MAM-E: Mammographic Synthetic Image Generation with Diffusion Models
Abstract
:1. Introduction
1.1. Generative Models for Mammography
1.2. Our Proposal
2. Materials and Methods
2.1. Datasets
2.1.1. OMI-H
2.1.2. VinDr-Mammo
2.2. Data Preprocessing and Preparation
2.2.1. Healthy Image Generation
2.2.2. Lesion Inpainting
2.3. Diffusion Models
2.3.1. Forward Diffusion Process
2.3.2. Reverse Diffusion Process
2.3.3. Latent and Stable Diffusion
2.3.4. Fine-Tuning SD: DreamBooth
2.3.5. Inference: Image Generation
- Sample random Gaussian noise
- for do:
- if else
- end for
- Decode image using VAE
2.4. Implementation Details
2.4.1. Latent Space Encoding
2.4.2. Healthy Image Generation
- Batch size: 8, 16, 32, 64, 128, and 256.
- Training steps: Experiments ranged from 1 k up to 16 k.
- Learning rate: Three main values , , .
2.4.3. Lesion Inpainting
2.5. Resources Management
3. Results
3.1. Healthy Mammogram Generation
3.1.1. Conditional Models
3.1.2. Joint OMI-H and VinDr Model: Concept Extrapolation
3.1.3. Guidance Scale: Quantitative Assessment
3.1.4. Radiological Assessment
3.2. Lesion Generation
3.3. MAM-E Graphical User Interfaces
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kazerouni, A.; Aghdam, E.K.; Heidari, M.; Azad, R.; Fayyaz, M.; Hacihaliloglu, I.; Merhof, D. Diffusion models in medical imaging: A comprehensive survey. Med. Image Anal. 2023, 88, 102846. [Google Scholar] [CrossRef]
- Müller-Franzes, G.; Niehues, J.M.; Khader, F.; Arasteh, S.T.; Haarburger, C.; Kuhl, C.; Wang, T.; Han, T.; Nebelung, S.; Kather, J.N.; et al. Diffusion Probabilistic Models beat GANs on Medical Images. arXiv 2022, arXiv:2212.07501. [Google Scholar]
- Dhariwal, P.; Nichol, A. Diffusion Models Beat GANs on Image Synthesis. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Melbourne, VIC, Australian, 2021; Volume 34, pp. 8780–8794. [Google Scholar]
- Dorjsembe, Z.; Odonchimed, S.; Xiao, F. Three-Dimensional Medical Image Synthesis with Denoising Diffusion Probabilistic Models. Med. Imaging Deep Learn. 2022. Available online: https://openreview.net/forum?id=Oz7lKWVh45H (accessed on 21 March 2024).
- Ho, J.; Jain, A.; Abbeel, P. Denoising Diffusion Probabilistic Models. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Melbourne, VIC, Australian, 2020; Volume 33, pp. 6840–6851. [Google Scholar]
- Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; Ommer, B. High-Resolution Image Synthesis with Latent Diffusion Models. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 10674–10685. [Google Scholar] [CrossRef]
- Pinaya, W.H.L.; Tudosiu, P.D.; Dafflon, J.; da Costa, P.F.; Fernandez, V.; Nachev, P.; Ourselin, S.; Cardoso, M.J. Brain Imaging Generation with Latent Diffusion Models. In Proceedings of the Deep Generative Models: Second MICCAI Workshop, DGM4MICCAI 2022, Held in Conjunction with MICCAI 2022, Singapore, 22 September 2022; Proceedings. Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Bynagari, N.B. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. Asian J. Appl. Sci. Eng. 2019, 8, 25–34. [Google Scholar] [CrossRef]
- Chambon, P.; Bluethgen, C.; Delbrouck, J.B.; Van der Sluijs, R.; Połacin, M.; Chaves, J.M.Z.; Abraham, T.M.; Purohit, S.; Langlotz, C.P.; Chaudhari, A. RoentGen: Vision-Language Foundation Model for Chest X-ray Generation. arXiv 2022, arXiv:2211.12737. [Google Scholar]
- Ruiz, N.; Li, Y.; Jampani, V.; Pritch, Y.; Rubinstein, M.; Aberman, K. DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023. [Google Scholar]
- Hung, A.L.Y.; Zhao, K.; Zheng, H.; Yan, R.; Raman, S.S.; Terzopoulos, D.; Sung, K. Med-cDiff: Conditional Medical Image Generation with Diffusion Models. Bioengineering 2023, 10, 1258. [Google Scholar] [CrossRef] [PubMed]
- Rouzrokh, P.; Khosravi, B.; Faghani, S.; Moassefi, M.; Vahdati, S.; Erickson, B.J. Multitask Brain Tumor Inpainting with Diffusion Models: A Methodological Report. arXiv 2022, arXiv:2210.12113. [Google Scholar]
- Katzen, J.; Dodelzon, K. A review of computer aided detection in mammography. Clin. Imaging 2018, 52, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Almazan, H.; Javier Pérez-Benito, F.; Larroza, A.; Perez-Cortes, J.C.; Pollan, M.; Perez-Gomez, B.; Salas Trejo, D.; Casals, M.; Llobet, R. A deep learning framework to classify breast density with noisy labels regularization. Comput. Methods Programs Biomed. 2022, 221, 106885. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.X.; Tran, S.B.; Nguyen, D.B.; Pham, H.H.; Nguyen, H.Q. A novel multi-view deep learning approach for BI-RADS and density assessment of mammograms. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, Scotland, UK, 11–15 July 2022; pp. 2144–2148. [Google Scholar] [CrossRef]
- Ma, W.; Zhao, Y.; Ji, Y.; Guo, X.; Jian, X.; Liu, P.; Wu, S. Breast Cancer Molecular Subtype Prediction by Mammographic Radiomic Features. Acad. Radiol. 2019, 26, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Bonou, M.A.; Azouz, Z.B.; Nawres, K.; Sètchéou, R.; Dossou, J. Differentiation of Breast Cancer Immunohistochemical Status Using Digital Mammography Radiomics Features. Health Sci. (IJMHRS) 2023, 12, 12–19. [Google Scholar]
- Korkinof, D.; Rijken, T.; O’Neill, M.; Yearsley, J.; Harvey, H.; Glocker, B. High-Resolution Mammogram Synthesis using Progressive Generative Adversarial Networks. arXiv 2019, arXiv:1807.03401. [Google Scholar]
- Desai, S.D.; Giraddi, S.; Verma, N.; Gupta, P.; Ramya, S. Breast Cancer Detection Using GAN for Limited Labeled Dataset. In Proceedings of the 2020 12th International Conference on Computational Intelligence and Communication Networks (CICN), Bhimtal, India, 25–26 September 2020; pp. 34–39. [Google Scholar] [CrossRef]
- Alyafi, B.; Diaz, O.; Marti, R. DCGANs for Realistic Breast Mass Augmentation in X-ray Mammography. In Proceedings of the Medical Imaging 2020: Computer-Aided Diagnosis, Houston, TX, USA, 16–19 February 2020; SPIE: Bellingham, WA, USA, 2019; Volume 11314. [Google Scholar]
- Montoya-del Angel, R.; Martí, R. MAM-E: Mammographic synthetic image generation with diffusion models. arXiv 2023, arXiv:2311.09822. [Google Scholar]
- Pinaya, W.H.L.; Graham, M.S.; Kerfoot, E.; Tudosiu, P.D.; Dafflon, J.; Fernandez, V.; Sanchez, P.; Wolleb, J.; da Costa, P.F.; Patel, A.; et al. Generative AI for Medical Imaging: Extending the MONAI Framework. arXiv 2023, arXiv:2307.15208. [Google Scholar]
- Kidder, B.L. Advanced image generation for cancer using diffusion models. Cancer Biol. 2023; preprint. [Google Scholar] [CrossRef]
- Ramesh, A.; Pavlov, M.; Goh, G.; Gray, S.; Voss, C.; Radford, A.; Chen, M.; Sutskever, I. Zero-Shot Text-to-Image Generation. In Proceedings of the 38th International Conference on Machine Learning, Virtual, 18–24 July 2021; Volume 139, pp. 8821–8831. [Google Scholar]
- Halling-Brown, M.D.; Warren, L.M.; Ward, D.; Lewis, E.; Mackenzie, A.; Wallis, M.G.; Wilkinson, L.S.; Given-Wilson, R.M.; McAvinchey, R.; Young, K.C. OPTIMAM Mammography Image Database: A Large-Scale Resource of Mammography Images and Clinical Data. Radiol. Artif. Intell. 2021, 3, e200103. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.; Nguyen, H.Q.; Pham, H.H.; Lam, K.; Le, L.T.; Dao, M.; Vu, V. VinDr-Mammo: A large-scale benchmark dataset for computer-aided diagnosis in full-field digital mammography. Sci. Data 2023, 10, 277. [Google Scholar] [CrossRef]
- Melnikow, J.; Fenton, J.J.; Whitlock, E.P.; Miglioretti, D.L.; Weyrich, M.S.; Thompson, J.H.; Shah, K. Supplemental Screening for Breast Cancer in Women With Dense Breasts: A Systematic Review for the U.S.; Center for Healthcare Policy and Research, University of California: Sacramento, CA, USA, 2016. [Google Scholar]
- Sohl-Dickstein, J.; Weiss, E.A.; Maheswaranathan, N.; Ganguli, S. Deep Unsupervised Learning using Nonequilibrium Thermodynamics. arXiv 2015, arXiv:1503.03585. [Google Scholar]
- Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2022, arXiv:1312.6114. [Google Scholar]
- Radford, A.; Kim, J.W.; Hallacy, C.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.; et al. Learning Transferable Visual Models From Natural Language Supervision. arXiv 2021, arXiv:2103.00020. [Google Scholar]
- Frans, K.; Soros, L.B.; Witkowski, O. CLIPDraw: Exploring Text-to-Drawing Synthesis through Language-Image Encoders. arXiv 2021, arXiv:2106.14843. [Google Scholar]
- Lu, C.; Zhou, Y.; Bao, F.; Chen, J.; Li, C.; Zhu, J. DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps. arXiv 2022, arXiv:2206.00927. [Google Scholar]
- Ho, J.; Salimans, T. Classifier-Free Diffusion Guidance. arXiv 2022, arXiv:2207.12598. [Google Scholar]
- Chambon, P.; Bluethgen, C.; Langlotz, C.P.; Chaudhari, A. Adapting Pretrained Vision-Language Foundational Models to Medical Imaging Domains. arXiv 2022, arXiv:2210.04133. [Google Scholar]
- Dettmers, T.; Lewis, M.; Shleifer, S.; Zettlemoyer, L. 8-bit Optimizers via Block-wise Quantization. arXiv 2022, arXiv:2110.02861. [Google Scholar]
- Abid, A.; Abdalla, A.; Abid, A.; Khan, D.; Alfozan, A.; Zou, J. Gradio: Hassle-Free Sharing and Testing of ML Models in the Wild. arXiv 2019, arXiv:1906.02569. [Google Scholar]
OMI-H | VinDr | Combined | |
---|---|---|---|
Healthy | 33,643 | 13,942 | 47,585 |
With lesion | 6908 | 809 | 7717 |
Total | 40,551 | 14,751 | 55,302 |
Breast area size | |
Small | ratio < 0.4 |
Medium | 0.4 < ratio < 0.6 |
Big | ratio > 0.6 |
Breast density | |
Very low | Density A |
Low | Density B |
High | Density C |
Very high | Density D |
Hologic | Siemens | Fusion | ||||
---|---|---|---|---|---|---|
Guidance | Mean↓ | STD | Mean↓ | STD | Mean↓ | STD |
4 | 0.29 | 0.16 | 0.38 | 0.19 | 0.37 | 0.14 |
5 | 0.34 | 0.16 | 0.36 | 0.17 | 0.44 | 0.16 |
6 | 0.38 | 0.12 | 0.41 | 0.17 | 0.51 | 0.15 |
7 | 0.38 | 0.1 | 0.34 | 0.17 | 0.49 | 0.19 |
8 | 0.43 | 0.11 | 0.42 | 0.2 | 0.53 | 0.14 |
9 | 0.42 | 0.13 | 0.43 | 0.16 | 0.44 | 0.17 |
10 | 0.49 | 0.12 | 0.41 | 0.13 | 0.6 | 0.11 |
11 | 0.5 | 0.12 | 0.47 | 0.17 | 0.51 | 0.14 |
12 | 0.52 | 0.11 | 0.46 | 0.16 | 0.47 | 0.12 |
13 | 0.48 | 0.1 | 0.42 | 0.16 | 0.51 | 0.17 |
14 | 0.5 | 0.11 | 0.4 | 0.18 | 0.47 | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montoya-del-Angel, R.; Sam-Millan, K.; Vilanova, J.C.; Martí, R. MAM-E: Mammographic Synthetic Image Generation with Diffusion Models. Sensors 2024, 24, 2076. https://doi.org/10.3390/s24072076
Montoya-del-Angel R, Sam-Millan K, Vilanova JC, Martí R. MAM-E: Mammographic Synthetic Image Generation with Diffusion Models. Sensors. 2024; 24(7):2076. https://doi.org/10.3390/s24072076
Chicago/Turabian StyleMontoya-del-Angel, Ricardo, Karla Sam-Millan, Joan C. Vilanova, and Robert Martí. 2024. "MAM-E: Mammographic Synthetic Image Generation with Diffusion Models" Sensors 24, no. 7: 2076. https://doi.org/10.3390/s24072076
APA StyleMontoya-del-Angel, R., Sam-Millan, K., Vilanova, J. C., & Martí, R. (2024). MAM-E: Mammographic Synthetic Image Generation with Diffusion Models. Sensors, 24(7), 2076. https://doi.org/10.3390/s24072076