Research on the Shock Wave Overpressure Peak Measurement Method Based on Equilateral Ternary Array
Abstract
:1. Introduction
2. Shock Wave Overpressure Peak Measurement Model
2.1. Basic Properties of Shock Waves and State Parameter Equations
2.2. Measurement Model
3. Analysis of Key Parameters
3.1. Simulation
3.2. Analysis
3.2.1. Influence of Array Size
3.2.2. Influence of Shock Wave Incidence Angle
3.2.3. Influence of Shock Wave Propagation Velocity
4. Test Verification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alastair, B.; Paul, P. Blast injuries: A guide for the civilian surgeon. Surgery 2021, 39, 393–400. [Google Scholar]
- Pan, R.; Cui, B.; Zhang, X.; Wang, Y.; Zheng, L. Study on pressure wave response and overpressure attenuation law of explosion-proof doors. Process. Saf. Environ. Prot. 2023, 169, 706–717. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, N.; Cui, J.; Li, C.; Zhang, X. Experimental and numerical investigation of charge shape effect on blast load induced by near-field explosions. Process. Saf. Environ. Prot. 2022, 165, 266–277. [Google Scholar] [CrossRef]
- Justin, K.; Zhang, K.S.; Botterbush, K.B.; Chi, H.L.; Philippe, M.; Tobias, A.M. Blast-Related Traumatic Brain Injuries Secondary to Thermobaric Explosives: Implications for the War in Ukraine. World Neurosurg. 2022, 167, 176–183.e4. [Google Scholar]
- Zhang, Y.; Di, C.; Peng, P.; Li, D.; Si, X.; Ji, B. Research on somatosensory shock wave pressure measurement method based on PVDF film. Thin-Walled Struct. 2024, 196, 111520. [Google Scholar] [CrossRef]
- Li, G.; Agir, M.B.; Kontis, K.; Ukai, T.; Rengarajan, S. Image Processing Techniques for Shock Wave Detection and Tracking in High Speed Schlieren and Shadowgraph Systems. J. Phys. Conf. Ser. 2019, 1215, 012021. [Google Scholar] [CrossRef]
- Mizukaki, T.; Tsukada, H.; Wakabayashi, K.; Matsumura, T.; Nakayama, Y. Quantitative Visualization of Open-Air Explosions by Using Background-Oriented Schlieren with Natural Background; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Porta, D.; Echeverría, C.; Stern, C.; Rendón, P.L. Visualization of a shock wave travelling inside a rectangular duct using the background-oriented schlieren method. Wave Motion 2022, 114, 102999. [Google Scholar] [CrossRef]
- Peng, P.; Zhang, Y.; Di, C. Dynamic parameter estimation method of impact between bourrelet and barrel based on experimental value correction. Alex. Eng. J. 2023, 65, 983–995. [Google Scholar] [CrossRef]
- Byun, H.; Bae, J.; Yoon, T.; Yang, I.; Lee, S.; Carter, C.D.; Do, H. Velocity measurements in a supersonic wind tunnel with a novel calibration-free seedless velocimetry utilizing laser-induced shockwaves and a double-line probe system. Int. J. Heat Mass Transf. 2021, 184, 122246. [Google Scholar] [CrossRef]
- Vergine, F.; Maddalena, L. Stereoscopic particle image velocimetry measurements of supersonic, turbulent, and interacting streamwise vortices: Challenges and application. Prog. Aerosp. Sci. 2014, 66, 1–16. [Google Scholar] [CrossRef]
- Fu, H.; Deren, K.; Li, L.; He, X.; Wang, S. Numerical simulation of assessing the damage of explosive blast wave base on effective target’s method. J. Test Meas. Technol. 2015, 29, 326–331. [Google Scholar] [CrossRef]
- Nian, X.-Z.; Xie, Q.-M.; Kong, X.-L.; Yao, Y.-K.; Huang, K. Experimental and numerical study on protective effect of RC blast wall against air shock wave. Def. Technol. 2024, 31, 567–579. [Google Scholar] [CrossRef]
- Gao, C.; Kong, X.; Fang, Q. Experimental and numerical investigation on the attenuation of blast waves in concrete induced by cylindrical charge explosion. Int. J. Impact Eng. 2023, 174, 104491. [Google Scholar] [CrossRef]
- Thangadurai, M.; Kundu, A.; Sandhu, I.S.; Das, M.N. Numerical simulation of high peak overpressure blast wave through shock tube and its interaction with a rectangular object. Eur. J. Mech.-B/Fluids 2023, 97, 162–172. [Google Scholar] [CrossRef]
- Wang, G.; Li, Y.; Cui, H.; Yang, X.; Yang, C.; Chen, N. Acceleration self-compensation mechanism and experimental research on shock wave piezoelectric pressure sensor. Mech. Syst. Signal Process. 2020, 150, 107303. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Z.; Wang, G.; Yang, C. Research on piezoelectric pressure sensor for shock wave load measurement. ISA Trans. 2020, 104, 382–392. [Google Scholar] [CrossRef]
- Krause, T.; Meier, M.; Brunzendorf, J. Influence of thermal shock of piezoelectric pressure sensors on the measurement of explosion pressures. J. Loss Prev. Process. Ind. 2021, 71, 104523. [Google Scholar] [CrossRef]
- Wang, L.; Shang, F.; Deren, K. Effect of sensor installation angle on measurement of explosion shock wave pressure. Meas. Sci. Technol. 2022, 33, 115023. [Google Scholar] [CrossRef]
- Racca, R.G.; Dewey, J.M. Time-resolved holography for-the study of shock waves. Proc. SPIE-Int. Soc. Opt. Eng. 1989, 1032, 578–586. [Google Scholar]
- Dewey, J.M.; Dewey, J.M.; Dewey, J.M. The properties of a blast wave obtained from an analysis of the particle trajectories. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1971, 324, 275–299. [Google Scholar] [CrossRef]
- Kucera, J.; Anastacio, A.C.; Selesovsky, J.; Pachman, J. Testing optical tracking of blast wave position for determination of its overpressure. In Proceedings of the 2017 International Conference on Military Technologies (ICMT), Brno, Czech Republic, 31 May–2 June 2017; pp. 70–73. [Google Scholar]
- Bin, L.I.; Wang, Y.; Zhou, Z.Q.; Sun, C.Y.; Wang, X. High-speed schlieren photography for measuring the explosive blast wave power. Opt. Optoelectron. Technol. 2018, 16, 43–49. [Google Scholar]
- An, J.; Zhang, Z.; Wang, W.; Zhang, Y.; Zhang, Y. Feasibility research of using shock wave to test the overpressure indirectly. China Meas. Test. Technol. 2008, 3, 131–134. [Google Scholar]
- Li, K.; Li, X.; Yan, H.; Wang, X.; Miao, Y. A velocity probe-based method for continuous detonation and shock measurement in near-field underwater explosion. Rev. Sci. Instrum. 2017, 88, 123905. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Peng, X.S.; Liu, S.Y.; Li, Y.S.; Ding, Y.K. Direct measurement technique for shock wave velocity under super high pressure. Acta Phys. Sin. Chin. Ed. 2021, 60, 025202-149. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y. The Riemann problem and interaction of waves in two-dimensional steady zero-pressure adiabatic flow. Int. J. Non-Linear Mech. 2018, 104, 100–108. [Google Scholar] [CrossRef]
Parameter | Δt/μs | L/m | β/° | v/(m/s) |
Value | 0.5 | 0.05 to 0.2 | −60 to 60 | 400 to 7000 |
Indicator Name | Technical Indicators Parameters |
---|---|
Maximal linearity(%FSO) | ≤±1.0 |
Pressure range | 0 … 1000 bar |
Rise time (10 … 90%) | <0.4 μs |
Natural frequency | >500 kHz |
Mounting size | 5.5 mm |
Indicator Name | Technical Indicators Parameters |
---|---|
channels number | 32 channel |
input mode | ICP (IEPE), DC, AC |
Maximum sampling rate | 20 MS/s |
Resolution | 14/16-bit |
Input Ranges | ±100 mV, …, ±25 V, Offset Settings: 0–100% |
bandwidth | 10 MHz |
input noise (1 MS/s) | <0.03 mVrms |
TNT | β | T12 | T13 | T1C | P3v | P2v | ΔP | PSTD | ơ3v | ơ2v | ơΔ |
---|---|---|---|---|---|---|---|---|---|---|---|
kg | ° | μs | MPa | ||||||||
0.3 | 0 | 224.7 | 238.7 | 270.4 | 0.2 | 0.206 | 0.034 | 0.201 | 0.5% | 2.49% | 16.92% |
10 | 200.5 | 251.2 | 258 | 0.208 | 0.22 | 0.037 | 0.206 | 0.97% | 6.8% | 17.96% | |
30 | 130.9 | 270 | 238.7 | 0.197 | 0.286 | 0.036 | 0.194 | 1.55% | 47.42% | 18.56% | |
AVG | - | - | - | 0.202 | 0.237 | 0.036 | 0.200 | 1.01% | 18.9% | 17.81% | |
3 | 0 | 122 | 129.9 | 145 | 0.966 | 0.984 | 0.156 | 0.953 | 1.36% | 3.25% | 16.37% |
10 | 107.4 | 137.4 | 142.2 | 0.984 | 1.019 | 0.171 | 0.968 | 1.65% | 5.27% | 17.67% | |
30 | 70.4 | 150 | 125.7 | 0.903 | 1.339 | 0.168 | 0.89 | 1.46% | 50.45% | 18.88% | |
AVG | - | - | - | 0.951 | 1.114 | 0.165 | 0.937 | 1.49% | 19.66% | 17.64% | |
overall AVG | - | - | - | - | - | - | - | 1.25% | 19.28% | 17.73% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Peng, P.; Lin, T.; Lou, A.; Li, D.; Di, C. Research on the Shock Wave Overpressure Peak Measurement Method Based on Equilateral Ternary Array. Sensors 2024, 24, 1860. https://doi.org/10.3390/s24061860
Zhang Y, Peng P, Lin T, Lou A, Li D, Di C. Research on the Shock Wave Overpressure Peak Measurement Method Based on Equilateral Ternary Array. Sensors. 2024; 24(6):1860. https://doi.org/10.3390/s24061860
Chicago/Turabian StyleZhang, Yongjian, Peng Peng, Tao Lin, Aiwei Lou, Dahai Li, and Changan Di. 2024. "Research on the Shock Wave Overpressure Peak Measurement Method Based on Equilateral Ternary Array" Sensors 24, no. 6: 1860. https://doi.org/10.3390/s24061860
APA StyleZhang, Y., Peng, P., Lin, T., Lou, A., Li, D., & Di, C. (2024). Research on the Shock Wave Overpressure Peak Measurement Method Based on Equilateral Ternary Array. Sensors, 24(6), 1860. https://doi.org/10.3390/s24061860