Real-Time Measurement and Uncertainty Evaluation of Optical Path Difference in Fiber Optic Interferometer Based on Auxiliary Interferometer
Abstract
:1. Introduction
2. Measurement Principle
2.1. Optical Path Difference Measurement Scheme
2.2. Phase Demodulation
2.3. Measurement Uncertainty Evaluation
3. Experimental Setups
3.1. Calibration of the Auxiliary Interferometer
3.2. Setup of OPD Measurement
4. Results and Discussions
4.1. Real-Time OPD Measurement
4.2. Uncertainty Evaluation Analysis
4.3. Uncertainty Comparison under Different Calibration Methods of the Auxiliary Interferometer
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, X.; Yu, Q. Wide-Range Displacement Sensor Based on Fiber-Optic Fabry–Perot Interferometer for Subnanometer Measurement. IEEE Sens. J. 2011, 11, 1606. [Google Scholar] [CrossRef]
- Araya, A.; Takamori, A.; Morii, W.; Miyo, K.; Ohashi, M.; Hayama, K.; Uchiyama, T.; Miyoki, S.; Saito, Y. Design and operation of a 1500-m laser strainmeter installed at an underground site in Kamioka, Japan. Earth Planets Space 2017, 69, 77. [Google Scholar] [CrossRef]
- Chang, T.; Yang, Y.; Luo, Z.; Yu, M.; Yuan, Y.; Yu, F.; Cui, H.-L. Shallow seafloor seismic wave monitoring using 3-component fiber optic interferometric accelerometer. Meas. Sci. Technol. 2021, 33, 015101. [Google Scholar] [CrossRef]
- Plotnikov, M.Y.; Lavrov, V.S.; Dmitraschenko, P.Y.; Kulikov, A.V.; Meshkovskiy, I.K. Thin Cable Fiber-Optic Hydrophone Array for Passive Acoustic Surveillance Applications. IEEE Sens. J. 2019, 19, 3376–3382. [Google Scholar] [CrossRef]
- Lu, Z.; Feng, T.; Li, F.; Yao, X.S. Optical Frequency-Domain Reflectometry Based Distributed Temperature Sensing Using Rayleigh Backscattering Enhanced Fiber. Sensors 2023, 23, 5748. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gan, J.; Zhang, Z.; Heng, X.; Yang, C.; Qian, Q.; Xu, S.; Yang, Z. High spatial resolution distributed fiber strain sensor based on phase-OFDR. Opt. Express 2017, 25, 27913–27922. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Sui, R.; Peng, Z.; Meng, Y.; Zhong, H.; Li, M.; Yin, X.; Wang, Y. Distributed Refractive Index Sensing Based on Etched Ge-Doped SMF in Optical Frequency Domain Reflectometry. Sensors 2023, 23, 4361. [Google Scholar] [CrossRef] [PubMed]
- Dandridge, A.; Tveten, A.B.; Miles, R.O.; Jackson, D.A.; Giallorenzi, T.G. Single-mode diode laser phase noise. Appl. Phys. Lett. 1981, 38, 77–78. [Google Scholar] [CrossRef]
- Hilweg, C.; Shadmany, D.; Walther, P.; Mavalvala, N.; Sudhir, V. Limits and prospects for long-baseline optical fiber interferometry. Optica 2022, 9, 1238–1252. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Z.; Chang, T.; Cheng, L.; Yu, M.; Cui, H. Performance Optimization of Fiber Optic Interferometric Accelerometer Based on Phase Noise Analysis. IEEE Sens. J. 2019, 19, 10498–10505. [Google Scholar] [CrossRef]
- Lou, M.; Zhang, W.; Huang, W.; Xi, X. Optical Fiber Magnetic Field Sensors Based on 3×3 Coupler and Iron-Based Amorphous Nanocrystalline Ribbons. Sensors 2023, 23, 2530. [Google Scholar] [CrossRef]
- Li, T.; Wang, A.; Murphy, K.; Claus, R. White-light scanning fiber Michelson interferometer for absolute position–distance measurement. Opt. Lett. 1995, 20, 785–787. [Google Scholar] [CrossRef]
- Teng, H.K.; Chang, C.N.; Lang, K.C. Determination of path length difference by low coherence interference spectrum. Opt. Lasers Eng. 2004, 42, 437–446. [Google Scholar] [CrossRef]
- Jiang, Y.; Ding, W.H.; Liang, P.J.; Fu, L.; Wang, C.W. Phase-Shifted White-Light Interferometry for the Absolute Measurement of Fiber Optic Mach-Zehnder Interferometers. J. Light. Technol. 2010, 28, 3294–3299. [Google Scholar] [CrossRef]
- Zhu, Y.; Matsumoto, H.; O’Ishi, T. Arm-length measurement of an interferometer using the optical-frequency-scanning technique. Appl. Opt. 1991, 30, 3561–3562. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.B.; Wang, J.G.; Yang, J.; Li, H.Y.; Yuan, Y.G.; Peng, F.; Yuan, L.B. Improved path imbalance measurement of a fiber-optic interferometer based on frequency scanning interferometry. Meas. Sci. Technol. 2017, 28, 085007. [Google Scholar] [CrossRef]
- Fritz, D.J.; McLaughlin, D.J. Optical path difference measurements with a Michelson interferometer using a frequency modulated continuous wave ranging technique. Am. J. Phys. 1993, 61, 1028–1031. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, Y.; Li, D. New method of large-scale absolute distance measurement. In Optical Tools for Manufacturing and Advanced Automation; SPIE: Bellingham, WA, USA, 1993. [Google Scholar]
- Yang, Y.; Pei, Y.; Liu, Z.; Yuan, L. Precise measurement on arm length differences of fiber optical Mach-Zehnder interferometer. J. Harbin Eng. Univ. 2007, 28, 1060–1064. [Google Scholar]
- Yu, Y.; Liu, S.; Liu, S.; Zhang, J. Method for the measurement of the long difference between two arms of unbalance all—Fiber interferometer. J. Nat. Sci. Heilongjiang Univ. 2005, 22, 216–218. [Google Scholar] [CrossRef]
- Tao, L.; Liu, Z.; Zhang, W.; Zhou, Y. Frequency-scanning interferometry for dynamic absolute distance measurement using Kalman filter. Opt. Lett. 2014, 39, 6997–7000. [Google Scholar] [CrossRef]
- Minoni, U.; Rovati, L.; Docchio, F. Absolute distance meter based on a frequency-modulated laser diode. Rev. Sci. Instrum. 1998, 69, 3992–3995. [Google Scholar] [CrossRef]
- Shi, G.; Wang, W.; Zhang, F. Precision improvement of frequency-modulated continuous-wave laser ranging system with two auxiliary interferometers. Opt. Commun. 2018, 411, 152–157. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, W.; Zhang, W.; Li, F. Improved DFB-FL Sensor Interrogation With Low Harmonic Distortion Based on Extended Kalman Filter. J. Light. Technol. 2021, 39, 5183–5190. [Google Scholar] [CrossRef]
- Heydemann, P.L.M. Determination and correction of quadrature fringe measurement errors in interferometers. Appl. Opt. 1981, 20, 3382–3384. [Google Scholar] [CrossRef] [PubMed]
- Dale, J.; Hughes, B.; Lancaster, A.J.; Lewis, A.J.; Reichold, A.J.H.; Warden, M.S. Multi-channel absolute distance measurement system with sub ppm-accuracy and 20 m range using frequency scanning interferometry and gas absorption cells. Opt. Express 2014, 22, 24869–24893. [Google Scholar] [CrossRef]
- Marrone, M.J.; Kersey, A.D.; Villarruel, C.A.; Kirkendall, C.K.; Dandridge, A. Elimination of coherent Rayleigh backscatter induced noise in fibre michelson interferometers. Electron. Lett. 1992, 28, 1803–1804. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, W.; Huang, J.; Li, F. Demonstration of multi-channel fiber optic interrogator based on time-division locking technique in subway intrusion detection. Opt. Express 2020, 28, 11472–11481. [Google Scholar] [CrossRef]
- Li, Y.-Q.; Luo, Z.-R.; Liu, H.-S.; Dong, Y.-H.; Jin, G. Path-length measurement performance evaluation of polarizing laser interferometer prototype. Appl. Phys. B 2015, 118, 309–317. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Lou, M.; Huang, W.; Zhang, W. Real-Time Measurement and Uncertainty Evaluation of Optical Path Difference in Fiber Optic Interferometer Based on Auxiliary Interferometer. Sensors 2024, 24, 2038. https://doi.org/10.3390/s24072038
Li H, Lou M, Huang W, Zhang W. Real-Time Measurement and Uncertainty Evaluation of Optical Path Difference in Fiber Optic Interferometer Based on Auxiliary Interferometer. Sensors. 2024; 24(7):2038. https://doi.org/10.3390/s24072038
Chicago/Turabian StyleLi, Huicong, Minggan Lou, Wenzhu Huang, and Wentao Zhang. 2024. "Real-Time Measurement and Uncertainty Evaluation of Optical Path Difference in Fiber Optic Interferometer Based on Auxiliary Interferometer" Sensors 24, no. 7: 2038. https://doi.org/10.3390/s24072038
APA StyleLi, H., Lou, M., Huang, W., & Zhang, W. (2024). Real-Time Measurement and Uncertainty Evaluation of Optical Path Difference in Fiber Optic Interferometer Based on Auxiliary Interferometer. Sensors, 24(7), 2038. https://doi.org/10.3390/s24072038