Real-Time Speed Estimation for an Induction Motor: An Automated Tuning of an Extended Kalman Filter Using Voltage–Current Sensors
Abstract
:1. Introduction
2. Dynamic Model of Induction Motor
3. EKF Algorithm for Rotor Speed Estimation
4. Noise Covariance Matrices Estimation with a Modified Subspace Model Identification Approach
- Identifying state-space matrices , , , and and state sequence with from the available input–output data using the subspace model identification method. The identified state sequence can be defined as
- Comparing the identified state-space model with the deterministic part of the model used in the Kalman filter. To this end, both models have to have the same basis. Therefore, we enact a basis change using the transformation matrix T, which can be computed asOnce is estimated with a Moore Penrose pseudo inverse, the state sequence can be moved into the “good” state basis as follows
- Computing the residuals as
- Transforming these discrepancy measurements into covariance matrix estimates. This part will be detailed next.
4.1. Subspace Model Identification
4.2. Noise Covariance Matrices Estimation
5. Induction Motor Speed Estimation with Noise Covariance Matrices Estimation
6. Results and Discussion
6.1. Experimental Setup
6.2. Experimental Results
6.3. Performance Evaluations of Covariance Matrices Identification under Varied Speed and Load Conditions
6.3.1. First Scenario
6.3.2. Second Scenario
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rashid, M.H. Power Electronics Handbook; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar]
- Vieira, R.P.; Gastaldini, C.C.; Azzolin, R.Z.; Gründling, H.A. Sensorless sliding-mode rotor speed observer of induction machines based on magnetizing current estimation. IEEE Trans. Ind. Electron. 2013, 61, 4573–4582. [Google Scholar] [CrossRef]
- Accetta, A.; Cirrincione, M.; Pucci, M.; Vitale, G. Closed-loop MRAS speed observer for linear induction motor drives. IEEE Trans. Ind. Appl. 2014, 51, 2279–2290. [Google Scholar] [CrossRef]
- Kim, Y.R.; Sul, S.K.; Park, M.H. Speed sensorless vector control of induction motor using extended Kalman filter. IEEE Trans. Ind. Appl. 1994, 30, 1225–1233. [Google Scholar]
- Shi, K.; Chan, T.; Wong, Y.; Ho, S.L. Speed estimation of an induction motor drive using extended Kalman filter. In Proceedings of the 2000 IEEE Power Engineering Society Winter Meeting—Conference Proceedings (Cat. No. 00CH37077), Singapore, 23–27 January 2000; IEEE: New York, NY, USA, 2000; Volume 1, pp. 243–248. [Google Scholar]
- Shi, K.; Chan, T.; Wong, Y.; Ho, S.L. Speed estimation of an induction motor drive using an optimized extended Kalman filter. IEEE Trans. Ind. Electron. 2002, 49, 124–133. [Google Scholar] [CrossRef]
- Messaoudi, M.; Sbita, L.; Abdelkrim, M.N. EKF-Algorithm for Induction Motor State Estimation and Parameter Identification. Available online: https://www.researchgate.net/publication/235999752_EKF-Algorithm_for_Induction_Motor_State_Estimation_and_Parameter_Identification (accessed on 29 February 2024).
- Barut, M.; Bogosyan, S.; Gokasan, M. Speed-sensorless estimation for induction motors using extended Kalman filters. IEEE Trans. Ind. Electron. 2007, 54, 272–280. [Google Scholar] [CrossRef]
- Osamah Basheer Noori, M.O.M. Flux and Speed Estimation of Induction Motors using Extended Kalman Filter. Int. J. Comput. Appl. 2018, 181, 27–31. [Google Scholar]
- Aydin, M.; Gokasan, M.; Bogosyan, S. Fuzzy based parameter tuning of EKF observers for sensorless control of Induction Motors. In Proceedings of the 2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Ischia, Italy, 18–20 June 2014; IEEE: New York, NY, USA, 2014; pp. 1174–1179. [Google Scholar]
- Yin, Z.; Xiao, L.; Sun, X.; Liu, J.; Zhong, Y. A speed and flux estimation method of induction motor using fuzzy extended kalman filter. In Proceedings of the 2014 International Power Electronics and Application Conference and Exposition, Shanghai, China, 5–8 November 2014; IEEE: New York, NY, USA, 2014; pp. 693–698. [Google Scholar]
- Yu, H.X.; Hu, J.T. Speed and load torque estimation of induction motors based on an adaptive extended Kalman filter. Adv. Mater. Res. 2012, 433, 7004–7010. [Google Scholar] [CrossRef]
- Yin, Z.; Li, G.; Zhang, Y.; Liu, J.; Sun, X.; Zhong, Y. A speed and flux observer of induction motor based on extended Kalman filter and Markov chain. IEEE Trans. Power Electron. 2016, 32, 7096–7117. [Google Scholar] [CrossRef]
- Yin, Z.; Li, G.; Du, C.; Sun, X.; Liu, J.; Zhong, Y. An adaptive speed estimation method based on a strong tracking extended Kalman filter with a least-square algorithm for induction motors. J. Power Electron. 2017, 17, 149–160. [Google Scholar] [CrossRef]
- Yin, Z.; Li, G.; Zhang, Y.; Liu, J. Symmetric-strong-tracking-extended-Kalman-filter-based sensorless control of induction motor drives for modeling error reduction. IEEE Trans. Ind. Inform. 2018, 15, 650–662. [Google Scholar] [CrossRef]
- Zerdali, E.; Barut, M. Extended Kalman filter based speed-sensorless load torque and inertia estimations with observability analysis for induction motors. Power Electron. Drives 2018, 3, 115–127. [Google Scholar] [CrossRef]
- Zerdali, E. Adaptive extended Kalman filter for speed-sensorless control of induction motors. IEEE Trans. Energy Convers. 2018, 34, 789–800. [Google Scholar] [CrossRef]
- Zerdali, E. Strong tracking extended Kalman filter based speed and load torque estimations of induction motor. In Proceedings of the 2019 1st Global Power, Energy and Communication Conference (GPECOM), Nevsehir, Turkey, 12–15 June 2019; IIEEE: New York, NY, USA, 2019; pp. 216–221. [Google Scholar]
- Zerdali, E.; Yildiz, R.; Inan, R.; Demir, R.; Barut, M. Improved speed and load torque estimations with adaptive fading extended Kalman filter. Int. Trans. Electr. Energy Syst. 2021, 31, e12684. [Google Scholar] [CrossRef]
- Mussot, V.; Mercère, G.; Dairay, T.; Arvis, V.; Vayssettes, J. Noise covariance matrix estimation with subspace model identification for Kalman filtering. Int. J. Adapt. Control Signal Process. 2021, 35, 591–611. [Google Scholar] [CrossRef]
- Verhaegen, M.; Verdult, V. Filtering and System Identification: A Least Squares Approach; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Van Overschee, P.; De Moor, B. Subspace Identification for Linear Systems: Theory—Implementation—Applications; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Katayama, T. Subspace Methods for System Identification; Springer: London, UK, 2005; Volume 1. [Google Scholar]
- Mercere, G. Regression techniques for subspace-based black-box state-space system identification: An overview. arXiv 2013, arXiv:1305.7121. [Google Scholar]
- Kailath, T.; Sayed, A.H.; Hassibi, B. Linear Estimation (Information and System Sciences Series); Technical Report; Prentice-Hall: Upper Saddle River, NJ, USA, 2000. [Google Scholar]
- O’Rourke, C.J.; Qasim, M.M.; Overlin, M.R.; Kirtley, J.L. A geometric interpretation of reference frames and transformations: dq0, clarke, and park. IEEE Trans. Energy Convers. 2019, 34, 2070–2083. [Google Scholar] [CrossRef]
- Korkmaz, F. Performance improvement of induction motor drives with model-based predictive torque control. Turk. J. Electr. Eng. Comput. Sci. 2020, 28, 525–539. [Google Scholar] [CrossRef]
- Böcker, J. Discrete-time model of an induction motor. Eur. Trans. Electr. Power 1991, 1, 65–71. [Google Scholar] [CrossRef]
- Simon, D. Optimal State Estimation: Kalman, H∞ and Nonlinear Approaches; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Peternell, K.; Scherrer, W.; Deistler, M. Statistical analysis of novel subspace identification methods. Signal Process. 1996, 52, 161–177. [Google Scholar] [CrossRef]
EKF Tuning | First Test | Second Test |
---|---|---|
Trial and error process | 0.18 | 0.18 |
Automated tuning | 0.002 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miloud, I.; Cauet, S.; Etien, E.; Salameh, J.P.; Ungerer, A. Real-Time Speed Estimation for an Induction Motor: An Automated Tuning of an Extended Kalman Filter Using Voltage–Current Sensors. Sensors 2024, 24, 1744. https://doi.org/10.3390/s24061744
Miloud I, Cauet S, Etien E, Salameh JP, Ungerer A. Real-Time Speed Estimation for an Induction Motor: An Automated Tuning of an Extended Kalman Filter Using Voltage–Current Sensors. Sensors. 2024; 24(6):1744. https://doi.org/10.3390/s24061744
Chicago/Turabian StyleMiloud, Ines, Sebastien Cauet, Erik Etien, Jack P. Salameh, and Alexandre Ungerer. 2024. "Real-Time Speed Estimation for an Induction Motor: An Automated Tuning of an Extended Kalman Filter Using Voltage–Current Sensors" Sensors 24, no. 6: 1744. https://doi.org/10.3390/s24061744
APA StyleMiloud, I., Cauet, S., Etien, E., Salameh, J. P., & Ungerer, A. (2024). Real-Time Speed Estimation for an Induction Motor: An Automated Tuning of an Extended Kalman Filter Using Voltage–Current Sensors. Sensors, 24(6), 1744. https://doi.org/10.3390/s24061744