Spatially Explicit Active Learning for Crop-Type Mapping from Satellite Image Time Series
Abstract
:1. Introduction
2. Study Areas and Datasets
3. Methods
3.1. Satellite Image Pre-Processing
3.2. Training Sample Preparation
3.3. Selection of Training Samples Using Active Learning
3.4. Crop Type Classification Using the Random Forest Classifier
4. Results
4.1. Active Learning Results
4.2. Image Classification Results Obtained Using Various Training Sample Sets
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, J.; Zhu, Y.; Zhong, R.; Lin, Z.; Xu, J.; Jiang, H.; Huang, J.; Li, H.; Lin, T. DeepCropMapping: A multi-temporal deep learning approach with improved spatial generalizability for dynamic corn and soybean mapping. Remote Sens. Environ. 2020, 247, 111946. [Google Scholar] [CrossRef]
- Vuolo, F.; Neuwirth, M.; Immitzer, M.; Atzberger, C.; Ng, W.-T. How much does multi-temporal Sentinel-2 data improve crop type classification? Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 122–130. [Google Scholar] [CrossRef]
- Nowakowski, A.; Mrziglod, J.; Spiller, D.; Bonifacio, R.; Ferrari, I.; Mathieu, P.P.; Garcia-Herranz, M.; Kim, D.H. Crop type mapping by using transfer learning. Int. J. Appl. Earth Obs. Geoinf. 2021, 98, 102313. [Google Scholar] [CrossRef]
- Rußwurm, M.; Körner, M. Self-attention for raw optical Satellite Time Series Classification. ISPRS J. Photogramm. Remote Sens. 2020, 169, 421–435. [Google Scholar] [CrossRef]
- Tseng, G.; Kerner, H.; Nakalembe, C.; Becker-Reshef, I. Learning to predict crop type from heterogeneous sparse labels using meta-learning. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Nashville, TN, USA, 19–25 June 2021; pp. 1111–1120. [Google Scholar]
- Wang, S.; Waldner, F.; Lobell, D.B. Unlocking Large-Scale Crop Field Delineation in Smallholder Farming Systems with Transfer Learning and Weak Supervision. Remote Sens. 2022, 14, 5738. [Google Scholar] [CrossRef]
- Xu, J.; Yang, J.; Xiong, X.; Li, H.; Huang, J.; Ting, K.C.; Ying, Y.; Lin, T. Towards interpreting multi-temporal deep learning models in crop mapping. Remote Sens. Environ. 2021, 264, 112599. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, L.; Zhang, Z.; Tian, F. An unsupervised domain adaptation deep learning method for spatial and temporal transferable crop type mapping using Sentinel-2 imagery. ISPRS J. Photogramm. Remote Sens. 2023, 199, 102–117. [Google Scholar] [CrossRef]
- Wang, S.; Azzari, G.; Lobell, D.B. Crop type mapping without field-level labels: Random forest transfer and unsupervised clustering techniques. Remote Sens. Environ. 2019, 222, 303–317. [Google Scholar] [CrossRef]
- Wen, Y.; Li, X.; Mu, H.; Zhong, L.; Chen, H.; Zeng, Y.; Miao, S.; Su, W.; Gong, P.; Li, B.; et al. Mapping corn dynamics using limited but representative samples with adaptive strategies. ISPRS J. Photogramm. Remote Sens. 2022, 190, 252–266. [Google Scholar] [CrossRef]
- Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [Google Scholar] [CrossRef]
- Xia, J.; Yokoya, N.; Adriano, B.; Kanemoto, K. National high-resolution cropland classification of Japan with agricultural census information and multi-temporal multi-modality datasets. Int. J. Appl. Earth Obs. Geoinf. 2023, 117, 103193. [Google Scholar] [CrossRef]
- Belgiu, M.; Bijker, W.; Csillik, O.; Stein, A. Phenology-based sample generation for supervised crop type classification. Int. J. Appl. Earth Obs. Geoinf. 2021, 95, 102264. [Google Scholar] [CrossRef]
- Gella, G.W.; Bijker, W.; Belgiu, M. Mapping crop types in complex farming areas using SAR imagery with dynamic time warping. ISPRS J. Photogramm. Remote Sens. 2021, 175, 171–183. [Google Scholar] [CrossRef]
- Li, M.; Bijker, W. Vegetable classification in Indonesia using Dynamic Time Warping of Sentinel-1A dual polarization SAR time series. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 268–280. [Google Scholar] [CrossRef]
- Orynbaikyzy, A.; Gessner, U.; Conrad, C. Spatial Transferability of Random Forest Models for Crop Type Classification Using Sentinel-1 and Sentinel-2. Remote Sens. 2022, 14, 1493. [Google Scholar] [CrossRef]
- Xun, L.; Zhang, J.; Yao, F.; Cao, D. Improved identification of cotton cultivated areas by applying instance-based transfer learning on the time series of MODIS NDVI. Catena 2022, 213, 106130. [Google Scholar] [CrossRef]
- Hamrouni, Y.; Paillassa, E.; Chéret, V.; Monteil, C.; Sheeren, D. From local to global: A transfer learning-based approach for mapping poplar plantations at national scale using Sentinel-2. ISPRS J. Photogramm. Remote Sens. 2021, 171, 76–100. [Google Scholar] [CrossRef]
- Pasolli, E.; Melgani, F.; Tuia, D.; Pacifici, F.; Emery, W.J. Improving active learning methods using spatial information. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; IEEE: Vancouver, BC, Canada, 2011; pp. 3923–3926. [Google Scholar]
- Sugiyama, M.; Nakajima, S. Pool-based active learning in approximate linear regression. Mach. Learn. 2009, 75, 249–274. [Google Scholar] [CrossRef]
- Tuia, D.; Ratle, F.; Pacifici, F.; Kanevski, M.F.; Emery, W.J. Active Learning Methods for Remote Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2218–2232. [Google Scholar] [CrossRef]
- Di, W.; Crawford, M.M. View generation for multiview maximum disagreement based active learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2011, 50, 1942–1954. [Google Scholar] [CrossRef]
- Rajan, S.; Ghosh, J.; Crawford, M.M. An active learning approach to hyperspectral data classification. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1231–1242. [Google Scholar] [CrossRef]
- Li, J.; Bioucas-Dias, J.M.; Plaza, A. Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4085–4098. [Google Scholar] [CrossRef]
- Zhong, P.; Gong, Z.; Li, S.; Schönlieb, C.-B. Learning to diversify deep belief networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3516–3530. [Google Scholar] [CrossRef]
- Mitra, P.; Shankar, B.U.; Pal, S.K. Segmentation of multispectral remote sensing images using active support vector machines. Pattern Recognit. Lett. 2004, 25, 1067–1074. [Google Scholar] [CrossRef]
- Pasolli, E.; Yang, H.L.; Crawford, M.M. Active-metric learning for classification of remotely sensed hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2015, 54, 1925–1939. [Google Scholar] [CrossRef]
- Ma, L.; Fu, T.; Li, M. Active learning for object-based image classification using predefined training objects. Int. J. Remote Sens. 2018, 39, 2746–2765. [Google Scholar] [CrossRef]
- Pasolli, E.; Melgani, F.; Alajlan, N.; Bazi, Y. Active learning methods for biophysical parameter estimation. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4071–4084. [Google Scholar] [CrossRef]
- Malek, S.; Miglietta, F.; Gobakken, T.; Næsset, E.; Gianelle, D.; Dalponte, M. Optimizing field data collection for individual tree attribute predictions using active learning methods. Remote Sens. 2019, 11, 949. [Google Scholar] [CrossRef]
- Amor, I.B.S.B.; Chehata, N.; Bailly, J.-S.; Farah, I.R.; Lagacherie, P. Parcel-based active learning for large extent cultivated area mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 11, 79–88. [Google Scholar] [CrossRef]
- Niazmardi, S.; Homayouni, S.; Safari, A. A computationally efficient multi-domain active learning method for crop mapping using satellite image time-series. Int. J. Remote Sens. 2019, 40, 6383–6394. [Google Scholar] [CrossRef]
- Zhang, Z.; Pasolli, E.; Crawford, M.M. Crop Mapping through an Adaptive Multiview Active Learning Strategy. In Proceedings of the 2019 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Portici, Italy, 24–26 October 2019; pp. 307–311. [Google Scholar]
- Liu, P.; Zhang, H.; Eom, K.B. Active deep learning for classification of hyperspectral images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 712–724. [Google Scholar] [CrossRef]
- Cao, X.; Yao, J.; Xu, Z.; Meng, D. Hyperspectral image classification with convolutional neural network and active learning. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4604–4616. [Google Scholar] [CrossRef]
- Demir, B.; Minello, L.; Bruzzone, L. A cost-sensitive active learning technique for the definition of effective training sets for supervised classifiers. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 1781–1784. [Google Scholar]
- Pasolli, E.; Melgani, F.; Tuia, D.; Pacifici, F.; Emery, W.J. SVM active learning approach for image classification using spatial information. IEEE Trans. Geosci. Remote Sens. 2013, 52, 2217–2233. [Google Scholar] [CrossRef]
- Moran, P.A. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Geary, R.C. The contiguity ratio and statistical mapping. Inc. Stat. 1954, 5, 115–146. [Google Scholar] [CrossRef]
- Stumpf, A.; Lachiche, N.; Malet, J.-P.; Kerle, N.; Puissant, A. Active learning in the spatial domain for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 2013, 52, 2492–2507. [Google Scholar] [CrossRef]
- Ploton, P.; Mortier, F.; Réjou-Méchain, M.; Barbier, N.; Picard, N.; Rossi, V.; Dormann, C.; Cornu, G.; Viennois, G.; Bayol, N.; et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 2020, 11, 4540. [Google Scholar] [CrossRef]
- Li, M.; Sethi, I.K. Confidence-based active learning. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 1251–1261. [Google Scholar]
- Vlachos, A. A stopping criterion for active learning. Comput. Speech Lang. 2008, 22, 295–312. [Google Scholar] [CrossRef]
- Settles, B. Active Learning Literature Survey; University of Wisconsin-Madison, Department of Computer Sciences: Madison, MI, USA, 2009. [Google Scholar]
- Seung, H.S.; Opper, M.; Sompolinsky, H. Query by Committee. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992; pp. 287–294. [Google Scholar]
- Breiman, L. Random Forest. Mach. Learn. 2001, 45, 31–39. [Google Scholar]
- Fotheringham, A.S. “The problem of spatial autocorrelation” and local spatial statistics. Geogr. Anal. 2009, 41, 398–403. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Zhang, C.; Luo, L.; Xu, W.; Ledwith, V. Use of local Moran’s I and GIS to identify pollution hotspots of Pb in urban soils of Galway, Ireland. Sci. Total Environ. 2008, 398, 212–221. [Google Scholar] [CrossRef]
- Curran, P.J. The semivariogram in remote sensing: An introduction. Remote Sens. Environ. 1988, 24, 493–507. [Google Scholar] [CrossRef]
- Diggle, P.J.; Tawn, J.A.; Moyeed, R.A. Model-based geostatistics. J. R. Stat. Soc. Ser. C Appl. Stat. 1998, 47, 299–350. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for land cover classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Stehman, S.V.; Czaplewski, R.L. Design and analysis for thematic map accuracy assessment: Fundamental principles. Remote Sens. Environ. 1998, 64, 331–344. [Google Scholar] [CrossRef]
- Van Groenigen, J.; Stein, A. Constrained Optimization of Spatial Sampling Using Continuous Simulated Annealing; Wiley Online Library: Hoboken, NY, USA, 1998; pp. 0047–2425. [Google Scholar]
- Shetty, S.; Gupta, P.K.; Belgiu, M.; Srivastav, S.K. Assessing the Effect of Training Sampling Design on the Performance of Machine Learning Classifiers for Land Cover Mapping Using Multi-Temporal Remote Sensing Data and Google Earth Engine. Remote Sens. 2021, 13, 1433. [Google Scholar] [CrossRef]
- Selea, T. AgriSen-COG, a Multicountry, Multitemporal Large-Scale Sentinel-2 Benchmark Dataset for Crop Mapping Using Deep Learning. Remote Sens. 2023, 15, 2980. [Google Scholar] [CrossRef]
Crop Type | Number of Crop Parcels |
---|---|
Cereals | 305 |
Potatoes | 157 |
Beets | 117 |
Onion | 68 |
Orchard | 60 |
Maize | 35 |
Alfalfa | 27 |
Crop Type | Number of Crop Parcels |
---|---|
Maize | 2989 |
Grains, seeds, and legumes | 1533 |
Potatoes | 1386 |
Vegetables, herbs, and ornamental plants | 1365 |
Sugar beets | 573 |
Fodder | 273 |
Flax and hemp | 96 |
Fruits and nuts | 93 |
Month | Range (m) | Nugget |
---|---|---|
January | 462.3 | 0.008 |
February | 477.4 | 0.005 |
March | 611.2 | 0.029 |
April | 513 | 0.029 |
May | 417.6 | 0.025 |
June | 587.3 | 0.008 |
July | 905.4 | 0.043 |
August | 721.1 | 0.050 |
September | 804.9 | 0.043 |
October | 733.6 | 0.033 |
November | 735.3 | 0.028 |
December | 794 | 0.018 |
Crop Type | Total # of Training Samples | # of Training Samples Selected Using Spectral-Based AL | # of Training Samples Using Spatially Explicit AL |
---|---|---|---|
Alfalfa | 50 | 22 | 11 |
Beets | 50 | 28 | 16 |
Cereals | 50 | 15 | 8 |
Maize | 50 | 25 | 15 |
Onions | 50 | 23 | 16 |
Orchard | 50 | 15 | 7 |
Potatoes | 50 | 41 | 24 |
Total | 350 | 169 | 97 |
Crop Type | Total # of Training Samples | # of Training Samples Selected Using Spectral-Based AL | # of Training Samples Using Spatially Explicit AL |
---|---|---|---|
Flax and hemp | 70 | 25 | 20 |
Fruits and nuts | 70 | 40 | 25 |
Fodder | 70 | 36 | 25 |
Grains, seeds, and legumes | 70 | 32 | 21 |
Maize | 70 | 56 | 41 |
Potatoes | 70 | 58 | 39 |
Beets | 70 | 33 | 30 |
Vegetables, herbs, and ornamentals | 70 | 47 | 22 |
Total | 560 | 327 | 223 |
Classification Scenarios | # Samples | Kappa Index | Overall Accuracy (%) |
---|---|---|---|
Scenario 1 | 350 | 0.82 | 84 |
Scenario 2 | 169 | 0.79 | 82 |
Scenario 3 | 97 | 0.78 | 80 |
Scenario 4 | 97 | 0.66 | 70 |
Classification Scenarios | # Number | Kappa Index | Overall Accuracy (%) |
---|---|---|---|
Scenario 1 | 560 | 0.60 | 65 |
Scenario 2 | 327 | 0.58 | 63 |
Scenario 3 | 223 | 0.55 | 60 |
Scenario 4 | 223 | 0.48 | 54 |
Crop Type | Scenario 1 | Scenario 2 | Scenario 3 | |||
---|---|---|---|---|---|---|
UA | PA | UA | PA | UA | PA | |
Alfalfa | 100 | 95 | 100 | 85 | 86 | 95 |
Beets | 75 | 75 | 65 | 75 | 71 | 75 |
Cereals | 89 | 85 | 79 | 95 | 90 | 95 |
Maize | 93 | 70 | 93 | 70 | 94 | 75 |
Onions | 94 | 75 | 100 | 75 | 84 | 80 |
Orchard | 75 | 90 | 87 | 95 | 66 | 95 |
Potatoes | 77 | 85 | 68 | 75 | 71 | 75 |
Water | 100 | 100 | 100 | 100 | 100 | 100 |
Other | 64 | 80 | 76 | 65 | 56 | 30 |
Crop Type | Scenario 1 | Scenario 2 | Scenario 3 | |||
---|---|---|---|---|---|---|
UA | PA | UA | PA | UA | PA | |
Flax and hemp | 71 | 83 | 74 | 83 | 67 | 87 |
Fodder | 39 | 30 | 41 | 30 | 38 | 33 |
Fruits and nuts | 59 | 33 | 44 | 27 | 60 | 30 |
Grains, seeds, legumes | 87 | 87 | 77 | 90 | 87 | 87 |
Maize | 69 | 60 | 67 | 60 | 49 | 63 |
Potatoes | 50 | 53 | 51 | 60 | 46 | 60 |
Sugar beets | 63 | 80 | 66 | 77 | 63 | 73 |
Vegetables, herbs, ornamentals | 63 | 67 | 59 | 57 | 75 | 10 |
Other | 73 | 90 | 71 | 83 | 65 | 93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaijage, B.; Belgiu, M.; Bijker, W. Spatially Explicit Active Learning for Crop-Type Mapping from Satellite Image Time Series. Sensors 2024, 24, 2108. https://doi.org/10.3390/s24072108
Kaijage B, Belgiu M, Bijker W. Spatially Explicit Active Learning for Crop-Type Mapping from Satellite Image Time Series. Sensors. 2024; 24(7):2108. https://doi.org/10.3390/s24072108
Chicago/Turabian StyleKaijage, Beatrice, Mariana Belgiu, and Wietske Bijker. 2024. "Spatially Explicit Active Learning for Crop-Type Mapping from Satellite Image Time Series" Sensors 24, no. 7: 2108. https://doi.org/10.3390/s24072108
APA StyleKaijage, B., Belgiu, M., & Bijker, W. (2024). Spatially Explicit Active Learning for Crop-Type Mapping from Satellite Image Time Series. Sensors, 24(7), 2108. https://doi.org/10.3390/s24072108