Estimation of Kinetics Using IMUs to Monitor and Aid in Clinical Decision-Making during ACL Rehabilitation: A Systematic Review
Abstract
:1. Introduction
- Algorithms that estimate GRF and GRM;
- Algorithms that use a two-step approach, where GRF and GRM is estimated first and then the predicted GRF and GRM are used to estimate other kinetic parameters like net joint moments;
- Algorithms that apply new approaches to directly estimate net joint moments and/or net joint forces.
- What are the available algorithms to estimate GRF and GRM using only IMU data as input and then use the predicted GRF and GRM to estimate lower limb joint kinetics?
- What are the available algorithms to directly estimate lower limb joint kinetics using only IMU data as input?
- What is the accuracy, reliability, and applicability of the identified algorithms for pathological gait and ACL-related tasks?
2. Materials and Methods
2.1. Study Design
2.2. Search Strategy
2.3. Inclusion/Exclusion Criteria
2.4. Study Selection and Quality Assessment
2.5. Data Extraction
3. Results
3.1. Publication Year
3.2. Participant Characteristics
3.3. Measurement Systems and Sensor Placement
Ref. No. | Year | Sensor Type | Axis | No. of Sensors | Sampling Rate (Hz) | Other Specifications/Notes |
---|---|---|---|---|---|---|
[28] | 1996 | Accelerometer: EGAXT -*-10 (Entran Devices Inc., Fairfield, CT, USA) | Triaxial | 4 | 300 | N/A |
[36] | 2001 | Accelerometer: ADXL05 (Analog Devices, Wilmington, DE, USA) and gyroscope: ENC 03J (Murata, Smyrna, GA, USA) | Uniaxial | 3 | 100 | ±5 g, gyroscope response up to 50 Hz and range ±300 deg/s |
[88] | 2011 | IMU: MTx (Xsens Technologies BV, Enschede, The Netherlands) | Triaxial | 1 | 100 | N/A |
[39] | 2012 | Accelerometer: Biotrainer AM (IM Systems, Baltimore, MD, USA) | Bi axial | 1 | 40 | N/A |
[91] | 2012 | IMU: MTx (Xsens Technologies BV, Enschede, The Netherlands) | Triaxial | 1 | 100 | N/A |
[89] | 2013 | Accelerometer: SPI Pro (GPSports Pty. Ltd., Canberra, Australia) | Triaxial | 1 | 100 | ±8 g |
[61] | 2014 | IMU: MPU-6050 (InvenSense Inc., San Jose, CA, USA) | Triaxial | 6 | N/A | N/A |
[60] | 2015 | IMU: MPU-6050 (InvenSense Inc., San Jose, CA, USA) | Triaxial | 7 | N/A | ±2 g, ±250 deg/s and 0.01 deg |
[37] | 2015 | IMU: customized sensor | Triaxial | 8 + 2 (ski equipment) | 400 | ±8 g accelerometer, ±1000/s gyroscope |
[43] | 2015 | Accelerometer: MMA7260Q (Freescale Semiconductor Inc., Austin, TX, USA) | Triaxial | 1 or 2 | 1000 | ±6 g |
[87] | 2016 | IMU:BIOGEAR A60BP (Mizuno Corporation, Tokyo, Japan) | N/A | 7 | 100 | N/A |
[79] | 2017 | IMU: MVN Link (Xsens Technologies BV, Enschede, The Netherlands) | Triaxial | 17 | 240 | N/A |
[45] | 2017 | IMU: Yost (YEI Technology, Portsmouth, NH, USA) | Triaxial | 1 | 450 | ±24 g, ±2000 deg/s |
[92] | 2017 | IMU: Opal (APDM Wearable Technologies Inc., Portland, OR, USA) | Triaxial | 3 | 128 | ±6 g |
[40] | 2018 | Accelerometer: ActiGraph GT3X+ (ActiGraph LLC, Pensacola, FL, USA) | Triaxial | 1 | 100 | N/A |
[41] | 2018 | Accelerometer: KXP94 (Kionex Inc., Ithaca, NY, USA) and GPS: Minimax XS4 (Catapult Innovation, Scoreby, Australia) | Triaxial | 1 | 100 | ±13 g |
[29] | 2018 | IMU: customized sensor | N/A | 3 | 100 | N/A |
[50] | 2018 | IMU: MVN Link (Xsens Technologies BV, Enschede, The Netherlands) | Triaxial | 17 | 240 (120) | N/A |
[67] | 2018 | Simulated Inertial data | ||||
[69] | 2018 | IMU: Opal (APDM Wearable Technologies Inc., Portland, OR, USA) | Triaxial | 12 | 128 (100) | ±16 g accelerometer, resolution 14-bit |
[70] | 2018 | IMU: Opal (APDM Wearable Technologies Inc., Portland, OR, USA) | Triaxial | 6 | 128 (100) | ±16 g accelerometer, resolution 14-bit, dynamic accuracy 2.8° |
[51] | 2018 | IMU: Opal (APDM Wearable Technologies Inc., Portland, OR, USA) | Triaxial | 1 | N/A | ±6 g m/s2, ±2000 deg/s, and ±6 Gauss |
[42] | 2018 | Accelerometer: MMA7260Q (Freescale Semiconductor Inc., Austin, TX, USA) | Triaxial | 1 or 2 | 1000 | ±6 g |
[54] | 2018 | IMU: Opal (APDM Wearable Technologies Inc., Portland, OR, USA) | Triaxial | 6 | 128 (100) | N/A |
[35] | 2019 | IMU: TSND151 (ATR-Promotions Co., Seika, Japan) | Triaxial | 2 | 100 | N/A |
[30] | 2019 | Simulated Inertial data | ||||
[68] | 2019 | IMU: customized sensor | Triaxial | 2 | 1500 | ±8 g accelerometer, ±2000/s gyroscope |
[90] | 2019 | Accelerometer: ActiGraph GT3X+ (ActiGraph LLC, Pensacola, FL, USA) | Triaxial | 2 | 100 | |
[74] | 2019 | IMU: EBIMU-9DOFV4 (E2Box, Hanam, Gyeonggi-do, Republic of Korea) | N/A | 1 | 100 | ±16 g and resolution of 0.001 g |
[76] | 2019 | IMU: MTw Awinda (Xsens Technologies BV, Enschede, The Netherlands) | Triaxial | 17 | 60 | N/A |
[78] | 2019 | IMU: MVN Link (Xsens Technologies BV, Enschede, The Netherlands) | Triaxial | 17 | 240 | N/A |
[81] | 2019 | IMU: custom IMU ((Portabiles GmbH, Erlangen, Germany) | Triaxial | 7 | 1000 | ±16 g accelerometer, ±2000/s gyroscope |
[63] | 2019 | IMU+GPS: VN-200 (VectorNav Technologies, Dallas, TX, USA) | Triaxial | 1 | 400 | Velocity accuracy = ±0.05 m/s; inertial heading accuracy = 0.3° RMS; pitch/roll = 0.1° RMS; angular resolution < 0.05°; repeatability < 0.1° |
[46] | 2019 | IMU: STT-IWS iSen (STT Systems, Gipuzkoa, Spain) | N/A | 8 | 100 | N/A |
[59] | 2020 | IMU: MTw Awinda (Xsens Technologies BV, Enschede, The Netherlands) | Triaxial | 3 | 100 | N/A |
[18] | 2020 | Accelerometer+GPS: MinimaxX S5 (Catapult Innovations, Scoresby, Australia) | Triaxial | 1 | 100 | ±16 g, resolution 16-bit |
[14] | 2020 | Accelerometer: GT9X Link (ActiGraph LLC, Pensacola, FL, USA) | Triaxial | 1 or 2 | 100 | 12-bit ADC resolution, ±16 g range |
[33] | 2020 | IMU: customized sensor | Triaxial | 2 | 1500 | ±8 g accelerometer, ±2000/s gyroscope |
[31] | 2020 | IMU: MTw Awinda (Xsens Technologies BV, Enschede, The Netherlands) | Triaxial | 5 (3 + 2 for indirect) | 100 | N/A |
[71] | 2020 | IMU: Perception Neuron Pro (Perception Neuron, Miami, FL, USA) | Triaxial | 17 | 120 (100) | N/A |
[72] | 2020 | IMU: MTw Awinda (Xsens Technologies BV, Enschede, The Netherlands) | Triaxial | 4 | 100 | ±16 g accelerometer, ±2000 deg/s gyroscope |
[73] | 2020 | Simulated inertial data but for validation used data from TinyCircuits, Akron, OH, USA, at 100 Hz | ||||
[15] | 2020 | IMU: MTw Awinda (Xsens Technologies BV, Enschede, The Netherlands) | Triaxial | 1 | 100 | N/A |
[44] | 2020 | IMU: Trigno Avanti sensors (Delsys, Natick, MA, USA) | Triaxial | 1 | 148 (100) | N/A |
[52] | 2020 | IMU: Opal v2 (APDM Wearable Technologies Inc., Portland, OR, USA) | Triaxial | 1 | 128 | ±16 g |
[77] | 2020 | Sacrum marker used to obtain velocity and acceleration of center of mass | ||||
[53] | 2020 | IMU: MTw Awinda (Xsens Technologies BV, Enschede, The Netherlands) | Triaxial | 4 | 100 | N/A |
[93] | 2020 | IMU: ActiGraph Link ((ActiGraph LLC, Pensacola, FL, USA) | Triaxial | 6 | 100 | N/A |
[94] | 2020 | IMU + atmospheric pressure sensor:TSND151 (ATR-Promotions Co., Ltd., Kyoto, Japan) | Triaxial | 7 | N/A | N/A |
[83] | 2020 | IMU: custom sensor (Portabiles GmbH, Erlangen, Germany) | Triaxial | 4 | 1000 | ±16 g accelerometer, ±2000/s gyroscope |
[23] | 2021 | IMU: TinyCircuits (TinyCircuits, Akron, OH, USA) | Triaxial | 5 | 100 | N/A |
[62] | 2021 | IMU+GPS: VN-200 (VectorNav Technologies, Dallas, TX, USA) | Triaxial | 1 | 400 | Velocity accuracy = ±0.05 m/s Inertial heading accuracy = 0.3° RMS Pitch/roll = 0.1° RMS Angular resolution < 0.05° Repeatability < 0.1° |
[75] | 2021 | IMU: MPU-6050 (InvenSense Inc., San Jose, CA, USA) | Triaxial | 2 | N/A | ±8 g and 3-D gyroscope (±1000°/s) |
[80] | 2021 | Simulated data from an old dataset. For the test set, data from IMU Noraxon DTS-3D 518 were used. | ||||
[82] | 2021 | IMU: Perception Neuron Pro (Perception Neuron, Miami, FL, USA) | Triaxial | 17 | 120 | ±16 g accelerometer, ±2000/s gyroscope |
[84] | 2021 | IMU: Blue Trident (Vicon Motion Systems Ltd., Oxford, UK) | Triaxial | 4 | 1125 | Dual-g accelerometers (high: ±200 g, low: ±16 g), gyroscope (±2000°/s), and magnetometer (±4900 µT). |
[85] | 2021 | IMU+Pressure sensor: Physiolog (Gait UP SA, Lausanne, Switzerland) | Triaxial | 3 | 128 | N/A |
[55] | 2021 | Accelerometer: IMeasureU (IMeasureU, Centennial, CO, USA) | Triaxial | 1 | 500 | ±16 g |
[38] | 2022 | Accelerometer: customized sensor | Biaxial | 3 | 2000 (500) | N/A |
[49] | 2022 | IMU: Movesense (Suunto Oy, Vantaa, Finland) | Triaxial | 1 | 208 | 9.4 g |
[66] | 2022 | IMU: Yost (YEI Technology, Portsmouth, NH, USA) | Triaxial | 2 | 200 | Data were discarded and simulated from optical data |
[47] | 2022 | Accelerometer: TSD109F (Biopac Systems Inc., Goleta, USA) | Triaxial | 3 | 1000 | N/A |
[56] | 2022 | Accelerometer: Mini Wave plus (ZeroWire, Cometa, Italy) | Triaxial | 2 | 143 | ±16 g accelerometer |
[57] | 2022 | Accelerometer: GT9X Link (ActiGraph LLC, Pensacola, FL, USA) | Triaxial | 3 | 100 | ±16 g range; sensor has primary and secondary accelerometer. Study used secondary accelerometer that provides unfiltered output. |
[86] | 2023 | IMU: Yost (YEI Technology, Portsmouth, NH, USA) and SageMotion (Sagemotion Inc., Waterside, NB, Canada) | Triaxial | Dataset 1: 4 Dataset 2: 8 | Dataset 1: 200 Dataset 2: 100 | Dataset 1: N/A Dataset 2: resolution 0.1 m/s2, 0.06 deg/s |
[64] | 2023 | IMU: Casio (Casio Computer Co., Ltd., Tokyo, Japan) | Triaxial | 3 | 200 | 0–16 g |
[32] | 2023 | IMU: Physiolog 4 and 5 (Gait UP SA, Lausanne, Switzerland) | Triaxial | 5 | 200 | N/A |
[48] | 2023 | Accelerometer: GT9X Link (ActiGraph LLC, Pensacola, FL, USA) | Triaxial | 3 | 100 | ±16 g range; sensor has primary and secondary accelerometer. Study used secondary accelerometer that provides unfiltered output. |
[34] | 2023 | IMU: BioStampRC BRCS01 (MC10 Inc., Cambridge, MA, USA) | Triaxial | 3 | 250 | ±16 g accelerometer, ±2000/s gyroscope |
[58] | 2023 | IMU: Movesense (Suunto Oy, Vantaa, Finland) | Triaxial | 1 | 208 | ±8 g |
[65] | 2023 | IMU: Casio (Casio Computer Co., Ltd., Tokyo, Japan) | Triaxial | 3 | 200 | N/A |
3.4. Activities Studied
3.5. Types of Algorithms and Estimated Parameters of Interest
3.6. Accuracy and Reliability of Tested Approaches
4. Discussion
4.1. Modelling Techniques and Estimated Kinetic Parameters
4.2. Modelling Techniques, Tasks Studied, and Accuracies of Estimated Kinetic Parameters
4.3. Effect of Sensor Location and Sensor Characteristics on the Accuracy of Estimated Parameters
4.4. Applicability for ACL Rehabilitation
4.5. Limitations of the Included Evidence, Review Process, and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACL | Anterior cruciate ligament |
ANN | Artificial neural network |
APGRF | Anterior–posterior ground reaction force |
BD-LSTM | Bi-directional long short-term memory network |
BM | Biomechanical |
CNN | Convolutional neural networks |
DL | Deep learning |
DNN | Deep neural network |
EMG | Electromyography |
FCNN | Fully connected neural network |
FFNN | Feed-forward neural network |
GRF | Ground reaction force |
GRM | Ground reaction moments |
ICC | Interclass correlation coefficient |
IMU | Inertial measurement units |
LR | Linear regression |
LSTM | Long short-term memory network |
MAD | Mean absolute deviation |
MAE | Mean absolute error |
MAPE | Mean absolute percentage error |
M-LGRF | Medio-lateral ground reaction force |
MLP | Multilayer perceptron |
MS | Musculoskeletal |
NARMAX | Nonlinear auto-regressive moving average model |
NARX-NN | Nonlinear autoregressive neural network |
NN | Neural network |
NRMSE | Relative root mean square error |
pGRF | Peak ground reaction force |
pVGRF | Peak vertical ground reaction force |
QRF | Quantile regression forest |
RC | Reservoir computer |
RF | Random forest |
RMSE | Root mean square error |
RNN | Recurrent neural network |
rRMSE | Normalized root mean square error |
SLR | Stepwise linear regression |
SM | Statistical model |
SVR | Support vector regression |
TCN | Temporal convolutional network |
VGRF | Vertical ground reaction force |
Appendix A
Scopus [Title and abstract search] Last Accessed: 15 April 2023 | (TITLE-ABS (((anterior) W/3 (cruciate) W/3 (ligament)) OR ((lower) W/3 (extremit* OR limb*)) OR ((ankle* OR foot OR feet OR leg OR legs OR knee OR knees OR thigh* OR lower-leg* OR joint OR joints) W/3 (kinetic* OR dynamic* OR moment* OR load* OR force* OR mechanic* OR reaction)) OR ((ground*) W/2 (reaction*) W/2 (force* OR moment* OR torque*)))) AND (TITLE-ABS(((wearable* OR body-worn*) W/3 (electronic* OR device* OR sensor* OR motion*)) OR ((wireless* OR inertial* OR IMU OR IMMU OR MIMU) W/3 (sensor* OR device* OR unit* OR data OR capture* OR analys*)) OR ((ambulat*) W/3 (monitor*)) OR ((3D OR 3-d OR 3-dimen* OR threedimension* OR three-dimension*) W/3 (sensor* OR motion* OR analys*)) OR accelerometer* OR accelero-meter*)) AND (TITLE-ABS(algorithm* OR algorythm* OR ((early) W/3 (ident* OR risk*)) OR AI OR automated-reason* OR computer-heurist* OR ((bayes*) W/3 (combiner* OR network*)) OR ((nearest) W/3 (neighbo*)) OR ((random*) W/3 (forest*)) OR ((support*) W/6 (vector*) W/6 (machine* OR active)) OR ((extract*) W/6 (feature*) W/6 (vector*)) OR ((artificial* OR ambient* OR machine* OR algorithm* OR neural) W/3 (intelligen* OR network*)) OR ((automat*) W/3 (pattern*) W/3 (recogni*)) OR ((learn*) W/3 (algori*)) OR ((machine* OR deep OR supervis* OR unsupervis* OR bayes) W/3 (learn*)) OR predict* OR estimat* OR comput* OR calculate* OR Anybody OR Opensim OR calibration* OR crossvalidat* OR validat* OR ((probab* OR predict*) W/3 (system* OR model* OR score* OR scoring*)))) AND DOCTYPE (ar) AND (LIMIT-TO (LANGUAGE, “English”)) | |
PubMed [Filters—language: English] Last Accessed: 15 April 2023 | #1 | (“Lower Extremity”[MH] OR “Anterior Cruciate Ligament”[MH] OR “Kinetics”[MH] OR kinetic*[tiab] OR ground-reaction-force*[tiab] OR ground-reaction-moment*[tiab] OR ground-reaction-torq*[tiab] OR joint dynamic*[tiab] OR joint moment*[tiab] OR joint load*[tiab] OR joint torque[tiab] OR joint force*[tiab] OR joint mechanic*[tiab]) |
#2 | (((wearable*[tiab] OR body-worn*[tiab]) AND (electronic*[tiab] OR device*[tiab] OR sensor*[tiab] OR motion*[tiab])) OR ambulatory-monitor*[tiab] OR IMU[tiab] OR IMMU[tiab] OR MIMU[tiab] OR inertial-sensor*[tiab] OR inertial-device*[tiab] OR inertial-unit*[tiab] OR inertial-data*[tiab] OR inertial-motion*[tiab] OR motion-capture*[tiab] OR motion-sensor*[tiab] OR inertial-measurement-unit*[tiab] OR ((wireless*[tiab] OR inertial*[tiab]) AND (capture*[tiab])) OR ((3D[tiab] OR 3-d[tiab] OR 3-dimen*[tiab] OR threedimension*[tiab] OR three-dimension*[tiab]) AND (sensor*[tiab] OR motion*[tiab])) OR 3D analys*[tiab] OR 3-dimensional-analys*[tiab] OR threedimensional-analys*[tiab] OR three-dimensional-analys*[tiab] OR accelerometer*[tiab] OR accelero-meter*[tiab]) | |
#3 | (algorithm*[tiab] OR algorythm*[tiab] OR early-ident*[tiab] OR AI[tiab] OR automated-reason*[tiab] OR nearest-neighbo*[tiab] OR random-forest*[tiab] OR machine-learn*[tiab] OR deep-learn*[tiab] OR supervised-learn*[tiab] OR unsupervised-learn*[tiab] OR predict*[tiab] OR estimat*[tiab] OR comput*[tiab] OR calculate*[tiab] OR Anybody [tiab] OR Opensim [tiab] OR bayes-network*[tiab] OR calibration*[tiab] OR crossvalidat*[tiab] OR validat*[tiab] OR artificial-intellig*[tiab] OR artificial-intellig*[tiab] OR artificial-network*[tiab] OR machine-intellig*[tiab] OR neural-network*[tiab]) | |
#4 | NOT ((“Review Literature as Topic”[MH] OR “Review” [Publication Type] OR “Systematic Review” [Publication Type] OR systematic-review*[ti])) | |
SPORTDiscus [Filters—language: English; document type: article Expanders—apply related words; apply equivalent subjects Search modes—Boolean/phrase] Last Accessed:23 March 2022 | #1 | ((DE “ANTERIOR cruciate ligament” OR (DE “LEG” OR DE “ANKLE” OR DE “FOOT” OR DE “KNEE”) OR (DE “DYNAMICS” OR DE “BODY movement” OR DE “MOTION” OR DE “BODY movement” OR DE “PHYSICS”)) OR (TI(kinetic* OR ((ground*) N2 (reaction*) N2 (force* OR moment* OR torque*)) OR ((ankle* OR foot OR feet OR leg OR legs OR knee OR knees OR thigh* OR lower-leg* OR joint OR joints) N3 (force* OR moment* OR torque* OR dynamic* OR load* OR mechanic*)) OR (AB (kinetic* OR ((ground*) N2 (reaction*) N2 (force* OR moment* OR torque*)) OR ((ankle* OR foot OR feet OR leg OR legs OR knee OR knees OR thigh* OR lower-leg* OR joint OR joints) N3 (force* OR moment* OR torque* OR dynamic* OR load* OR mechanic*)) |
#2 | (TI (((wearable* OR body-worn*) N3 (electronic* OR device* OR sensor* OR motion*)) OR ((wireless* OR inertial* OR IMU OR IMMU OR MIMU) N3 (sensor* OR device* OR unit* OR data OR capture* OR analys*)) OR ((ambulat*) N3 (monitor*)) OR ((3D OR 3-d OR 3-dimen* OR threedimension* OR three-dimension*) N3 (sensor* OR motion* OR analys*)) OR accelerometer* OR accelero-meter*)) OR (AB(((wearable* OR body-worn*) N3 (electronic* OR device* OR sensor* OR motion*)) OR ((wireless* OR inertial* OR IMU OR IMMU OR MIMU) N3 (sensor* OR device* OR unit* OR data OR capture* OR analys*)) OR ((ambulat*) N3 (monitor*)) OR ((3D OR 3-d OR 3-dimen* OR threedimension* OR three-dimension*) N3 (sensor* OR motion* OR analys*)) OR accelerometer* OR accelero-meter*))) | |
#3 | (TI (algorithm* OR algorythm* OR AI OR automated-reason* OR computer-heurist* OR ((bayes*) N3 (combiner* OR network*)) OR ((nearest) N3 (neighbo*)) OR ((random*) N3 (forest*)) OR ((support*) N6 (vector*) N6 (machine* OR active)) OR ((extract*) N6 (feature*) N6 (vector*)) OR ((artificial* OR ambient* OR machine* OR algorithm* OR neural) N3 (intelligen* OR network*)) OR ((automat*) N3 (pattern*) N3 (recogni*)) OR ((learn*) N3 (algori*)) OR ((machine* OR deep OR supervis* OR unsupervis* OR bayes) N3 (learn*)) OR predict* OR estimat* OR comput* OR calculate* OR Anybody OR Opensim OR calibration* OR crossvalidat* OR validat* OR ((probab* OR predict*) N3 (system* OR model* OR score* OR scoring*)))) OR (AB(algorithm* OR algorythm* OR AI OR automated-reason* OR computer-heurist* OR ((bayes*) N3 (combiner* OR network*)) OR ((nearest) N3 (neighbo*)) OR ((random*) N3 (forest*)) OR ((support*) N6 (vector*) N6 (machine* OR active)) OR ((extract*) N6 (feature*) N6 (vector*)) OR ((artificial* OR ambient* OR machine* OR algorithm* OR neural) N3 (intelligen* OR network*)) OR ((automat*) N3 (pattern*) N3 (recogni*)) OR ((learn*) N3 (algori*)) OR ((machine* OR deep OR supervis* OR unsupervis* OR bayes) N3 (learn*)) OR predict* OR estimat* OR comput* OR calculate* OR Anybody OR Opensim OR calibration* OR crossvalidat* OR validat* OR ((probab* OR predict*) N3 (system* OR model* OR score* OR scoring*))))) |
References
- Raines, B.T.; Naclerio, E.; Sherman, S.L. Management of anterior cruciate ligament injury: What’s in and what’s out? Indian J. Orthop. 2017, 51, 563–575. [Google Scholar] [CrossRef]
- Cavanaugh, J.T.; Powers, M. ACL rehabilitation progression: Where are we now? Curr. Rev. Musculoskelet. Med. 2017, 10, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R. ACL Rehabilitation Guide; 2013; pp. 1–28. Available online: https://www.fitasaphysio.com/uploads/4/3/3/4/43345381/randall_cooper_acl_rehabilitation_guide_2.pdf (accessed on 25 January 2024).
- Anna Beardshaw, L.P.; Niamh, K.; Lizzie Clayton, N.W. ACL Reconstruction Physiotherapy Advice for Patients; Oxford University Hospitals NHS Trust: Oxford, UK, 2015. [Google Scholar]
- Normal, A.; Torn, A. Rehabilitation Guidelines for ACL Reconstruction in the Adult Athlete (Skeletally Mature); UW Health Sports Medicine: Madison, WI, USA, 2018. [Google Scholar]
- Sritharan, P.; Schache, A.G.; Culvenor, A.G.; Perraton, L.G.; Bryant, A.L.; Crossley, K.M. Between-limb differences in patellofemoral joint forces during running at 12 to 24 months after unilateral anterior cruciate ligament reconstruction. Am. J. Sports Med. 2020, 48, 1711–1719. [Google Scholar] [CrossRef]
- Osborne, M. Why Do Females Injure Their Knees Four to Six Times More than Men… and What Can You Do about It; University of Colorado Health: Boulder, CO, USA, 2012; Volume 1. [Google Scholar]
- Ren, L.; Jones, R.K.; Howard, D. Whole body inverse dynamics over a complete gait cycle based only on measured kinematics. J. Biomech. 2008, 41, 2750–2759. [Google Scholar] [CrossRef]
- Oh, S.E.; Choi, A.; Mun, J.H. Prediction of ground reaction forces during gait based on kinematics and a neural network model. J. Biomech. 2013, 46, 2372–2380. [Google Scholar] [CrossRef]
- Choi, A.; Lee, J.-M.; Mun, J.H. Ground reaction forces predicted by using artificial neural network during asymmetric movements. Int. J. Precis. Eng. Manuf. 2013, 14, 475–483. [Google Scholar] [CrossRef]
- Fluit, R.; Andersen, M.S.; Kolk, S.; Verdonschot, N.; Koopman, H.F. Prediction of ground reaction forces and moments during various activities of daily living. J. Biomech. 2014, 47, 2321–2329. [Google Scholar] [CrossRef] [PubMed]
- Skals, S.; Jung, M.K.; Damsgaard, M.; Andersen, M.S. Prediction of ground reaction forces and moments during sports-related movements. Multibody Syst. Dyn. 2017, 39, 175–195. [Google Scholar] [CrossRef]
- Lee, S.J.; Hidler, J. Biomechanics of overground vs. treadmill walking in healthy individuals. J. Appl. Physiol. 2008, 104, 747–755. [Google Scholar] [CrossRef]
- Veras, L.; Diniz-Sousa, F.; Boppre, G.; Devezas, V.; Santos-Sousa, H.; Preto, J.; Vilas-Boas, J.P.; Machado, L.; Oliveira, J.; Fonseca, H. Accelerometer-based prediction of skeletal mechanical loading during walking in normal weight to severely obese subjects. Osteoporos. Int. 2020, 31, 1239–1250. [Google Scholar] [CrossRef]
- Mohamed Refai, M.I.; van Beijnum, B.F.; Buurke, J.H.; Veltink, P.H. Portable Gait Lab: Estimating Over-Ground 3D Ground Reaction Forces Using Only a Pelvis IMU. Sensors 2020, 20, 6363. [Google Scholar] [CrossRef]
- Cordero, A.F.; Koopman, H.; Van Der Helm, F. Use of pressure insoles to calculate the complete ground reaction forces. J. Biomech. 2004, 37, 1427–1432. [Google Scholar] [CrossRef] [PubMed]
- Cudejko, T.; Button, K.; Al-Amri, M. Wireless pressure insoles for measuring ground reaction forces and trajectories of the centre of pressure during functional activities. Sci. Rep. 2023, 13, 14946. [Google Scholar] [CrossRef] [PubMed]
- Pogson, M.; Verheul, J.; Robinson, M.A.; Vanrenterghem, J.; Lisboa, P. A neural network method to predict task- and step-specific ground reaction force magnitudes from trunk accelerations during running activities. Med. Eng. Phys. 2020, 78, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Picerno, P. 25 years of lower limb joint kinematics by using inertial and magnetic sensors: A review of methodological approaches. Gait Posture 2017, 51, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Fusca, M.; Negrini, F.; Perego, P.; Magoni, L.; Molteni, F.; Andreoni, G. Validation of a wearable IMU system for gait analysis: Protocol and application to a new system. Appl. Sci. 2018, 8, 1167. [Google Scholar] [CrossRef]
- Kobsar, D.; Charlton, J.M.; Tse, C.T.F.; Esculier, J.F.; Graffos, A.; Krowchuk, N.M.; Thatcher, D.; Hunt, M.A. Validity and reliability of wearable inertial sensors in healthy adult walking: A systematic review and meta-analysis. J. Neuroeng. Rehabil. 2020, 17, 62. [Google Scholar] [CrossRef]
- Ancillao, A.; Tedesco, S.; Barton, J.; O’Flynn, B. Indirect measurement of ground reaction forces and moments by means of wearable inertial sensors: A systematic review. Sensors 2018, 18, 2564. [Google Scholar] [CrossRef]
- Mundt, M.; Johnson, W.R.; Potthast, W.; Markert, B.; Mian, A.; Alderson, J. A Comparison of Three Neural Network Approaches for Estimating Joint Angles and Moments from Inertial Measurement Units. Sensors 2021, 21, 4535. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Prisma Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- Booth, A.; Clarke, M.; Dooley, G.; Ghersi, D.; Moher, D.; Petticrew, M.; Stewart, L. The nuts and bolts of PROSPERO: An international prospective register of systematic reviews. Syst. Rev. 2012, 1, 2. [Google Scholar] [CrossRef]
- Van De Schoot, R.; De Bruin, J.; Schram, R.; Zahedi, P.; De Boer, J.; Weijdema, F.; Kramer, B.; Huijts, M.; Hoogerwerf, M.; Ferdinands, G. An open source machine learning framework for efficient and transparent systematic reviews. Nat. Mach. Intell. 2021, 3, 125–133. [Google Scholar] [CrossRef]
- Storm, F.A.; Cesareo, A.; Reni, G.; Biffi, E. Wearable inertial sensors to assess gait during the 6-minute walk test: A systematic review. Sensors 2020, 20, 2660. [Google Scholar] [CrossRef] [PubMed]
- van den Bogert, A.J.; Read, L.; Nigg, B.M. A method for inverse dynamic analysis using accelerometry. J. Biomech. 1996, 29, 949–954. [Google Scholar] [CrossRef]
- Liu, K.; Yan, J.; Liu, Y.; Ye, M. Noninvasive Estimation of Joint Moments with Inertial Sensor System for Analysis of STS Rehabilitation Training. J. Healthc. Eng. 2018, 2018, 6570617. [Google Scholar] [CrossRef] [PubMed]
- Mundt, M.; Thomsen, W.; Witter, T.; Koeppe, A.; David, S.; Bamer, F.; Potthast, W.; Markert, B. Prediction of lower limb joint angles and moments during gait using artificial neural networks. Med. Biol. Eng. Comput. 2020, 58, 211–225. [Google Scholar] [CrossRef]
- Revi, D.A.; Alvarez, A.M.; Walsh, C.J.; De Rossi, S.M.M.; Awad, L.N. Indirect measurement of anterior-posterior ground reaction forces using a minimal set of wearable inertial sensors: From healthy to hemiparetic walking. J. Neuroeng. Rehabil. 2020, 17, 82. [Google Scholar] [CrossRef]
- Havashinezhadian, S.; Chiasson-Poirier, L.; Sylvestre, J.; Turcot, K. Inertial Sensor Location for Ground Reaction Force and Gait Event Detection Using Reservoir Computing in Gait. Int. J. Environ. Res. Public Health 2023, 20, 3120. [Google Scholar] [CrossRef] [PubMed]
- Stetter, B.J.; Krafft, F.C.; Ringhof, S.; Stein, T.; Sell, S. A Machine Learning and Wearable Sensor Based Approach to Estimate External Knee Flexion and Adduction Moments During Various Locomotion Tasks. Front. Bioeng. Biotechnol. 2020, 8, 9. [Google Scholar] [CrossRef]
- Kerns, J.A.; Zwart, A.S.; Perez, P.S.; Gurchiek, R.D.; McBride, J.M. Effect of IMU location on estimation of vertical ground reaction force during jumping. Front. Bioeng. Biotechnol. 2023, 11, 1112866. [Google Scholar] [CrossRef]
- Nagashima, M. Prediction of Plantar Forces During Gait Using Wearable Sensors and Deep Neural Networks. In Proceedings of the 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 3629–3632. [Google Scholar]
- Ohtaki, Y.; Sagawa, K.; Inooka, H. A Method for Gait Analysis in a Daily Living Environment by Body-Mounted Instruments. JSME Int. J. Ser. C 2001, 44, 1125–1132. [Google Scholar] [CrossRef]
- Logar, G.; Munih, M. Estimation of joint forces and moments for the in-run and take-off in ski jumping based on measurements with wearable inertial sensors. Sensors 2015, 15, 11258–11276. [Google Scholar] [CrossRef]
- Alcantara, R.S.; Edwards, W.B.; Millet, G.Y.; Grabowski, A.M. Predicting continuous ground reaction forces from accelerometers during uphill and downhill running: A recurrent neural network solution. PeerJ 2022, 10, e12752. [Google Scholar] [CrossRef] [PubMed]
- Neugebauer, J.M.; Hawkins, D.A.; Beckett, L. Estimating youth locomotion ground reaction forces using an accelerometer-based activity monitor. PLoS ONE 2012, 7, e48182. [Google Scholar] [CrossRef]
- Neugebauer, J.M.; Lafiandra, M. Predicting Ground Reaction Force from a Hip-Borne Accelerometer during Load Carriage. Med. Sci. Sports Exerc. 2018, 50, 2369–2374. [Google Scholar] [CrossRef] [PubMed]
- Nedergaard, N.J.; Verheul, J.; Drust, B.; Etchells, T.; Lisboa, P.; Robinson, M.A.; Vanrenterghem, J. The feasibility of predicting ground reaction forces during running from a trunk accelerometry driven mass-spring-damper model. PeerJ 2018, 6, e6105. [Google Scholar] [CrossRef] [PubMed]
- Leporace, G.; Batista, L.A.; Nadal, J. Prediction of 3D ground reaction forces during gait based on accelerometer data. Res. Biomed. Eng. 2018, 34, 211–216. [Google Scholar] [CrossRef]
- Leporace, G.; Batista, L.A.; Metsavaht, L.; Nadal, J. Residual analysis of ground reaction forces simulation during gait using neural networks with different configurations. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 2812–2815. [Google Scholar]
- Lee, M.; Park, S. Estimation of Three-Dimensional Lower Limb Kinetics Data during Walking Using Machine Learning from a Single IMU Attached to the Sacrum. Sensors 2020, 20, 6277. [Google Scholar] [CrossRef]
- Gurchiek, R.D.; McGinnis, R.S.; Needle, A.R.; McBride, J.M.; van Werkhoven, H. The use of a single inertial sensor to estimate 3-dimensional ground reaction force during accelerative running tasks. J. Biomech. 2017, 61, 263–268. [Google Scholar] [CrossRef]
- d’Andrea, F.; Heller, B.; James, D.; Koerger, H.; Dunn, M. Ground reaction force estimation in football using inertial measurement units during alternate lateral bounding. Footwear Sci. 2019, 11, S77–S78. [Google Scholar] [CrossRef]
- Chien, K.Y.; Chang, W.G.; Chen, W.C.; Liou, R.J. Accelerometer-based prediction of ground reaction force in head-out water exercise with different exercise intensity countermovement jump. BMC Sports Sci. Med. Rehabil. 2022, 14, 1. [Google Scholar] [CrossRef]
- Veras, L.; Diniz-Sousa, F.; Boppre, G.; Devezas, V.; Santos-Sousa, H.; Preto, J.; Vilas-Boas, J.P.; Machado, L.; Oliveira, J.; Fonseca, H. Using Raw Accelerometer Data to Predict High-Impact Mechanical Loading. Sensors 2023, 23, 2246. [Google Scholar] [CrossRef]
- Patoz, A.; Lussiana, T.; Breine, B.; Gindre, C.; Malatesta, D. A Single Sacral-Mounted Inertial Measurement Unit to Estimate Peak Vertical Ground Reaction Force, Contact Time, and Flight Time in Running. Sensors 2022, 22, 784. [Google Scholar] [CrossRef] [PubMed]
- Wouda, F.J.; Giuberti, M.; Bellusci, G.; Maartens, E.; Reenalda, J.; van Beijnum, B.-J.F.; Veltink, P.H. Estimation of Vertical Ground Reaction Forces and Sagittal Knee Kinematics During Running Using Three Inertial Sensors. Front. Physiol. 2018, 9, 328581. [Google Scholar] [CrossRef]
- Ngoh, K.J.; Gouwanda, D.; Gopalai, A.A.; Chong, Y.Z. Estimation of vertical ground reaction force during running using neural network model and uniaxial accelerometer. J. Biomech. 2018, 76, 269–273. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, B.; Hernandez, E.M.; McGinnis, R.S.; Gurchiek, R.D. Continuous estimation of ground reaction force during long distance running within a fatigue monitoring framework: A Kalman filter-based model-data fusion approach. J. Biomech. 2021, 115, 110130. [Google Scholar] [CrossRef]
- Jiang, X.; Napier, C.; Hannigan, B.; Eng, J.J.; Menon, C. Estimating Vertical Ground Reaction Force during Walking Using a Single Inertial Sensor. Sensors 2020, 20, 4345. [Google Scholar] [CrossRef]
- Brownjohn, J.M.W.; Chen, J.; Bocian, M.; Racic, V.; Shahabpoor, E. Using inertial measurement units to identify medio-lateral ground reaction forces due to walking and swaying. J. Sound Vib. 2018, 426, 90–110. [Google Scholar] [CrossRef]
- Alcantara, R.S.; Day, E.M.; Hahn, M.E.; Grabowski, A.M. Sacral acceleration can predict whole-body kinetics and stride kinematics across running speeds. PeerJ 2021, 9, e11199. [Google Scholar] [CrossRef]
- Bach, M.M.; Dominici, N.; Daffertshofer, A. Predicting vertical ground reaction forces from 3D accelerometry using reservoir computers leads to accurate gait event detection. Front. Sports Act. Living 2022, 4, 1037438. [Google Scholar] [CrossRef]
- Veras, L.; Diniz-Sousa, F.; Boppre, G.; Moutinho-Ribeiro, E.; Resende-Coelho, A.; Devezas, V.; Santos-Sousa, H.; Preto, J.; Vilas-Boas, J.P.; Machado, L.; et al. Mechanical loading prediction through accelerometry data during walking and running. Eur. J. Sport Sci. 2022, 23, 1518–1527. [Google Scholar] [CrossRef]
- Patoz, A.; Lussiana, T.; Breine, B.; Gindre, C.; Malatesta, D. Comparison of different machine learning models to enhance sacral acceleration-based estimations of running stride temporal variables and peak vertical ground reaction force. Sports Biomech. 2023, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Refai, M.I.M.; van Beijnum, B.F.; Buurke, J.H.; Veltink, P.H. Portable Gait Lab: Estimating 3D GRF Using a Pelvis IMU in a Foot IMU Defined Frame. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1308–1316. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.C.-Y.; Mao, M.-H. 3D analysis system for estimating intersegmental forces and moments exerted on human lower limbs during walking motion. Measurement 2015, 73, 171–179. [Google Scholar] [CrossRef]
- Yang, E.C.-Y.; Mao, M.-H. Analytical model for estimating intersegmental forces exerted on human lower limbs during walking motion. Measurement 2014, 56, 30–36. [Google Scholar] [CrossRef]
- Sharma, D.; Davidson, P.; Muller, P.; Piche, R. Indirect Estimation of Vertical Ground Reaction Force from a Body-Mounted INS/GPS Using Machine Learning. Sensors 2021, 21, 1553. [Google Scholar] [CrossRef] [PubMed]
- Davidson, P.; Virekunnas, H.; Sharma, D.; Piche, R.; Cronin, N. Continuous Analysis of Running Mechanics by Means of an Integrated INS/GPS Device. Sensors 2019, 19, 1480. [Google Scholar] [CrossRef]
- Donahue, S.R.; Hahn, M.E. Estimation of ground reaction force waveforms during fixed pace running outside the laboratory. Front. Sports Act. Living 2023, 5, 974186. [Google Scholar] [CrossRef]
- Donahue, S.R.; Hahn, M.E. Estimation of gait events and kinetic waveforms with wearable sensors and machine learning when running in an unconstrained environment. Sci. Rep. 2023, 13, 2339. [Google Scholar] [CrossRef]
- Molinaro, D.D.; Kang, I.; Camargo, J.; Gombolay, M.C.; Young, A.J. Subject-Independent, Biological Hip Moment Estimation During Multimodal Overground Ambulation Using Deep Learning. IEEE Trans. Med. Robot. Bionics 2022, 4, 219–229. [Google Scholar] [CrossRef]
- Verheul, J.; Gregson, W.; Lisboa, P.; Vanrenterghem, J.; Robinson, M.A. Whole-body biomechanical load in running-based sports: The validity of estimating ground reaction forces from segmental accelerations. J. Sci. Med. Sport 2019, 22, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Stetter, B.J.; Ringhof, S.; Krafft, F.C.; Sell, S.; Stein, T. Estimation of Knee Joint Forces in Sport Movements Using Wearable Sensors and Machine Learning. Sensors 2019, 19, 3690. [Google Scholar] [CrossRef] [PubMed]
- Shahabpoor, E.; Pavic, A.; Brownjohn, J.M.W.; Billings, S.A.; Guo, L.Z.; Bocian, M. Real-Life Measurement of Tri-Axial Walking Ground Reaction Forces Using Optimal Network of Wearable Inertial Measurement Units. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1243–1253. [Google Scholar] [CrossRef]
- Shahabpoor, E.; Pavic, A. Estimation of vertical walking ground reaction force in real-life environments using single IMU sensor. J. Biomech. 2018, 79, 181–190. [Google Scholar] [CrossRef]
- Recinos, E.; Abella, J.; Riyaz, S.; Demircan, E. Real-Time Vertical Ground Reaction Force Estimation in a Unified Simulation Framework Using Inertial Measurement Unit Sensors. Robotics 2020, 9, 88. [Google Scholar] [CrossRef]
- Noamani, A.; Nazarahari, M.; Lewicke, J.; Vette, A.H.; Rouhani, H. Validity of using wearable inertial sensors for assessing the dynamics of standing balance. Med. Eng. Phys. 2020, 77, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Mundt, M.; Koeppe, A.; David, S.; Witter, T.; Bamer, F.; Potthast, W.; Markert, B. Estimation of Gait Mechanics Based on Simulated and Measured IMU Data Using an Artificial Neural Network. Front. Bioeng. Biotechnol. 2020, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; Kim, B.; Park, S. Prediction of Lower Limb Kinetics and Kinematics during Walking by a Single IMU on the Lower Back Using Machine Learning. Sensors 2019, 20, 130. [Google Scholar] [CrossRef]
- Li, T.; Wang, L.; Yi, J.; Li, Q.; Liu, T. Reconstructing Walking Dynamics From Two Shank-Mounted Inertial Measurement Units. IEEE/ASME Trans. Mechatron. 2021, 26, 3040–3050. [Google Scholar] [CrossRef]
- Konrath, J.M.; Karatsidis, A.; Schepers, H.M.; Bellusci, G.; de Zee, M.; Andersen, M.S. Estimation of the Knee Adduction Moment and Joint Contact Force during Daily Living Activities Using Inertial Motion Capture. Sensors 2019, 19, 1681. [Google Scholar] [CrossRef]
- Kim, B.; Lim, H.; Park, S. Spring-loaded inverted pendulum modeling improves neural network estimation of ground reaction forces. J. Biomech. 2020, 113, 110069. [Google Scholar] [CrossRef] [PubMed]
- Karatsidis, A.; Jung, M.; Schepers, H.M.; Bellusci, G.; de Zee, M.; Veltink, P.H.; Andersen, M.S. Musculoskeletal model-based inverse dynamic analysis under ambulatory conditions using inertial motion capture. Med. Eng. Phys. 2019, 65, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Karatsidis, A.; Bellusci, G.; Schepers, H.M.; de Zee, M.; Andersen, M.S.; Veltink, P.H. Estimation of Ground Reaction Forces and Moments During Gait Using Only Inertial Motion Capture. Sensors 2016, 17, 75. [Google Scholar] [CrossRef]
- Johnson, W.R.; Mian, A.; Robinson, M.A.; Verheul, J.; Lloyd, D.G.; Alderson, J.A. Multidimensional Ground Reaction Forces and Moments From Wearable Sensor Accelerations via Deep Learning. IEEE Trans. Biomed. Eng. 2021, 68, 289–297. [Google Scholar] [CrossRef]
- Dorschky, E.; Nitschke, M.; Seifer, A.-K.; van den Bogert, A.J.; Eskofier, B.M. Estimation of gait kinematics and kinetics from inertial sensor data using optimal control of musculoskeletal models. J. Biomech. 2019, 95, 109278. [Google Scholar] [CrossRef] [PubMed]
- Diraneyya, M.M.; Ryu, J.; Abdel-Rahman, E.; Haas, C.T. Inertial Motion Capture-Based Whole-Body Inverse Dynamics. Sensors 2021, 21, 7353. [Google Scholar] [CrossRef]
- Dorschky, E.; Nitschke, M.; Martindale, C.F.; van den Bogert, A.J.; Koelewijn, A.D.; Eskofier, B.M. CNN-Based Estimation of Sagittal Plane Walking and Running Biomechanics From Measured and Simulated Inertial Sensor Data. Front. Bioeng. Biotechnol. 2020, 8, 604. [Google Scholar] [CrossRef] [PubMed]
- Chaaban, C.R.; Berry, N.T.; Armitano-Lago, C.; Kiefer, A.W.; Mazzoleni, M.J.; Padua, D.A. Combining Inertial Sensors and Machine Learning to Predict vGRF and Knee Biomechanics during a Double Limb Jump Landing Task. Sensors 2021, 21, 4383. [Google Scholar] [CrossRef]
- Cerfoglio, S.; Galli, M.; Tarabini, M.; Bertozzi, F.; Sforza, C.; Zago, M. Machine Learning-Based Estimation of Ground Reaction Forces and Knee Joint Kinetics from Inertial Sensors While Performing a Vertical Drop Jump. Sensors 2021, 21, 7709. [Google Scholar] [CrossRef]
- Hossain, M.S.B.; Guo, Z.; Choi, H. Estimation of Lower Extremity Joint Moments and 3D Ground Reaction Forces Using IMU Sensors in Multiple Walking Conditions: A Deep Learning Approach. IEEE J. Biomed. Health Inf. 2023, 27, 2829–2840. [Google Scholar] [CrossRef]
- Kodama, J.; Watanabe, T. Examination of Inertial Sensor-Based Estimation Methods of Lower Limb Joint Moments and Ground Reaction Force: Results for Squat and Sit-to-Stand Movements in the Sagittal Plane. Sensors 2016, 16, 1209. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, V.; Mazzà, C.; Fraisse, P.; Cappozzo, A. An optimization algorithm for joint mechanics estimate using inertial measurement unit data during a squat task. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 3488–3491. [Google Scholar]
- Wundersitz, D.W.; Netto, K.J.; Aisbett, B.; Gastin, P.B. Validity of an upper-body-mounted accelerometer to measure peak vertical and resultant force during running and change-of-direction tasks. Sports Biomech. 2013, 12, 403–412. [Google Scholar] [CrossRef]
- Madansingh, S.I.; Murphree, D.H.; Kaufman, K.R.; Fortune, E. Assessment of gait kinetics in post-menopausal women using tri-axial ankle accelerometers during barefoot walking. Gait Posture 2019, 69, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, V.; Mazza, C.; Fraisse, P.; Cappozzo, A. A least-squares identification algorithm for estimating squat exercise mechanics using a single inertial measurement unit. J. Biomech. 2012, 45, 1472–1477. [Google Scholar] [CrossRef]
- Guo, Y.; Storm, F.; Zhao, Y.; Billings, S.A.; Pavic, A.; Mazza, C.; Guo, L.Z. A New Proxy Measurement Algorithm with Application to the Estimation of Vertical Ground Reaction Forces Using Wearable Sensors. Sensors 2017, 17, 2181. [Google Scholar] [CrossRef] [PubMed]
- Hendry, D.; Leadbetter, R.; McKee, K.; Hopper, L.; Wild, C.; O’Sullivan, P.; Straker, L.; Campbell, A. An Exploration of Machine-Learning Estimation of Ground Reaction Force from Wearable Sensor Data. Sensors 2020, 20, 740. [Google Scholar] [CrossRef]
- Fukutoku, K.; Nozaki, T.; Murakami, T. Measurement of Joint Moments using Wearable Sensors. IEEJ J. Ind. Appl. 2020, 9, 125–131. [Google Scholar] [CrossRef]
- Tan, T.; Chiasson, D.P.; Hu, H.; Shull, P.B. Influence of IMU position and orientation placement errors on ground reaction force estimation. J. Biomech. 2019, 97, 109416. [Google Scholar] [CrossRef]
- Roetenberg, D.; Luinge, H.; Slycke, P. Xsens MVN: Full 6DOF human motion tracking using miniature inertial sensors. Xsens Motion Technol. BV Tech. Rep 2009, 1, 1–7. [Google Scholar]
- Kingma, I.; Baten, C.T.M.; Dolan, P.; Toussaint, H.M.; van Dieën, J.H.; de Looze, M.P.; Adams, M.A. Lumbar loading during lifting: A comparative study of three measurement techniques. J. Electromyogr. Kinesiol. 2001, 11, 337–345. [Google Scholar] [CrossRef]
- Slater, L.V.; Hart, J.M.; Kelly, A.R.; Kuenze, C.M. Progressive changes in walking kinematics and kinetics after anterior cruciate ligament injury and reconstruction: A review and meta-analysis. J. Athl. Train. 2017, 52, 847–860. [Google Scholar] [CrossRef] [PubMed]
- Skvortsov, D.; Kaurkin, S.; Akhpashev, A.; Altukhova, A.; Troitskiy, A.; Zagorodniy, N. Gait Analysis and Knee Kinematics in Patients with Anterior Cruciate Ligament Rupture: Before and After Reconstruction. Appl. Sci. 2020, 10, 3378. [Google Scholar] [CrossRef]
- The female ACL: Why is it more prone to injury? J. Orthop. 2016, 13, A1–A4. [CrossRef]
- Huston, L.J.; Wojtys, E.M. Neuromuscular performance characteristics in elite female athletes. Am. J. Sports Med. 1996, 24, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Sharafoddin-Shirazi, F.; Letafatkar, A.; Hogg, J.; Saatchian, V. Biomechanical asymmetries persist after ACL reconstruction: Results of a 2-year study. J. Exp. Orthop. 2020, 7, 86. [Google Scholar] [CrossRef] [PubMed]
Item | Description | Outcome |
---|---|---|
Aim of Work | ||
1 | Description of a specific, clearly stated purpose (IV) | 1, 0.5 or 0 |
2 | The research question is scientifically relevant (EV) | 1, 0.5 or 0 |
Inclusion Criteria (Selection Bias) | ||
3 | Description of inclusion and/or exclusion criteria along with information about volunteers and/or patients (IV/EV) | 1, 0.5 or 0 |
Methods (Performance Bias) | ||
4 | Data collection is clearly described and reliable (IV/EV) | 1, 0.5 or 0 |
5 | Description about activities measured, validation tasks, warmup (IV/EV) | 1, 0.5 or 0 |
6 | Data processing is clearly described and reliable (IV/EV) | 1, 0.5 or 0 |
7 | Algorithms are clearly described and referenced (IV/EV) | 1, 0.5 or 0 |
Outcomes (Detection Bias) | ||
8 | Outcomes are topic relevant (EV) | 1, 0.5 or 0 |
9 | Types and variety of tasks validated with respect to ACL rehabilitation and sports monitoring | 1, 0.5 or 0 |
10 | The work answers the scientific question stated in the aim (IV) | 1, 0.5 or 0 |
Presentation of the Results | ||
11 | Presentation of the results is sufficient to assess the adequacy of the analysis (IV) | 1, 0.5 or 0 |
12 | The main findings are clearly described (IV) | 1, 0.5 or 0 |
Data Analysis and Statistical Approach | ||
13 | Appropriate statistical and comparison techniques to compare results with reference-to-reference system (SV) | 1, 0.5 or 0 |
14 | Sufficient number of subjects (SV) | 1, 0.5 or 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krishnakumar, S.; van Beijnum, B.-J.F.; Baten, C.T.M.; Veltink, P.H.; Buurke, J.H. Estimation of Kinetics Using IMUs to Monitor and Aid in Clinical Decision-Making during ACL Rehabilitation: A Systematic Review. Sensors 2024, 24, 2163. https://doi.org/10.3390/s24072163
Krishnakumar S, van Beijnum B-JF, Baten CTM, Veltink PH, Buurke JH. Estimation of Kinetics Using IMUs to Monitor and Aid in Clinical Decision-Making during ACL Rehabilitation: A Systematic Review. Sensors. 2024; 24(7):2163. https://doi.org/10.3390/s24072163
Chicago/Turabian StyleKrishnakumar, Sanchana, Bert-Jan F. van Beijnum, Chris T. M. Baten, Peter H. Veltink, and Jaap H. Buurke. 2024. "Estimation of Kinetics Using IMUs to Monitor and Aid in Clinical Decision-Making during ACL Rehabilitation: A Systematic Review" Sensors 24, no. 7: 2163. https://doi.org/10.3390/s24072163
APA StyleKrishnakumar, S., van Beijnum, B. -J. F., Baten, C. T. M., Veltink, P. H., & Buurke, J. H. (2024). Estimation of Kinetics Using IMUs to Monitor and Aid in Clinical Decision-Making during ACL Rehabilitation: A Systematic Review. Sensors, 24(7), 2163. https://doi.org/10.3390/s24072163