Persona-PhysioSync AV: Personalized Interaction through Personality and Physiology Monitoring in Autonomous Vehicles
Abstract
:1. Introduction
2. Trust in the Safety of the Autonomous Car
3. Sensing Users and Tailoring the Experience of the Autonomous Car
3.1. Personality
3.2. Physiological Sensing Indices
3.3. Validated Psychophysiological Sensors
3.3.1. Electrodermal Activity (EDA)
3.3.2. Electroencephalography (EEG)
3.3.3. Electrooculography (EOG)
3.3.4. Electromyography (EMG)
3.3.5. Electrocardiography (ECG)
3.3.6. Body Temperature
3.4. Emotional Measurement
Facial Action Coding System (FACS)
3.5. Personality and Physiological Indices
4. Conclusions
5. Implications
- Enhanced User Experience: The PPS-AV framework and the focus on monitoring and accommodating individual passenger preferences and comfort levels can greatly enhance the overall user experience. This could lead to increased user satisfaction and greater adoption of AV technology.
- Safety: By monitoring passengers’ engagement and providing alerts when necessary, the framework contributes to passenger safety. It ensures that passengers remain aware and capable of responding to TOR events promptly, reducing the risk of accidents.
- Trust Building: AVs often face trust and acceptance challenges. The ability to tailor the driving style and level of engagement to individual passengers’ preferences and personality traits can build trust and comfort with the technology, potentially accelerating its adoption.
- Personalization: AVs equipped with the PPS-AV framework can offer a more personalized travel experience. This personalization extends beyond just driving style and engagement levels to include entertainment, climate control, and other aspects of the passenger’s journey.
- Human–Vehicle Interaction (HVI): The development of innovative interfaces that consider personality traits, explicit and implicit responses, and emotional indices can foster a sense of collaboration between passengers and AVs. This HVI can make the interaction with AVs more intuitive and user-friendly.
- Research and Development: The proposed framework highlights the need for ongoing research and development in the AV field. It encourages the integration of psychophysiological and emotional data into AV systems, which can lead to more advanced and capable AV technologies.
- Safety Regulations: As AV technology evolves, the introduction of frameworks like PPS-AV may lead to establishing safety regulations and standards that focus on monitoring passenger states and engagement.
- Market Differentiation: Companies implementing such personalized and safety-enhancing technologies may gain a competitive edge in the AV market, attracting customers who prioritize safety, comfort, and a personalized experience.
- Data Privacy and Security: The collection of psychophysiological and emotional data raises concerns about data privacy and security. Implications for data protection and secure handling of sensitive passenger information must be addressed in the development and implementation of such systems.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HVI | Human–Vehicle Interaction |
TOR | Take-Over Request |
AV | autonomous vehicle (AV) |
AVs | autonomous vehicles |
EDA | electrodermalactivity |
ECG | electrocardiograph |
PPG | photoplethysmogram |
FACS | Facial Action Coding System |
EMG | electromyopgraphy |
EOG | electrooculargraph |
HRV | heart rate variability |
HMI | human–machine interface |
NDRTs | non-driving-related tasks |
SA | situational awareness |
PPS-AV | Persona-PhysioSync AV |
semi-AVs | semi-autonomous vehicles |
SEA | Society of Automotive Engineers International |
References
- Chan, C.Y. Advancements, prospects, and impacts of automated driving systems. Int. J. Transp. Sci. Technol. 2017, 6, 208–216. [Google Scholar] [CrossRef]
- Khan, M.A.; Sayed, H.E.; Malik, S.; Zia, T.; Khan, J.; Alkaabi, N.; Ignatious, H. Level-5 Autonomous Driving—Are We There Yet? A Review of Research Literature. ACM Comput. Surv. 2022, 55, 1–38. [Google Scholar] [CrossRef]
- Hegner, S.M.; Beldad, A.D.; Brunswick, G.J. In Automatic We Trust: Investigating the Impact of Trust, Control, Personality Characteristics, and Extrinsic and Intrinsic Motivations on the Acceptance of Autonomous Vehicles. Int. J. Hum.–Comput. Interact. 2019, 35, 1769–1780. [Google Scholar] [CrossRef]
- Park, S.Y.; Moore, D.J.; Sirkin, D. What a Driver Wants: User Preferences in Semi-Autonomous Vehicle Decision-Making. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (CHI ’20), Honolulu, HI, USA, 25–30 April 2020; pp. 1–13. [Google Scholar] [CrossRef]
- SAE International Releases Updated Visual Chart for Its “Levels of Driving Automation” Standard for Self-Driving Vehicles—sae.org. Available online: https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-driving-vehicles (accessed on 7 March 2024).
- Murali, P.K.; Kaboli, M.; Dahiya, R. Intelligent In-Vehicle Interaction Technologies. Adv. Intell. Syst. 2022, 4, 2100122. [Google Scholar] [CrossRef]
- Hang, P.; Lv, C.; Xing, Y.; Huang, C.; Hu, Z. Human-like Decision Making for Autonomous Driving: A Noncooperative Game Theoretic Approach. IEEE Trans. Intell. Transp. Syst. 2020, 22, 2076–2087. [Google Scholar] [CrossRef]
- Oh, P.; Jung, Y. Chapter 12. A Machine-Learning Approach to Assessing Public Trust in AI-powered Technologies. In Research Handbook on Artificial Intelligence and Communication; Edward Elgar Publishing: Cheltenham, UK, 2023; p. 193. [Google Scholar]
- Nakade, T.; Fuchs, R.; Bleuler, H.; Schiffmann, J. Haptics Based Multi-Level Collaborative Steering Control for Automated Driving. Commun. Eng. 2023, 2, 2. [Google Scholar] [CrossRef]
- Krueger, R.; Rashidi, T.H.; Rose, J.M. Preferences for Shared Autonomous Vehicles. Transp. Res. Part C Emerg. Technol. 2016, 69, 343–355. [Google Scholar] [CrossRef]
- Htike, Z.; Papaioannou, G.; Siampis, E.; Velenis, E.; Longo, S. Minimisation of Motion Sickness in Autonomous Vehicles. In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October–13 November 2020; pp. 1135–1140. [Google Scholar] [CrossRef]
- Du, N.; Yang, X.J.; Zhou, F. Psychophysiological Responses to Takeover Requests in Conditionally Automated Driving. Accid. Anal. Prev. 2020, 148, 105804. [Google Scholar] [CrossRef]
- Merat, N.; Seppelt, B.; Louw, T.; Engström, J.; Lee, J.D.; Johansson, E.; Green, C.A.; Katazaki, S.; Monk, C.; Itoh, M.; et al. The “Out-of-the-Loop” concept in automated driving: Proposed definition, measures and implications. Cogn. Technol. Work 2019, 21, 87–98. [Google Scholar] [CrossRef]
- White, H.; Large, D.R.; Salanitri, D.; Burnett, G.; Lawson, A.; Box, E. Rebuilding Drivers’ Situation Awareness during Take-over Requests in Level 3 Automated Cars. In Proceedings of the Ergonomics & Human Factors 2019, Stratford-upon-Avon, UK, 29 April–1 May 2019. [Google Scholar]
- Röckel, C.; Hecht, H. Regular looks out the window do not maintain situation awareness in highly automated driving. Transp. Res. Part F Traffic Psychol. Behav. 2023, 98, 368–381. [Google Scholar] [CrossRef]
- Vogelpohl, T.; Kühn, M.; Hummel, T.; Gehlert, T.; Vollrath, M. Transitioning to manual driving requires additional time after automation deactivation. Transp. Res. Part F Traffic Psychol. Behav. 2018, 55, 464–482. [Google Scholar] [CrossRef]
- Funkhouser, K.; Drews, F. Reaction Times When Switching From Autonomous to Manual Driving Control: A Pilot Investigation. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2016, 60, 1854–1858. [Google Scholar] [CrossRef]
- Rauffet, P.; Botzer, A.; Chauvin, C.; Saïd, F.; Tordet, C. The Relationship between Level of Engagement in a Non-Driving Task and Driver Response Time When Taking Control of an Automated Vehicle. Cogn. Technol. Work 2020, 22, 721–731. [Google Scholar] [CrossRef]
- Melcher, V.; Rauh, S.; Diederichs, F.; Widlroither, H.; Bauer, W. Take-Over Requests for Automated Driving. Procedia Manuf. 2015, 3, 2867–2873. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, Y.; Ma, Y.; Lv, C.; Zhang, Y. Designing Human-machine Collaboration Interface Through Multimodal Combination Optimization to Improve Takeover Performance in Highly Automated Driving. In Proceedings of the 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), Bilbao, Spain, 24–28 September 2023; pp. 4895–4900. [Google Scholar] [CrossRef]
- Morales-Alvarez, W.; Sipele, O.; Léberon, R.; Tadjine, H.H.; Olaverri-Monreal, C. Automated Driving: A Literature Review of the Take over Request in Conditional Automation. Electronics 2020, 9, 2087. [Google Scholar] [CrossRef]
- Lindorfer, M.; Mecklenbraeuker, C.F.; Ostermayer, G. Modeling the Imperfect Driver: Incorporating Human Factors in a Microscopic Traffic Model. IEEE Trans. Intell. Transp. Syst. 2017, 19, 2856–2870. [Google Scholar] [CrossRef]
- Amichai-Hamburger, Y.; Sela, Y.; Kaufman, S.; Wellingstein, T.; Stein, N.; Sivan, J. Personality and the autonomous vehicle: Overcoming psychological barriers to the driverless car. Technol. Soc. 2022, 69, 101971. [Google Scholar] [CrossRef]
- Deng, M.; Gluck, A.; Zhao, Y.; Li, D.; Menassa, C.C.; Kamat, V.R.; Brinkley, J. An Analysis of Physiological Responses as Indicators of Driver Takeover Readiness in Conditionally Automated Driving. Accid. Anal. Prev. 2024, 195, 107372. [Google Scholar] [CrossRef]
- Pakdamanian, E.; Sheng, S.; Baee, S.; Heo, S.; Kraus, S.; Feng, L. DeepTake: Prediction of Driver Takeover Behavior Using Multimodal Data. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI ’21), Yokohama, Japan, 8–13 May 2021; pp. 1–14. [Google Scholar] [CrossRef]
- Brell, T.; Biermann, H.; Philipsen, R.; Ziefle, M. Conditional Privacy: Users’ Perception of Data Privacy in Autonomous Driving. In Proceedings of the VEHITS, Heraklion, Greece, 3–5 May 2019; pp. 352–359. [Google Scholar]
- Behrenbruch, K.; Söllner, M.; Leimeister, J.M.; Schmidt, L. Understanding Diversity—The Impact of Personality on Technology Acceptance. In Proceedings of the Human-Computer Interaction—INTERACT 2013, Cape Town, South Africa, 2–6 September 2013; Kotzé, P., Marsden, G., Lindgaard, G., Wesson, J., Winckler, M., Eds.; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2013; pp. 306–313. [Google Scholar] [CrossRef]
- Ajenaghughrure, I.B.; Sousa, S.C.; Kosunen, I.J.; Lamas, D. Predictive Model to Assess User Trust: A Psycho-Physiological Approach. In Proceedings of the 10th Indian Conference on Human-Computer Interaction (IndiaHCI ’19), Hyderabad, India, 1–3 November 2019; pp. 1–10. [Google Scholar] [CrossRef]
- Hartwich, F.; Hollander, C.; Johannmeyer, D.; Krems, J.F. Improving Passenger Experience and Trust in Automated Vehicles through User-Adaptive HMIs: “The More the Better” Does Not Apply to Everyone. Front. Hum. Dyn. 2021, 3, 669030. [Google Scholar] [CrossRef]
- Ganesh, M.I. The Ironies of Autonomy. Humanit. Soc. Sci. Commun. 2020, 7, 157. [Google Scholar] [CrossRef]
- Oviatt, S. Human-centered design meets cognitive load theory: Designing interfaces that help people think. In Proceedings of the 14th ACM International Conference on Multimedia (MM ’06), Santa Barbara, CA, USA, 23–27 October 2006; pp. 871–880. [Google Scholar] [CrossRef]
- Chang, C.C.; Sodnik, J.; Boyle, L.N. Don’t Speak and Drive: Cognitive Workload of In-Vehicle Speech Interactions. In Proceedings of the Adjunct Proceedings of the 8th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI ’16 Adjunct), Ann Arbor, MI, USA, 24–26 October 2016; pp. 99–104. [Google Scholar] [CrossRef]
- Fuchs, R.; Nakade, T.; Schiffmann, J. Teaming with the Driving Automation. ATZelectronics Worldw. 2023, 18, 8–13. [Google Scholar] [CrossRef]
- Harada, R.; Yoshitake, H.; Shino, M. Can Visual Information Reduce Anxiety During Autonomous Driving? Analysis and Reduction of Anxiety Based on Eye Movements in Passengers of Autonomous Personal Mobility Vehicles. In Proceedings of the VISIGRAPP (2: HUCAPP), Lisbon, Portugal, 19–21 February 2023; pp. 318–325. [Google Scholar]
- Qu, W.; Sun, H.; Ge, Y. The Effects of Trait Anxiety and the Big Five Personality Traits on Self-Driving Car Acceptance. Transportation 2021, 48, 2663–2679. [Google Scholar] [CrossRef]
- Sela, Y.; Amichai-Hamburger, Y. “Baby, I Can’t Drive My Car”: How Controllability Mediates the Relationship between Personality and the Acceptance of Autonomous Vehicles? Int. J. Hum.–Comput. Interact. 2023, 1–11. [Google Scholar] [CrossRef]
- Tan, H.; Zhao, X.; Yang, J. Exploring the Influence of Anxiety, Pleasure and Subjective Knowledge on Public Acceptance of Fully Autonomous Vehicles. Comput. Hum. Behav. 2022, 131, 107187. [Google Scholar] [CrossRef]
- Pascale, M.T.; Rodwell, D.; Coughlan, P.; Kaye, S.A.; Demmel, S.; Dehkordi, S.G.; Bond, A.; Lewis, I.; Rakotonirainy, A.; Glaser, S. Passengers’ Acceptance and Perceptions of Risk While Riding in an Automated Vehicle on Open, Public Roads. Transp. Res. Part F Traffic Psychol. Behav. 2021, 83, 274–290. [Google Scholar] [CrossRef]
- Ju, W.; Leifer, L. The Design of Implicit Interactions: Making Interactive Systems Less Obnoxious. Des. Issues 2008, 24, 72–84. [Google Scholar] [CrossRef]
- Cincuegrani, S.M.; Jordà, S.; Väljamäe, A. Physiopucks: Increasing User Motivation by Combining Tangible and Implicit Physiological Interaction. ACM Trans. Comput.-Hum. Interact. 2016, 23, 1–22. [Google Scholar] [CrossRef]
- Li, X.; Hess, T.J.; Valacich, J.S. Why Do We Trust New Technology? A Study of Initial Trust Formation with Organizational Information Systems. J. Strateg. Inf. Syst. 2008, 17, 39–71. [Google Scholar] [CrossRef]
- Amichai-Hamburger, Y. Internet and personality. Comput. Hum. Behav. 2002, 18, 1–10. [Google Scholar] [CrossRef]
- Amichai-Hamburger, Y.; Ben-Artzi, E. Loneliness and Internet Use. Comput. Hum. Behav. 2003, 19, 71–80. [Google Scholar] [CrossRef]
- Bellem, H.; Thiel, B.; Schrauf, M.; Krems, J.F. Comfort in Automated Driving: An Analysis of Preferences for Different Automated Driving Styles and Their Dependence on Personality Traits. Transp. Res. Part F Traffic Psychol. Behav. 2018, 55, 90–100. [Google Scholar] [CrossRef]
- Xu, J.; Montague, E. Psychophysiology of the Passive User: Exploring the Effect of Technological Conditions and Personality Traits. Int. J. Ind. Ergon. 2012, 42, 505–512. [Google Scholar] [CrossRef]
- Beggiato, M.; Hartwich, F.; Krems, J. Physiological Correlates of Discomfort in Automated Driving. Transp. Res. Part F Traffic Psychol. Behav. 2019, 66, 445–458. [Google Scholar] [CrossRef]
- Childs, E.; White, T.L.; de Wit, H. Personality Traits Modulate Emotional and Physiological Responses to Stress. Behav. Pharmacol. 2014, 25, 493–502. [Google Scholar] [CrossRef]
- Evin, M.; Hidalgo-Munoz, A.; Béquet, A.J.; Moreau, F.; Tattegrain, H.; Berthelon, C.; Fort, A.; Jallais, C. Personality Trait Prediction by Machine Learning Using Physiological Data and Driving Behavior. Mach. Learn. Appl. 2022, 9, 100353. [Google Scholar] [CrossRef]
- Shui, X.; Chen, Y.; Hu, X.; Wang, F.; Zhang, D. Personality in Daily Life: Multi-Situational Physiological Signals Reflect Big-Five Personality Traits. IEEE J. Biomed. Health Inform. 2023, 27, 2853–2863. [Google Scholar] [CrossRef]
- Stemmler, G.; Wacker, J. Personality, emotion, and individual differences in physiological responses. Biol. Psychol. 2010, 84, 541–551. [Google Scholar] [CrossRef]
- Darzi, A.; Gaweesh, S.M.; Ahmed, M.M.; Novak, D. Identifying the Causes of Drivers’ Hazardous States Using Driver Characteristics, Vehicle Kinematics, and Physiological Measurements. Front. Neurosci. 2018, 12, 392979. [Google Scholar] [CrossRef]
- Fan, L.; Liu, X.; Wang, B.; Wang, L. Interactivity, Engagement, and Technology Dependence: Understanding Users’ Technology Utilisation Behaviour. Behav. Inf. Technol. 2017, 36, 113–124. [Google Scholar] [CrossRef]
- Victor, T.W.; Tivesten, E.; Gustavsson, P.; Johansson, J.; Sangberg, F.; Ljung Aust, M. Automation Expectation Mismatch: Incorrect Prediction Despite Eyes on Threat and Hands on Wheel. Hum. Factors 2018, 60, 1095–1116. [Google Scholar] [CrossRef]
- Ozer, D.J.; Benet-Martínez, V. Personality and the Prediction of Consequential Outcomes. Annu. Rev. Psychol. 2006, 57, 401–421. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.V.; Del Campo, I.; Echanobe, J.; Basterretxea, K. Driving Behavior Signals and Machine Learning: A Personalized Driver Assistance System. In Proceedings of the 2015 IEEE 18th International Conference on Intelligent Transportation Systems, Gran Canaria, Spain, 15–18 September 2015; pp. 2933–2940. [Google Scholar]
- Politis, I.; Langdon, P.; Adebayo, D.; Bradley, M.; Clarkson, P.J.; Skrypchuk, L.; Mouzakitis, A.; Eriksson, A.; Brown, J.W.H.; Revell, K.; et al. An Evaluation of Inclusive Dialogue-Based Interfaces for the Takeover of Control in Autonomous Cars. In Proceedings of the 23rd International Conference on Intelligent User Interfaces (IUI ’18), Tokyo, Japan, 7–11 March 2018; pp. 601–606. [Google Scholar] [CrossRef]
- Wen, W.; Kuroki, Y.; Asama, H. The Sense of Agency in Driving Automation. Front. Psychol. 2019, 10, 2691. [Google Scholar] [CrossRef] [PubMed]
- Heikoop, D.D.; de Winter, J.C.; van Arem, B.; Stanton, N.A. Effects of Platooning on Signal-Detection Performance, Workload, and Stress: A Driving Simulator Study. Appl. Ergon. 2017, 60, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Niermann, D.; Lüdtke, A. Measuring Driver Discomfort in Autonomous Vehicles. In Proceedings of the Intelligent Human Systems Integration, Modena, Italy, 19–21 February 2020; Ahram, T., Karwowski, W., Vergnano, A., Leali, F., Taiar, R., Eds.; Advances in Intelligent Systems and Computing. Springer International Publishing: Cham, Switzerland, 2020; pp. 52–58. [Google Scholar] [CrossRef]
- Chowdhury, A.; Shankaran, R.; Kavakli, M.; Haque, M.M. Sensor Applications and Physiological Features in Drivers’ Drowsiness Detection: A Review. IEEE Sens. J. 2018, 18, 3055–3067. [Google Scholar] [CrossRef]
- Tavakoli, A.; Balali, V.; Heydarian, A. A Multimodal Approach for Monitoring Driving Behavior and Emotions; San José State University: San Jose, CA, USA, 2020. [Google Scholar]
- Cellar, D.F.; Nelson, Z.C.; Yorke, C.M. The Five-Factor Model and Driving Behavior: Personality and Involvement in Vehicular Accidents. Psychol. Rep. 2000, 86, 454–456. [Google Scholar] [CrossRef] [PubMed]
- Amichai-Hamburger, Y.; Mor, Y.; Wellingstein, T.; Landesman, T.; Ophir, Y. The personal autonomous car: Personality and the driverless car. Cyberpsychology Behav. Soc. Netw. 2020, 23, 242–245. [Google Scholar] [CrossRef] [PubMed]
- Akbari, M.; Kamran, B.L.; Heydari, S.T.; Motevalian, S.A.; Tabrizi, R.; Asadi-Shekari, Z.; Sullman, M.J. Meta-Analysis of the Correlation between Personality Characteristics and Risky Driving Behaviors. J. Inj. Violence Res. 2019, 11, 107. [Google Scholar]
- Salam, H.; Çeliktutan, O.; Hupont, I.; Gunes, H.; Chetouani, M. Fully Automatic Analysis of Engagement and Its Relationship to Personality in Human-Robot Interactions. IEEE Access 2017, 5, 705–721. [Google Scholar] [CrossRef]
- Rudin-Brown, C.M.; Parker, H.A. Behavioural Adaptation to Adaptive Cruise Control (ACC): Implications for Preventive Strategies. Transp. Res. Part F Traffic Psychol. Behav. 2004, 7, 59–76. [Google Scholar] [CrossRef]
- Payre, W.; Cestac, J.; Delhomme, P. Intention to Use a Fully Automated Car: Attitudes and a Priori Acceptability. Transp. Res. Part F Traffic Psychol. Behav. 2014, 27, 252–263. [Google Scholar] [CrossRef]
- Norman, G.J.; Necka, E.; Berntson, G.G. 4—The Psychophysiology of Emotions. In Emotion Measurement; Meiselman, H.L., Ed.; Woodhead Publishing: Sawston, UK, 2016; pp. 83–98. [Google Scholar] [CrossRef]
- Mühl, K.; Strauch, C.; Grabmaier, C.; Reithinger, S.; Huckauf, A.; Baumann, M. Get Ready for Being Chauffeured: Passenger’s Preferences and Trust While Being Driven by Human and Automation. Hum. Factors 2020, 62, 1322–1338. [Google Scholar] [CrossRef] [PubMed]
- Giron, J.; Mladenovic, J.; Hanrieder, M.; Golland, Y.; Friedman, D. Physiological correlates of stress induced by virtual humans in a naturalistic virtual reality scenario. In Proceedings of the 2023 11th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), Cambridge, MA, USA, 10–13 September 2023; pp. 1–8. [Google Scholar]
- Tavakoli, A.; Kumar, S.; Guo, X.; Balali, V.; Boukhechba, M.; Heydarian, A. HARMONY: A Human-Centered Multimodal Driving Study in the Wild. IEEE Access 2021, 9, 23956–23978. [Google Scholar] [CrossRef]
- Tavakoli, A.; Heydarian, A. Multimodal Driver State Modeling through Unsupervised Learning. Accid. Anal. Prev. 2022, 170, 106640. [Google Scholar] [CrossRef] [PubMed]
- Kerautret, L.; Dabic, S.; Navarro, J. Detecting Driver Stress and Hazard Anticipation Using Real-Time Cardiac Measurement: A Simulator Study. Brain Behav. 2022, 12, e2424. [Google Scholar] [CrossRef] [PubMed]
- Roidl, E.; Frehse, B.; Höger, R. Emotional States of Drivers and the Impact on Speed, Acceleration and Traffic Violations—A Simulator Study. Accid. Anal. Prev. 2014, 70, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Lev, R.; Fried, E.; Giron, J. Systems and Methods for Predicting and Preventing Motion Sickness. U.S. Patent App. 17/259,168, 27 May 2021. [Google Scholar]
- Albadawi, Y.; Takruri, M.; Awad, M. A Review of Recent Developments in Driver Drowsiness Detection Systems. Sensors 2022, 22, 2069. [Google Scholar] [CrossRef]
- Carroll, M.; Ruble, M.; Dranias, M.; Rebensky, S.; Chaparro, M.; Chiang, J.; Winslow, B. Automatic Detection of Learner Engagement Using Machine Learning and Wearable Sensors. J. Behav. Brain Sci. 2020, 10, 165–178. [Google Scholar] [CrossRef]
- Belle, A.; Hobson, R.; Najarian, K. A Physiological Signal Processing System for Optimal Engagement and Attention Detection. In Proceedings of the 2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW), Washington, DC, USA, 12–15 November 2011; pp. 555–561. [Google Scholar] [CrossRef]
- Katsis, C.D.; Katertsidis, N.; Ganiatsas, G.; Fotiadis, D.I. Toward emotion recognition in car-racing drivers: A biosignal processing approach. IEEE Trans. Syst. Man, Cybern.-Part A Syst. Humans 2008, 38, 502–512. [Google Scholar] [CrossRef]
- Boucsein, W. Electrodermal Activity; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Healey, J.A.; Picard, R.W. Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans. Intell. Transp. Syst. 2005, 6, 156–166. [Google Scholar] [CrossRef]
- Su, H.; Jia, Y. Study of Human Comfort in Autonomous Vehicles Using Wearable Sensors. IEEE Trans. Intell. Transp. Syst. 2022, 23, 11490–11504. [Google Scholar] [CrossRef]
- Zheng, R.; Yamabe, S.; Nakano, K.; Suda, Y. Biosignal Analysis to Assess Mental Stress in Automatic Driving of Trucks: Palmar Perspiration and Masseter Electromyography. Sensors 2015, 15, 5136–5150. [Google Scholar] [CrossRef] [PubMed]
- Campagne, A.; Pebayle, T.; Muzet, A. Correlation between driving errors and vigilance level: Influence of the driver’s age. Physiol. Behav. 2004, 80, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Subasi, A.; Saikia, A.; Bagedo, K.; Singh, A.; Hazarika, A. EEG-Based Driver Fatigue Detection Using FAWT and Multiboosting Approaches. IEEE Trans. Ind. Inform. 2022, 18, 6602–6609. [Google Scholar] [CrossRef]
- Sanei, S.; Chambers, J.A. EEG Signal Processing; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Sengupta, A.; Dasgupta, A.; Chaudhuri, A.; George, A.; Routray, A.; Guha, R. A Multimodal System for Assessing Alertness Levels Due to Cognitive Loading. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1037–1046. [Google Scholar] [CrossRef]
- Deng, M.; Wang, X.; Menassa, C.C. Measurement and prediction of work engagement under different indoor lighting conditions using physiological sensing. Build. Environ. 2021, 203, 108098. [Google Scholar] [CrossRef]
- Tag, B.; Vargo, A.W.; Gupta, A.; Chernyshov, G.; Kunze, K.; Dingler, T. Continuous Alertness Assessments: Using EOG Glasses to Unobtrusively Monitor Fatigue Levels In-The-Wild. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–12. [Google Scholar] [CrossRef]
- Chieh, T.C.; Mustafa, M.M.; Hussain, A.; Hendi, S.F.; Majlis, B.Y. Development of vehicle driver drowsiness detection system using electrooculogram (EOG). In Proceedings of the 2005 1st International Conference on Computers, Communications, & Signal Processing with Special Track on Biomedical Engineering, Kuala Lumpur, Malaysia, 15–16 November 2005; pp. 165–168. [Google Scholar]
- Xiao, H.; Duan, Y.; Zhang, Z.; Li, M. Detection and Estimation of Mental Fatigue in Manual Assembly Process of Complex Products. Assem. Autom. 2017, 38, 239–247. [Google Scholar] [CrossRef]
- Hussain, M.I.; Rafique, M.A.; Kim, J.; Jeon, M.; Pedrycz, W. Artificial Proprioceptive Reflex Warning Using EMG in Advanced Driving Assistance System. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 1635–1644. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.T.; Kim, J.W.; Han, W. The user interface based on Electromyography analysis to takeover Driving mode in autonomous vehicle. In Proceedings of the 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Busan, Republic of Korea, 1–4 June 2016; pp. 697–701. [Google Scholar] [CrossRef]
- Fan, Y.; Gu, F.; Wang, J.; Wang, J.; Lu, K.; Niu, J. SafeDriving: An Effective Abnormal Driving Behavior Detection System Based on EMG Signals. IEEE Internet Things J. 2022, 9, 12338–12350. [Google Scholar] [CrossRef]
- Bogunovic, N.; Jovic, A. Processing and analyisis of biomedical nonlinear signals by data mining methods. In Proceedings of the 17th International Conference on Systems, Signals and Image Processing, IWSSIP, Rio de Janeiro, Brazil, 17–19 June 2010; pp. 276–279. [Google Scholar]
- Dillen, N.; Ilievski, M.; Law, E.; Nacke, L.E.; Czarnecki, K.; Schneider, O. Keep Calm and Ride along: Passenger Comfort and Anxiety as Physiological Responses to Autonomous Driving Styles. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020; pp. 1–13. [Google Scholar]
- Esteves, T.; Pinto, J.R.; Ferreira, P.M.; Costa, P.A.; Rodrigues, L.A.; Antunes, I.; Lopes, G.; Gamito, P.; Abrantes, A.J.; Jorge, P.M.; et al. AUTOMOTIVE: A Case Study on AUTOmatic multiMOdal Drowsiness detecTIon for smart VEhicles. IEEE Access 2021, 9, 153678–153700. [Google Scholar] [CrossRef]
- Bhattacharjee, M.; Nikbakhtnasrabadi, F.; Dahiya, R. Printed chipless antenna as flexible temperature sensor. IEEE Internet Things J. 2021, 8, 5101–5110. [Google Scholar] [CrossRef]
- Escobedo, P.; Bhattacharjee, M.; Nikbakhtnasrabadi, F.; Dahiya, R. Smart bandage with wireless strain and temperature sensors and batteryless NFC tag. IEEE Internet Things J. 2020, 8, 5093–5100. [Google Scholar] [CrossRef]
- Soni, M.; Bhattacharjee, M.; Ntagios, M.; Dahiya, R. Printed temperature sensor based on PEDOT: PSS-graphene oxide composite. IEEE Sensors J. 2020, 20, 7525–7531. [Google Scholar] [CrossRef]
- Gwak, J.; Shino, M.; Ueda, K.; Kamata, M. Effects of Changes in the Thermal Factor on Arousal Level and Thermal Comfort. In Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics, Hong Kong, 9–12 October 2015; pp. 923–928. [Google Scholar] [CrossRef]
- Gwak, J.; Shino, M.; Ueda, K.; Kamata, M. An Investigation of the Effects of Changes in the Indoor Ambient Temperature on Arousal Level, Thermal Comfort, and Physiological Indices. Appl. Sci. 2019, 9, 899. [Google Scholar] [CrossRef]
- Sunagawa, M.; Shikii, S.i.; Beck, A.; Kek, K.J.; Yoshioka, M. Analysis of the effect of thermal comfort on driver drowsiness progress with Predicted Mean Vote: An experiment using real highway driving conditions. Transp. Res. Part F Traffic Psychol. Behav. 2023, 94, 517–527. [Google Scholar] [CrossRef]
- Chen, J.; Abbod, M.; Shieh, J.S. Pain and stress detection using wearable sensors and devices—A review. Sensors 2021, 21, 1030. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.; Ham, J.; Cho, H. Experimental study of thermal comfort based on driver physiological signals in cooling mode under summer conditions. Appl. Sci. 2021, 11, 845. [Google Scholar] [CrossRef]
- Kajiwara, S. Evaluation of driver status in autonomous vehicles: Using thermal infrared imaging and other physiological measurements. Int. J. Veh. Inf. Commun. Syst. 2019, 4, 232. [Google Scholar] [CrossRef]
- Ekman, P.; Friesen, W.V. Facial action coding system. Environ. Psychol. Nonverbal Behav. 1978. [Google Scholar] [CrossRef]
- Meza-García, B.; Rodríguez-Ibáñez, N. Driver’s Emotions Detection with Automotive Systems in Connected and Autonomous Vehicles (CAVs). In Proceedings of the CHIRA, Online Streaming, 28–29 October 2021; pp. 258–265. [Google Scholar]
- Liu, S.; Koch, K.; Zhou, Z.; Föll, S.; He, X.; Menke, T.; Fleisch, E.; Wortmann, F. The Empathetic Car: Exploring Emotion Inference via Driver Behaviour and Traffic Context. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2021, 5, 1–34. [Google Scholar] [CrossRef]
- Beggiato, M.; Rauh, N.; Krems, J. Facial Expressions as Indicator for Discomfort in Automated Driving. In Proceedings of the Intelligent Human Systems Integration, Modena, Italy, 19–21 February 2020; Ahram, T., Karwowski, W., Vergnano, A., Leali, F., Taiar, R., Eds.; Advances in Intelligent Systems and Computing. Springer International Publishing: Cham, Switzerland, 2020; pp. 932–937. [Google Scholar] [CrossRef]
- Rukavina, S.; Gruss, S.; Walter, S.; Hoffmann, H.; Traue, H.C. Open_emorec_ii-a multimodal corpus of human-computer interaction. Int. J. Comput. Inf. Eng. 2015, 9, 1216–1222. [Google Scholar]
- Obrist, M.; Subramanian, S.; Gatti, E.; Long, B.; Carter, T. Emotions Mediated Through Mid-Air Haptics. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI ’15), Seoul, Republic of Korea, 18–23 April 2015; pp. 2053–2062. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giron, J.; Sela, Y.; Barenboim, L.; Gilboa-Freedman, G.; Amichai-Hamburger, Y. Persona-PhysioSync AV: Personalized Interaction through Personality and Physiology Monitoring in Autonomous Vehicles. Sensors 2024, 24, 1977. https://doi.org/10.3390/s24061977
Giron J, Sela Y, Barenboim L, Gilboa-Freedman G, Amichai-Hamburger Y. Persona-PhysioSync AV: Personalized Interaction through Personality and Physiology Monitoring in Autonomous Vehicles. Sensors. 2024; 24(6):1977. https://doi.org/10.3390/s24061977
Chicago/Turabian StyleGiron, Jonathan, Yaron Sela, Leonid Barenboim, Gail Gilboa-Freedman, and Yair Amichai-Hamburger. 2024. "Persona-PhysioSync AV: Personalized Interaction through Personality and Physiology Monitoring in Autonomous Vehicles" Sensors 24, no. 6: 1977. https://doi.org/10.3390/s24061977
APA StyleGiron, J., Sela, Y., Barenboim, L., Gilboa-Freedman, G., & Amichai-Hamburger, Y. (2024). Persona-PhysioSync AV: Personalized Interaction through Personality and Physiology Monitoring in Autonomous Vehicles. Sensors, 24(6), 1977. https://doi.org/10.3390/s24061977