 360, 144–156. [Google Scholar] [CrossRef]
- Ellis, D.I.; Goodacre, R. Metabolic fingerprinting in disease diagnosis: Biomedical applications of infrared and Raman spectroscopy. Analyst 2006, 131, 875–885. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Chen, R.; Lin, J.; Pan, J.; Wu, Y.; Li, Y.; Chen, J.; Zeng, H. Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light. Biosens. Bioelectron. 2011, 26, 3167–3174. [Google Scholar] [CrossRef] [PubMed]
- Rojalin, T.; Kurki, L.; Laaksonen, T.; Viitala, T.; Kostamovaara, J.; Gordon, K.C.; Galvis, L.; Wachsmann-Hogiu, S.; Strachan, C.J.; Yliperttula, M. Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector. Anal. Bioanal. Chem. 2016, 408, 761–774. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Liu, C.; Wang, X.; Zhao, D. Adaptive handling of Rayleigh and Raman scatter of fluorescence data based on evaluation of the degree of spectral overlap. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 199, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Chen, S.; Liu, Q. Review of Fluorescence Suppression Techniques in Raman Spectroscopy. Appl. Spectrosc. Rev. 2015, 50, 387–406. [Google Scholar] [CrossRef]
- Osticioli, I.; Zoppi, A.; Castellucci, E.M. Fluorescence and Raman spectra on painting materials: Reconstruction of spectra with mathematical methods. J. Raman Spectrosc. 2006, 37, 974–980. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Xu, L.; Hong, W.; Yang, Y.; Chen, X. The Glass-Transition Temperature of Supported PMMA Thin Films with Hydrogen Bond/Plasmonic Interface. Polymers 2019, 11, 601. [Google Scholar] [CrossRef]
- Roth, C.B.; Dutcher, J.R. Glass transition temperature of freely-standing films of atactic poly(methyl methacrylate). Eur. Phys. J. E 2003, 12, 103–107. [Google Scholar] [CrossRef]
- Monti, P.; Freddi, G.; Bertoluzza, A.; Kasai, N.; Tsukada, M. Raman spectroscopic studies of silk fibroin from Bombyx mori. J. Raman Spectrosc. 1998, 29, 297–304. [Google Scholar] [CrossRef]
- Takeuchi, H.; Harada, I. Ultraviolet resonance Raman spectroscopy of X—Proline bonds: A new marker band of hydrogen bonding at the imide C=O site. J. Raman Spectrosc. 1990, 21, 509–515. [Google Scholar] [CrossRef]
- Vidya, S.; Ravikumar, C.; Hubert Joe, I.; Kumaradhas, P.; Devipriya, B.; Raju, K. Vibrational spectra and structural studies of nonlinear optical crystal ammonium D, L-tartrate: A density functional theoretical approach. J. Raman Spectrosc. 2011, 42, 676–684. [Google Scholar] [CrossRef]
- Perera, P.N.; Fega, K.R.; Lawrence, C.; Sundstrom, E.J.; Tomlinson-Phillips, J.; Ben-Amotz, D. Observation of water dangling OH bonds around dissolved nonpolar groups. Proc. Natl. Acad. Sci. USA 2009, 106, 12230–12234. [Google Scholar] [CrossRef]
- Mukherjee, S.; Dhar, S. Synchronous fluorescence techniques for the detection and monitoring of selected fluorescent dyes in binary and multifluorophoric mixtures. Results Chem. 2023, 5, 100867. [Google Scholar] [CrossRef]
- Assi, S.; Abbas, I.; Arafat, B.; Evans, K.; Al-Jumeily, D. Authentication of COVID-19 Vaccines Using Synchronous Fluorescence Spectroscopy. J. Fluoresc. 2023, 33, 1165–1174. [Google Scholar] [CrossRef] [PubMed]
- El-Aziz, H.A.; Fathy, M.E.; El-Enany, N.; Aly, F.A.; Tolba, M.M. Concurrent estimation of some co-administered antimicrobial drugs applying conventional and first derivative synchronous fluorescence spectroscopy techniques. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 264, 120255. [Google Scholar] [CrossRef]
- Wakeham, S.G. Synchronous fluorescence spectroscopy and its application to indigenous and petroleum-derived hydrocarbons in lacustrine sediments. Environ. Sci. Technol. 1977, 11, 272–276. [Google Scholar] [CrossRef]
- Ghosh, M.; Nath, S.; Hajra, A.; Sinha, S. Fluorescence self-quenching of tetraphenylporphyrin in liquid medium. J. Lumin. 2013, 141, 87–92. [Google Scholar] [CrossRef]
- Chen, W.; Young, L.J.; Lu, M.; Zaccone, A.; Ströhl, F.; Yu, N.; Kaminski Schierle, G.S.; Kaminski, C.F. Fluorescence Self-Quenching from Reporter Dyes Informs on the Structural Properties of Amyloid Clusters Formed In Vitro and in Cells. Nano Lett. 2017, 17, 143–149. [Google Scholar] [CrossRef]
- Becerra, L.; Harter, K.; Gonzalez, R.G.; Borsook, D. Functional Magnetic Resonance Imaging Measures of the Effects of Morphine on Central Nervous System Circuitry in Opioid-Naive Healthy Volunteers. Anesth. Analg. 2006, 103, 208–216. [Google Scholar] [CrossRef]
- Wong, D.H.W.; Jenkins, L.C. An experimental study of the mechanism of action of ketamine on the central nervous system. Can. Anaesth. Soc. J. 1974, 21, 57–67. [Google Scholar] [CrossRef]
- Mandona, J.W.; Tuk, B.; van Steveninck, A.L.; Breimer, D.D.; Cohen, A.F.; Danhof, M. Pharmacokinetic-pharmacodynamic modeling of the central nervous system effects of midazolam and its main metabolite α-hydroxymidazolam in healthy volunteers. Clin. Pharmacol. Ther. 1992, 51, 715–728. [Google Scholar] [CrossRef] [PubMed]
- Silvette, H.; Hoff, E.C.; Larson, P.S.; Haag, H.B. The Actions of Nicotine on Central Nervous System Functions. Pharmacol. Rev. 1962, 14, 137. [Google Scholar] [PubMed]
- Hashimoto, K.; Ide, S.; Arata, M.; Nakata, A.; Ito, A.; Ito, T.K.; Kudo, N.; Lin, B.; Nunomura, K.; Tsuganezawa, K.; et al. Discovery of Benzylpiperazine Derivatives as CNS-Penetrant and Selective Histone Deacetylase 6 Inhibitors. ACS Med. Chem. Lett. 2022, 13, 1077–1082. [Google Scholar] [CrossRef] [PubMed]
- Broussard, J.A.; Rappaz, B.; Webb, D.J.; Brown, C.M. Fluorescence resonance energy transfer microscopy as demonstrated by measuring the activation of the serine/threonine kinase Akt. Nat. Protoc. 2013, 8, 265–281. [Google Scholar] [CrossRef] [PubMed]
- Noun, F.; Jury, E.A.; Naccache, R. Elucidating the Quenching Mechanism in Carbon Dot-Metal Interactions–Designing Sensitive and Selective Optical Probes. Sensors 2021, 21, 1391. [Google Scholar] [CrossRef] [PubMed]
- Kaserer, T.; Lantero, A.; Schmidhammer, H.; Spetea, M.; Schuster, D. μ Opioid receptor: Novel antagonists and structural modeling. Sci. Rep. 2016, 6, 21548. [Google Scholar] [CrossRef] [PubMed]
- French, D. The challenges of LC–MS/MS analysis of opiates and opioids in urine. Bioanalysis 2013, 5, 2803–2820. [Google Scholar] [CrossRef]
- Jakobsson, G.; Truver, M.T.; Wrobel, S.A.; Gréen, H.; Kronstrand, R. Heroin-Related Compounds and Metabolic Ratios in Postmortem Samples Using LC–MS-MS. J. Anal. Toxicol. 2021, 45, 215–225. [Google Scholar] [CrossRef]
- Yen, Y.-T.; Chang, Y.-J.; Lai, P.-J.; Chang, C.-L.; Chen, T.-Y.; Chyueh, S.-C. A Study of Opiate, Opiate Metabolites and Antihistamines in Urine after Consumption of Cold Syrups by LC-MS/MS. Molecules 2020, 25, 972. [Google Scholar] [CrossRef]
- Haidekker, M.A.; Brady, T.P.; Lichlyter, D.; Theodorakis, E.A. Effects of solvent polarity and solvent viscosity on the fluorescent properties of molecular rotors and related probes. Bioorganic Chem. 2005, 33, 415–425. [Google Scholar] [CrossRef]
- Yetilmezsoy, K.; Saral, A. Stochastic modeling approaches based on neural network and linear–nonlinear regression techniques for the determination of single droplet collection efficiency of countercurrent spray towers. Environ. Model. Assess. 2007, 12, 13–26. [Google Scholar] [CrossRef]
- Yetilmezsoy, K.; Demirel, S.; Vanderbei, R.J. Response surface modeling of Pb(II) removal from aqueous solution by Pistacia vera L.: Box–Behnken experimental design. J. Hazard. Mater. 2009, 171, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Boroujerdi, R.; Paul, R. Introducing Graphene–Indium Oxide Electrochemical Sensor for Detecting Ethanol in Aqueous Samples with CCD-RSM Optimization. Chemosensors 2022, 10, 42. [Google Scholar] [CrossRef]
- Musabeygi, T.; Goudarzi, N.; Arab-Chamjangali, M.; Mirzaee, M. Fabrication of a magnetic composite by CoFe2O4 and an inorganic polymer for simultaneous photo-degradation of organic pollutants under visible LED light: Bandgap engineering, CCD-RSM modeling, and resolving spectral overlap of analytes. J. Mol. Liq. 2022, 362, 119692. [Google Scholar] [CrossRef]
- Khurshid, S.; Iqbal, S.; Arif, S.; Akbar, Q.-U.-A.; Iqbal, H.M.; Yousaf, S.; Uddin, R.; Ullah, R.; Fatima, N. Chemometric assisted RSM–CCD strategy for optimization of RP-HPLC conditions and its application for simultaneous determination of multiclass pesticides in plant protection products. J. Iran. Chem. Soc. 2023, 20, 701–711. [Google Scholar] [CrossRef]
- Liu, H.-L.; Lan, Y.-W.; Cheng, Y.-C. Optimal production of sulphuric acid by Thiobacillus thiooxidans using response surface methodology. Process Biochem. 2004, 39, 1953–1961. [Google Scholar] [CrossRef]
- Arafat Hossain, M.; Ganesan, P.; Jewaratnam, J.; Chinna, K. Optimization of process parameters for microwave pyrolysis of oil palm fiber (OPF) for hydrogen and biochar production. Energy Convers. Manag. 2017, 133, 349–362. [Google Scholar] [CrossRef]
- Ghaleb, A.A.; Kutty, S.R.; Ho, Y.-C.; Jagaba, A.H.; Noor, A.; Al-Sabaeei, A.M.; Almahbashi, N.M. Response Surface Methodology to Optimize Methane Production from Mesophilic Anaerobic Co-Digestion of Oily-Biological Sludge and Sugarcane Bagasse. Sustainability 2020, 12, 2116. [Google Scholar] [CrossRef]
- Afsharimani, B.; Cabot, P.; Parat, M.-O. Morphine Use in Cancer Surgery. Front. Pharmacol. 2011, 2, 46. [Google Scholar] [CrossRef]
- Denton, J.E.; Beecher, H.K. New analgesics. 2. A clinical appraisal of the narcotic power of methadone and its isomers. JAMA J. Am. Med. Assoc. 1949, 141, 1146–1153. [Google Scholar] [CrossRef]
- Lasagna, L.; Beecher, H.K. The Optimal Dose of Morphine. J. Am. Med. Assoc. 1954, 156, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, H.; Sun, W.-T.; Sun, H.-P.; Tian, T.; Sun, J. Efficacy and safety of intrathecal morphine for pain control after spinal surgery: A systematic review and meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 2674–2684. [Google Scholar] [PubMed]
- Alam, M.; Hartrick, C.T. Extended-Release Epidural Morphine (DepoDur™): An Old Drug with a New Profile. Pain Pract. 2005, 5, 349–353. [Google Scholar] [CrossRef]
- Baraka, A.; Noueihid, R.; Hajj, S. Intrathecal injection of morphine for obstetric analgesia. Anesthesiology 1981, 54, 136–140. [Google Scholar] [CrossRef]
- Chatham, M.S.; Dodds Ashley, E.S.; Svengsouk, J.S.; Juba, K.M. Dose Ratios between High Dose Oral Morphine or Equivalents and Oral Methadone. J. Palliat. Med. 2013, 16, 947–950. [Google Scholar] [CrossRef]
- Meldon, K.; Anita, S.; Lynn, W.; Douglas, G.; Deana, M. Misuse of and dependence on opioids: Study of chronic pain patients. Can. Fam. Physician 2006, 52, 1081. [Google Scholar]
- Wang, C.; Luo, J.; Dou, H.; Raise, A.; Ali, M.S.; Fan, W.; Li, Q. Optimization and analytical behavior of a morphine electrochemical sensor in environmental and biological samples based on graphite rod electrode using graphene/Co3O4 nanocomposite. Chemosphere 2023, 326, 138451. [Google Scholar] [CrossRef] [PubMed]
- Krebs, E.E.; Becker, W.C.; Zerzan, J.; Bair, M.J.; McCoy, K.; Hui, S. Comparative mortality among Department of Veterans Affairs patients prescribed methadone or long-acting morphine for chronic pain. Pain 2011, 152, 1789–1795. [Google Scholar] [CrossRef] [PubMed]
- Campos-Mañas, M.C.; Ferrer, I.; Thurman, E.M.; Agüera, A. Opioid occurrence in environmental water samples—A review. Trends Environ. Anal. Chem. 2018, 20, e00059. [Google Scholar] [CrossRef]
- Özbunar, E.; Aydoğdu, M.; Döğer, R.; Bostancı, H.İ.; Koruyucu, M.; Akgür, S.A. Morphine Concentrations in Human Urine Following Poppy Seed Paste Consumption. Forensic Sci. Int. 2019, 295, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Ghorani-Azam, A.; Balali-Mood, M.; Khatami, S.M.; Asoodeh, A.; Es’haghi, Z.; Riahi-Zanjani, B. Plant extract and herbal products as potential source of sorbent for analytical purpose: An experimental study of morphine and codeine determination using HPLC and LC–MSMS. J. Chromatogr. Sci. 2021, 59, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Soltanabadi, Z.; Esmaeili, A.; Bambai, B. Fabrication of morphine detector based on quartz@Au-layer biosensor. Microchem. J. 2022, 175, 107127. [Google Scholar] [CrossRef]
- Chu, Z.; Fu, M.; Guo, J.; Wang, W.; Zhou, J.; Ma, X.; Guo, J. Magnetic Resistance Sensory System for the Quantitative Measurement of Morphine. IEEE Trans. Biomed. Circuits Syst. 2021, 15, 171–176. [Google Scholar] [CrossRef]
- Ke, H.; Du, X.; Wang, L.; Wang, X.; Zhu, J.; Gao, Y.; Peng, B.; Hao, H.; Cai, N. Detection of morphine in urine based on a surface plasmon resonance imaging immunoassay. Anal. Methods 2020, 12, 3038–3044. [Google Scholar] [CrossRef] [PubMed]
- Mohseni, N.; Bahram, M. Mean centering of ratio spectra for colorimetric determination of morphine and codeine in pharmaceuticals and biological samples using melamine modified gold nanoparticles. Anal. Methods 2016, 8, 6739–6747. [Google Scholar] [CrossRef]
- Habibi, M.M.; Ghasemi, J.B.; Badiei, A.; Norouzi, P. Simultaneous electrochemical determination of morphine and methadone by using CMK-5 mesoporous carbon and multivariate calibration. Sci. Rep. 2022, 12, 8270. [Google Scholar] [CrossRef] [PubMed]
- Imanzadeh, H.; Khataee, A.; Hazraty, L.; Amiri, M. Broken hollow carbon spheres decorated by gold nanodendrites as the advanced electrochemical sensing platform for sensitive tracing of morphine in human serum and saliva. Sens. Actuators B Chem. 2024, 398, 134738. [Google Scholar] [CrossRef]
- Liu, H.; Motlak, M.; Feng, Z.; Kaffash, A. Three-dimensional hierarchical Co3O4/carbon composite: Hydrothermal synthesis and morphine electrochemical sensing application. Inorg. Chem. Commun. 2023, 151, 110629. [Google Scholar] [CrossRef]
- Zhao, X.; Fu, Y.; Ren, C.; Guo, J.; Kang, Y. Quantitative detection of morphine based on an up-conversion luminescent system. Analyst 2021, 146, 989–996. [Google Scholar] [CrossRef]
- Zarad, W.; Shawky, A.; Ali, A.; Aboulella, Y.; Kamal, M.; Masujima, T.; Emara, S.; El-Gendy, H. Field amplified sample stacking and in-capillary derivatization for forensic analysis of morphine and morphine-6-glucuronide in human urine by capillary electrophoresis. Talanta Open 2021, 3, 100041. [Google Scholar] [CrossRef]
- Nebu, J.; Anjali Devi, J.S.; Aparna, R.S.; Aswathy, B.; Aswathy, A.O.; Sony, G. Fluorometric determination of morphine via its effect on the quenching of fluorescein by gold nanoparticles through a surface energy transfer process. Microchim. Acta 2018, 185, 532. [Google Scholar] [CrossRef]
Notation | Factor | Unit | Range and Levels | ||||
---|---|---|---|---|---|---|---|
−α | −1 | 0 | +1 | +α | |||
A | Concentration of morphine in the solution | ppb | 0 | 20 | 40 | 60 | 80 |
B | Temperature of the solution | °C | 0 | 10 | 20 | 30 | 40 |
C | Concentration of the sensor in the solution | ppm | 50 | 75 | 100 | 125 | 150 |
D | Waiting time after addition of morphine | min | 0 | 3 | 6 | 9 | 12 |
Run | A | B | C | D | Leverage | Response (Emission) | Space Type |
---|---|---|---|---|---|---|---|
1 | 40 | 20 | 150 | 6 | 5.833 × 10−1 | 1.14 × 106 | Factorial |
2 | 40 | 40 | 100 | 6 | 5.833 × 10−1 | 1.01 × 106 | Factorial |
3 | 40 | 20 | 100 | 6 | 1.667 × 10−1 | 8.19 × 105 | Factorial |
4 | 40 | 20 | 100 | 6 | 1.667 × 10−1 | 1.667 × 10−1 | Factorial |
5 | 20 | 10 | 75 | 9 | 5.833 × 10−1 | 8.40 × 105 | Factorial |
6 | 20 | 30 | 125 | 9 | 5.833 × 10−1 | 1.26 × 106 | Factorial |
7 | 40 | 20 | 100 | 6 | 1.667 × 10−1 | 7.83 × 105 | Factorial |
8 | 20 | 30 | 125 | 3 | 5.833 × 10−1 | 1.27 × 106 | Center |
9 | 60 | 10 | 75 | 9 | 5.833 × 10−1 | 6.59 × 105 | Factorial |
10 | 60 | 30 | 125 | 9 | 5.833 × 10−1 | 1.10 × 106 | Factorial |
11 | 60 | 30 | 75 | 3 | 5.833 × 10−1 | 7.29 × 105 | Factorial |
12 | 40 | 20 | 100 | 12 | 5.833 × 10−1 | 7.91 × 105 | Factorial |
13 | 40 | 20 | 100 | 6 | 1.667 × 10−1 | 8.01 × 105 | Center |
14 | 20 | 10 | 125 | 9 | 5.833 × 10−1 | 1.10 × 106 | Center |
15 | 40 | 20 | 100 | 6 | 1.667 × 10−1 | 7.83 × 105 | Center |
16 | 40 | 20 | 100 | 6 | 1.667 × 10−1 | 8.04 × 105 | Factorial |
17 | 40 | 0 | 100 | 6 | 5.833 × 10−1 | 1.02 × 106 | Factorial |
18 | 60 | 30 | 75 | 9 | 5.833 × 10−1 | 7.95 × 105 | Factorial |
19 | 60 | 10 | 125 | 3 | 5.833 × 10−1 | 1.08 × 106 | Factorial |
20 | 20 | 30 | 75 | 9 | 5.833 × 10−1 | 8.57 × 105 | Factorial |
21 | 60 | 30 | 125 | 3 | 5.833 × 10−1 | 9.86 × 105 | Axial |
22 | 40 | 20 | 100 | 0 | 5.833 × 10−1 | 9.14 × 105 | Center |
23 | 20 | 10 | 75 | 3 | 5.833 × 10−1 | 9.05 × 105 | Axial |
24 | 60 | 10 | 75 | 3 | 5.833 × 10−1 | 6.61 × 105 | Axial |
25 | 80 | 20 | 100 | 6 | 5.833 × 10−1 | 1.11 × 106 | Axial |
26 | 0 | 20 | 100 | 6 | 5.833 × 10−1 | 1.25 × 106 | Axial |
27 | 60 | 10 | 125 | 9 | 5.833 × 10−1 | 1.09 × 106 | Axial |
28 | 40 | 20 | 50 | 6 | 5.833 × 10−1 | 4.07 × 105 | Center |
29 | 20 | 10 | 125 | 3 | 5.833 × 10−1 | 1.10 × 106 | Axial |
30 | 20 | 30 | 75 | 3 | 5.833 × 10−1 | 9.58 × 105 | Axial |
Source | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 1.16 × 1012 | 14 | 8.31 × 1010 | 44.9 | 1.16 × 10−9 | significant |
A-Morphine’s Concentration | 9.08 × 1010 | 1 | 9.08 × 1010 | 49 | 4.29 × 10−6 | |
B-Temperature | 5.98 × 109 | 1 | 5.98 × 109 | 3.23 | 9.26 × 10−2 | |
C-Sensor’s Concentration | 6.86 × 1011 | 1 | 6.86 × 1011 | 370 | 5.52 × 10−12 | |
D-Addition time | 2.99 × 1010 | 1 | 2.99 × 1010 | 16.2 | 1.11 × 10−3 | |
AB | 8.77 × 108 | 1 | 8.77 × 108 | 0.473 | 5.02 × 10−1 | |
AC | 3.54 × 109 | 1 | 3.54 × 109 | 1.91 | 1.87 × 10−1 | |
AD | 3.72 × 109 | 1 | 3.72 × 109 | 2.01 | 1.77 × 10−1 | |
BC | 2.78 × 1010 | 1 | 2.78 × 1010 | 15 | 1.50 × 10−3 | |
BD | 2.27 × 109 | 1 | 2.27 × 109 | 1.23 | 2.86 × 10−1 | |
CD | 1.43 × 109 | 1 | 1.43 × 109 | 0.771 | 3.94 × 10−1 | |
A² | 2.69 × 1011 | 1 | 2.69 × 1011 | 145 | 4.08 × 10−9 | |
B² | 5.29 × 1010 | 1 | 5.29 × 1010 | 28.6 | 8.19 × 10−5 | |
C² | 1.39 × 108 | 1 | 1.39 × 108 | 0.0753 | 7.88 × 10−1 | |
D² | 2.46 × 1010 | 1 | 2.46 × 1010 | 13.3 | 2.40 × 10−3 | |
Residual | 2.78 × 1010 | 15 | 1.85 × 109 | |||
Lack of Fit | 2.44 × 1010 | 10 | 2.44 × 109 | 3.65 | 8.2753 × 10−2 | not significant |
Pure Error | 3.35 × 109 | 5 | 6.69 × 108 | |||
Cor Total | 1.19 × 1012 | 29 |
Response Type | Predicted Mean | Predicted Median | Number of Runs | SE Pred a | 95% PI Low | Data Mean | 95% PI High |
---|---|---|---|---|---|---|---|
Emission | 7.59987 × 105 | 7.59987 × 105 | 3 | 3.25448 × 104 | 6.90620 × 105 | 8.11434 × 105 | 8.29355 × 105 |
Detection Method | Sensing Material | Detection Limit | Linear Range | Analysis Duration a | Complex Sample | Ref. |
---|---|---|---|---|---|---|
Gas chromatography–mass spectrometry | Not available | 3 ppb | 0.0025–2 ppm | <70 min | Urine | [138] |
SPME b RP-HPLC c and LC-MS/MS | Carboxylated carbon nanotubes | 1 ppb | 1–10 ppb and 0.001–1 ppm d | 30 min | Ferula gummosa e | [139] |
Piezoelectric biosensor | Anti-Morphine antibody on the gold coated quartz | 0.25 ppb | 0.25–2500 ppb | 8 min | Urine | [140] |
Magnetic resistance sensory | Superparamagnetic nanoparticles | 0.1 ppb | 0.5–1.5 ppb | 10 s | None | [141] |
Surface plasmon resonance imaging | Activated carboxyl groups on the chips | 9.59 ppb | 1–50 ppm | 20 min | Urine | [142] |
Colorimetric determination | Melamine modified gold nanoparticles | 4.85 ppb | 19.97–856 ppb | 10 min | Urine and serum | [143] |
Colorimetric determination | Au@Ag core–shell nanoparticles | 55 ppb | 0.055–30 ppm | 5 min | Urine | [62] |
Square wave voltammetry | Mesoporous carbon nanostructures | 7.7 ppb | 0.0285–114.136 ppm | >2 min | Urine | [144] |
Differential pulse voltammetry | Gold nanodendrites—broken hollow carbon spheres | 2.37 ppb | 0.0029–85.6 ppm | <10 s | Human serum and saliva | [145] |
Differential pulse voltammetry | Hierarchical CoO4-carbon composite | 25.68 ppb | 0.228–21.4 ppm | 6 min | Urine and serum | [146] |
Linear sweep voltammetry | Highly boron-doped BCN (p-BCN) | 5.08 ppb | 0.014–57.07 ppm | <10 s f | Human serum | [26] |
Up-conversion luminescent system | Nitrocellulose membrane | 0.1 ppb | 0.1–10 ppb | >30 s | Human hair | [147] |
Capillary zone electrophoresis with fluorescence detection | Disodium tetraborate decahydrate (BGE solution) | 0.5 ppb | 0.002–2 ppm | >32 min | Urine | [148] |
Ratiometric fluorescence sensor | Nitrogen-doped carbon dot | 71.8 ppb | 0.25–25 ppm | <31 min | Human plasma | [56] |
Turn-on fluorescence detection | Fluorescein—Gold nanoparticles | 0.015 ppb | 0.0013–13.942 ppb | 6 min | Urine and serum | [149] |
Fluorescence quenching (turn-off) system | 7′-Methoxy-[1,1′-binaphthalen]-7-ol | 8 ppb | 0.008–40 ppm | <10 s g | Urine | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boroujerdi, R.; Butt, A.; Paul, R.; Majumder, S. Unveiling Morphine: A Rapid and Selective Fluorescence Sensor for Forensic and Medical Analysis. Sensors 2024, 24, 1722. https://doi.org/10.3390/s24061722
Boroujerdi R, Butt A, Paul R, Majumder S. Unveiling Morphine: A Rapid and Selective Fluorescence Sensor for Forensic and Medical Analysis. Sensors. 2024; 24(6):1722. https://doi.org/10.3390/s24061722
Chicago/Turabian StyleBoroujerdi, Ramin, Andrew Butt, Richard Paul, and Santanu Majumder. 2024. "Unveiling Morphine: A Rapid and Selective Fluorescence Sensor for Forensic and Medical Analysis" Sensors 24, no. 6: 1722. https://doi.org/10.3390/s24061722
APA StyleBoroujerdi, R., Butt, A., Paul, R., & Majumder, S. (2024). Unveiling Morphine: A Rapid and Selective Fluorescence Sensor for Forensic and Medical Analysis. Sensors, 24(6), 1722. https://doi.org/10.3390/s24061722