Design of a Multi-Position Alignment Scheme
Abstract
:1. Introduction
2. Coordinate System and Error Model of INS
2.1. Coordinate System Definition
2.2. Error Model of IMU
2.3. Error Model of INS
3. Error Analysis and Scheme Design for Alignment
3.1. Error Analysis for Alignment
3.1.1. Constant Bias
3.1.2. Scale Factor Error
3.1.3. Misalignment
3.2. Alignment Scheme Design
3.2.1. Alignment and Rotation Scheme Design
3.2.2. Alignment Algorithm Design
4. Simulation and Experimental Analysis
4.1. Simulation Analysis
4.2. Test Verification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, Z.; Zhang, Z.; Zhou, Z.; Chen, H.; Zhao, J. Alignment method of rotating SINS with swinging base. Syst. Eng. Electron. 2019, 41, 2087–2091. [Google Scholar]
- Emel’yantsev, G.; Stepanov, O.; Stepanov, A.; Blazhnov, B.; Dranitsyna, E.; Evstifeev, M.; Eliseev, D.; Volynskiy, D. Integrated GNNS/IMU Gyrocompass with Rotating IMU. Development and Test Results. Remote Sens. 2020, 12, 3736. [Google Scholar] [CrossRef]
- Lin, Y.; Miao, L.; Zhou, Z. A high-accuracy initial alignment method based on backtracking process for strapdown inertial navigation system. Measurement 2022, 201, 111712. [Google Scholar] [CrossRef]
- Sun, W.; Li, S.; Li, R. Analysis of the Initial Alignment of Rotary Fiber Inertial Navigation System. Chin. J. Sens. Actuators 2014, 27, 1082–1087. [Google Scholar]
- Chen, J.; Cheng, X.; Li, J. Rapid alignment algorithm for rotary INS in inertial frame. Transducer Microsyst. Technol. 2017, 36, 142–145. [Google Scholar]
- Zhang, Q.; Wang, L.; Liu, Z.; Feng, P. An Accurate Calibration Method Based on Velocity in a Rotational Inertial Navigation System. Sensors 2015, 15, 18443–18458. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Su, L.; Wang, F.; Li, K.; Zhang, L. An Improved Online Fast Self-Calibration Method for Dual-Axis RINS Based on Backtracking Scheme. Sensors 2022, 22, 5036. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wang, W.; Liu, Y.; Guo, Z. An Improved Rotational Modulation Scheme for Tri-Axis Rotational Inertial Navigation System (RINS) with Fiber Optic Gyro (FOG). Appl. Sci. 2023, 13, 8394. [Google Scholar] [CrossRef]
- Liu, B.; Wei, S.; Lu, J.; Wang, J.; Su, G. Fast Self-Alignment Technology for Hybrid Inertial Navigation Systems Based on a New Two-Position Analytic Method. IEEE Trans. Ind. Electron. 2020, 67, 3226–3235. [Google Scholar] [CrossRef]
- Xu, C.; Miao, L.; Zhou, Z.; Lin, Y. A rapid and high-accuracy rotation alignment method based on bidirectional process for dual-axis rotational inertial navigation system. Meas. Sci. Technol. 2020, 31, 125106. [Google Scholar] [CrossRef]
- Wang, L.; Wu, W.; Wei, G.; Pan, X.; Lian, J. Navigation Information Fusion in a Redundant Marine Rotational Inertial Navigation System Configuration. J. Navig. 2018, 71, 1531–1552. [Google Scholar] [CrossRef]
- Mao, S.; Hu, P.; Ding, X.; Tan, J. Parameter correction method for dual position-sensitive-detector-based unit. Appl. Opt. 2016, 55, 4073–4078. [Google Scholar] [CrossRef]
- Fang, J.; Han, X.; Yang, F. Two-position alignment method of airborne position and orientation system. J. Chin. Inert. Technol. 2013, 21, 318–323. [Google Scholar]
- Lai, J.; Xiong, J.; Liu, J.; Jiang, B. Improved arithmetic of two-position fast initial alignment for sins using unscented kalman filter. Int. J. Innov. Comput. Inf. Control. 2012, 8, 2929–2940. [Google Scholar]
- Zhang, L.; Wu, W.; Wang, M. Rapid SINS Two-Position Ground Alignment Scheme Based on Piecewise Combined Kalman Filter and Azimuth Constraint Information. Sensors 2019, 19, 1125. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, G. The improved method of the SINS initial alignment based on single-axis rotation. J. Harbin Eng. Univ. 2014, 35, 925–930. [Google Scholar]
- Wei, D.; Li, S.; Fu, Q. A New Initial Alignment Scheme for Dual-Axis Rotational Inertial Navigation System. IEEE Trans. Instrum. Meas. 2022, 71, 8503010. [Google Scholar] [CrossRef]
- Wang, M.; Wang, L.; Han, H. Research on Innovative Self-Calibration Strategy for Error Parameters of Dual-Axis RINS. IEEE Sens. J. 2023, 21, 27918–27927. [Google Scholar] [CrossRef]
- Seo, Y.-B.; Yu, H.; Ryu, K.; Lee, I.; Oh, J.; Kim, C.; Lee, S.J.; Park, C. Analysis of Gyro Bias Depending on the Position of Inertial Measurement Unit in Rotational Inertial Navigation Systems. Sensors 2022, 22, 8355. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, W.; Lian, J.; Wu, M. Depression of ring laser gyro drift using rotation modulation technique. J. Chin. Inert. Technol. 2011, 19, 515–520. [Google Scholar]
- Wang, B.; Weng, H.; Wang, Z.; Zhang, Y.; Hu, X. Calibration method for two-axis indexing RLG-SINS with speed damping. J. Chin. Inert. Technol. 2019, 41, 421–425. [Google Scholar]
- Yan, G.; Weng, J.; Bai, L.; Qin, Y. Initial in-movement alignment and position determination based on inertial reference frame. Syst. Eng. Electron. 2011, 33, 618–621. [Google Scholar]
- Yu, H.; Wang, W.; Huang, L. Improved performance of scale factory linearity in closed-loop IFOG. J. Chin. Inert. Technol. 2007, 15, 449–451. [Google Scholar]
- Fu, Q. Key Technologies for Vehicular Positioning and Orientation System. Ph.D. Thesis, Northwestern Polytechnical University, Xi’an, China, 2014. [Google Scholar]
- Dranitsyna, E.V. IMU Calibration Using Sins Navigation Solution: Selection of the Rate Table Motion Scenario. In Proceedings of the 24th Saint Petersburg International Conference on Integrated Navigation Systems, ICINS 2017, St. Petersburg, Russia, 29–31 May 2017. [Google Scholar]
Error Terms | Parameters | |
---|---|---|
Gyro | Constant bias | 0.002°/h |
Random walk | 0.0003°/√h | |
Scale factor error | 30 ppm | |
Misalignment | 2″ | |
Driving noise (first-order Markov process) | 0.0003°/h | |
Correlated time | 3000 s | |
Accelerometer | Constant bias | 20 μg |
Random walk | 5 μg/√Hz | |
Scale factor error | 30 ppm | |
Misalignment | 2″ |
Attitude Angle | Two-Position Scheme | Rotation Scheme | Three-Position Scheme |
---|---|---|---|
pitch | 4.59″ | 2.19″ | 3.51″ |
roll | 1.32″ | 1.58″ | 2.03″ |
yaw | 20.32″ | 14.63″ | 12.83″ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, B.; Liu, Z.; Wei, D.; Fu, Q. Design of a Multi-Position Alignment Scheme. Sensors 2024, 24, 1938. https://doi.org/10.3390/s24061938
Guan B, Liu Z, Wei D, Fu Q. Design of a Multi-Position Alignment Scheme. Sensors. 2024; 24(6):1938. https://doi.org/10.3390/s24061938
Chicago/Turabian StyleGuan, Bofan, Zhongping Liu, Dong Wei, and Qiangwen Fu. 2024. "Design of a Multi-Position Alignment Scheme" Sensors 24, no. 6: 1938. https://doi.org/10.3390/s24061938
APA StyleGuan, B., Liu, Z., Wei, D., & Fu, Q. (2024). Design of a Multi-Position Alignment Scheme. Sensors, 24(6), 1938. https://doi.org/10.3390/s24061938