Improving Aerosol Characterization Using an Optical Particle Counter Coupled with a Quartz Crystal Microbalance with an Integrated Microheater
Abstract
:1. Introduction
2. Methods and Materials
2.1. Solid and Liquid Aerosols
2.2. Reagents and Samples Preparation
2.3. Measurement Setup
3. Results and Discussions
3.1. Measurements of the Saline Aerosol with OPC
3.2. Measurements of the Saline Aerosol with H-QCM
3.3. Measurements of the Liquid Aerosol with OPC
3.4. Measurements of the Liquid Aerosol with QCM
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dolovich, M.B.; Dhand, R. Aerosol drug delivery: Developments in device design and clinical use. Lancet 2011, 377, 1032–1045. [Google Scholar] [CrossRef] [PubMed]
- Gurav, A.; Kodas, T.; Pluym, T.; Xiong, Y. Aerosol processing of materials. Aerosol Sci. Technol. 1993, 19, 411–452. [Google Scholar] [CrossRef]
- Pöschl, U. Atmospheric aerosols: Composition, transformation, climate and health effects. Angew. Chem. Int. Ed. Engl. 2005, 44, 7520–7540. [Google Scholar] [CrossRef] [PubMed]
- Myhre, G.; Myhre, C.E.L.; Samset, B.H.; Storelvmo, T. Aerosols and their Relation to Global Climate and Climate Sensitivity. Nat. Educ. Knowl. 2013, 4, 7. [Google Scholar]
- Spurny, K.R. Methods of Aerosol Measurement before the 1960s. Aerosol Sci. Technol. 1998, 29, 329–349. [Google Scholar] [CrossRef]
- Tripathi, S.N.; Tare, V.; Chinnam, N.; Srivastava, A.K.; Dey, S.; Agarwal, A.; Lal, S. Measurements of atmospheric parameters during Indian Space Research Organization Geosphere Biosphere Programme Land Campaign II at a typical location in the Ganga basin: 1. Physical and optical properties. J. Geophys. Res. 2006, 111, D23209. [Google Scholar] [CrossRef]
- Cheng, Y.; Su, H.; Koop, T.; Mikhailov, E.; Pöschl, U. Size dependence of phase transitions in aerosol nanoparticles. Nat. Commun. 2015, 6, 5923. [Google Scholar] [CrossRef] [PubMed]
- McMurry, P.H. A review of atmospheric aerosol measurements. Atmos. Environ. 2000, 34, 1959–1999. [Google Scholar] [CrossRef]
- Amaral, S.S.; de Carvalho Costa, J.A., Jr.; Pinheiro, M.A.M.C. An overview of particulate matter measurement instruments. Atmosphere 2015, 6, 1327–1345. [Google Scholar] [CrossRef]
- Kangasluoma, J.; Cai, R.; Jiang, J.; Deng, C.; Stolzenburg, D.; Ahonen, L.R.; Lehtipalo, K. Overview of measurements and current instrumentation for 1–10 nm aerosol particle number size distributions. J. Aerosol Sci. 2020, 148, 105584. [Google Scholar] [CrossRef]
- Vincent, J.H. Aerosol Sampling: Science, Standards, Instrumentation and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Wiedensohler, A.; Birmili, W.; Putaud, J.P.; Ogren, J. Recommendations for aerosol sampling. In Aerosol Science: Technology and Applications; Wiley: Hoboken, NJ, USA, 2013; pp. 45–59. [Google Scholar] [CrossRef]
- Sousan, S.; Koehler, K.; Thomas, G.; Park, J.H.; Hillman, M.; Halterman, A.; Peters, T.M. Inter-comparison of low-cost sensors for measuring the mass concentration of occupational aerosols. Aerosol Sci. Technol. 2016, 50, 462–473. [Google Scholar] [CrossRef] [PubMed]
- Giordano, M.R.; Malings, C.; Pandis, S.N.; Presto, A.A.; McNeill, V.F.; Westervelt, D.M.; Subramanian, R. From low-cost sensors to high-quality data: A summary of challenges and best practices for effectively calibrating low-cost particulate matter mass sensors. J. Aerosol Sci. 2021, 158, 105833. [Google Scholar] [CrossRef]
- Alfano, B.; Barretta, L.; Del Giudice, A.; De Vito, S.; Di Francia, G.; Esposito, E.; Polichetti, T. A review of low-cost particulate matter sensors from the developers’ perspectives. Sensors 2020, 20, 6819. [Google Scholar] [CrossRef] [PubMed]
- Chao, C.Y.; Zhang, H.; Hammer, M.; Zhan, Y.; Kenney, D.; Martin, R.V.; Biswas, P. Integrating fixed monitoring systems with low-cost sensors to create high-resolution air quality maps for the Northern China Plain Region. ACS Earth Space Chem. 2021, 5, 3022–3035. [Google Scholar] [CrossRef]
- Liu Benjamin, Y.H.; Berglund, R.N.; Agarwal, J.K. Experimental studies of optical particle counters. Atmos. Environ. 1967 1974, 8, 717–732. [Google Scholar]
- Steinem, C.; Janshoff, A. Piezoelectric Sensors; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007; Volume 5. [Google Scholar]
- Crilley, L.R.; Shaw, M.; Pound, R.; Kramer, L.J.; Price, R.; Young, S.; Lewis, A.C.; Pope, F.D. Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring, Atmos. Meas. Tech. 2018, 11, 709–720. [Google Scholar] [CrossRef]
- Chen, M.; Romay, F.J.; Li, L.; Naqwi, A.; Marple, V.A. A novel quartz crystal cascade impactor for real-time aerosol mass distribution measurement. Aerosol Sci. Technol. 2016, 50, 971–983. [Google Scholar] [CrossRef]
- Vashist, S.K.; Vashist, P. Recent Advances in Quartz Crystal Microbalance-Based Sensors. J. Sens. 2011, 2011, 571405. [Google Scholar] [CrossRef]
- Afzal, A.; Mujahid, A.; Schirhagl, R.; Bajwa, S.Z.; Latif, U.; Feroz, S. Gravimetric Viral Diagnostics: QCM Based Biosensors for Early Detection of Viruses. Chemosensors 2017, 5, 7. [Google Scholar] [CrossRef]
- Scaccabarozzi, D.; Saggin, B.; Tarabini, M.; Palomba, E.; Longobardo, A.; Zampetti, E. Thermo-mechanical design and testing of a microbalance for space applications. Adv. Space Res. 2014, 54, 2386–2397. [Google Scholar] [CrossRef]
- Zampetti, E.; Papa, P.; Bearzotti, A.; Macagnano, A. Pocket Mercury-Vapour Detection System Employing a Preconcentrator Based on Au-TiO2 Nanomaterials. Sensors 2021, 21, 8255. [Google Scholar] [CrossRef] [PubMed]
- Görner, P.; Simon, X.; Bémer, D.; Lidén, G. Workplace aerosol mass concentration measurement using optical particle counters. J. Environ. Monit. 2012, 14, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Hand, J.L.; Sonia, M.K. A new method for retrieving particle refractive index and effective density from aerosol size distribution data. Aerosol Sci. Technol. 2002, 36, 1012–1026. [Google Scholar] [CrossRef]
- McMeeking, G.R.; Kreidenweis, S.M.; Carrico, C.M.; Lee, T.; Collett, J.L., Jr.; Malm, W.C. Observations of smoke-influenced aerosol during the Yosemite Aerosol Characterization Study: Size distributions and chemical composition. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Crilley, L.R.; Singh, A.; Kramer, L.J.; Shaw, M.D.; Alam, M.S.; Apte, J.S.; Pope, F.D. Effect of aerosol composition on the performance of low-cost optical particle counter correction factors. Atmos. Meas. Tech. 2020, 13, 1181–1193. [Google Scholar] [CrossRef]
- Lee, K.-R.; Kim, Y.-J. Portable multilateral measurement system employing Optical Particle Counter and one-stage Quartz Crystal Microbalance to measure PM10. Sens. Actuators A Phys. 2022, 333, 113272. [Google Scholar] [CrossRef]
- Zampetti, E.; Macagnano, A.; Papa, P.; Bearzotti, A.; Petracchini, F.; Paciucci, L.; Pirrone, N. Exploitation of an integrated microheater on QCM sensor in particulate matter measurements. Sens. Actuators A Phys. 2017, 264, 205–211. [Google Scholar] [CrossRef]
- Moosmüller, H.; Chakrabarty, R.K.; Arnott, W.P. Aerosol light absorption and its measurement: A review. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 844–878. [Google Scholar] [CrossRef]
- Li, X.; Gupta, D.; Eom, H.J.; Kim, H.; Ro, C.U. Deliquescence and efflorescence behavior of individual NaCl and KCl mixture aerosol particles. Atmos. Environ. 2014, 82, 36–43. [Google Scholar] [CrossRef]
- Li, L.; Lee, E.S.; Nguyen, C.; Zhu, Y. Effects of propylene glycol, vegetable glycerin, and nicotine on emissions and dynamics of electronic cigarette aerosols. Aerosol Sci. Technol. 2020, 54, 1270–1281. [Google Scholar] [CrossRef]
- Jordt, S.E.; Jabba, S.; Ghoreshi, K.; Smith, G.J.; Morris, J.B. Propylene Glycol and Glycerin in E-Cigarettes Elicit Respiratory Irritation Responses and Modulate Human Sensory Irritant Receptor Function. Am. J. Respir. Crit. Care Med. 2019, 199, A4169. [Google Scholar]
- Jang, I.R.; Jung, S.I.; Lee, G.; Park, I.; Kim, S.B.; Kim, H.J. Quartz crystal microbalance with thermally-controlled surface adhesion for an efficient fine dust collection and sensing. J. Hazard. Mater. 2022, 424, 127560. [Google Scholar] [CrossRef]
- Sauerbrey, G. Verwendung von Schwingquarzen zur Wigung Diinner Schichten und zur Mikrowigung. Z. Phys. 1959, 155, 206–222. [Google Scholar] [CrossRef]
- Kanazawa, K.K.; Gordon, J.G. The oscillation frequency of a quartz resonator in contact with liquid. Anal. Chim. Acta 1985, 175, 99–105. [Google Scholar] [CrossRef]
- Moon, S.-H.; Chang, K.H.; Park, H.M.; Park, B.J.; Yoo, S.K.; Nam, K.C. Effects of Driving Frequency and Voltage on the Performances of Vibrating Mesh Nebulizers. Appl. Sci. 2021, 11, 1296. [Google Scholar] [CrossRef]
- Scaccabarozzi, D.; Saggin, B.; Magni, M.; Corti, M.G.; Zampetti, E.; Palomba, E.; Longobardo, A.; Dirri, F. Calibration in cryogenic conditions of deposited thin-film thermometers on quartz crystal microbalances. Sens. Actuators A Phys. 2021, 330, 112878. [Google Scholar] [CrossRef]
- Magni, M.; Scaccabarozzi, D.; Palomba, E.; Zampetti, E.; Saggin, B. Characterization of Thermal Gradient Effects on a Quartz Crystal Microbalance. Sensors 2022, 22, 7256. [Google Scholar] [CrossRef]
- Brice, J.C. Crystals for quartz resonators. Rev. Mod. Phys. 1985, 57, 105. [Google Scholar] [CrossRef]
- Niedermeier, D.; Wex, H.; Voigtländer, J.; Stratmann, F.; Brüggemann, E.; Kiselev, A.; Heintzenberg, J. LACIS-measurements and parameterization of sea-salt particle hygroscopic growth and activation. Atmos. Chem. Phys. 2008, 8, 579–590. [Google Scholar] [CrossRef]
- Tang, I.N. Chemical and size effects of hygroscopic aerosols on light scattering coefficient. J. Geophys. Res. 1996, 101, 19245–19250. [Google Scholar] [CrossRef]
- Sarangi, B.; Aggarwal, S.G.; Sinha, D.; Gupta, P.K. Aerosol effective density measurement using scanning mobility particle sizer and quartz crystal microbalance with the estimation of involved uncertainty. Atmos. Meas. Tech. 2016, 9, 859–875. [Google Scholar] [CrossRef]
- Zhang, C.; Fen, G.; Sui, S. Study on behaviour of QCM sensor in loading variation. Sens. Actuators B Chem. 1997, 40, 111–115. [Google Scholar] [CrossRef]
- Chao, H.J.; Huang, W.C.; Chen, C.L.; Chou, C.C.K.; Hung, H.M. Water Adsorption vs Phase Transition of Aerosols Monitored by a Quartz Crystal Microbalance. ACS Omega 2020, 5, 31858–31866. [Google Scholar] [CrossRef] [PubMed]
- Zampetti, E.; Mancuso, M.A.; Dirri, F.; Palomba, E.; Papa, P.; Capocecera, A.; Bearzotti, A.; Macagnano, A.; Scaccabarozzi, D. Effects of Oscillation Amplitude Variations on QCM Response to Microspheres of Different Sizes. Sensors 2023, 23, 5682. [Google Scholar] [CrossRef]
- Kovilakam, M.; Deshler, T. On the accuracy of stratospheric aerosol extinction derived from in situ size distribution measurements and surface area density derived from remote SAGE II and HALOE extinction measurements. J. Geophys. Res. Atmos. 2015, 120, 8426–8447. [Google Scholar] [CrossRef]
Before Heating (Hz) | After Heating (Hz) | CMD (µm) | |
---|---|---|---|
NaCl phy | 219 ± 105 | 358 ± 40 | 2.90 ± 0.45 |
NaCl 1:2 | 112 ± 125 | 194 ± 21 | 2.83 ± 0.44 |
NaCl 1:10 | 381 ± 258 | 96 ± 30 | 1.75 ± 0.39 |
liq 80:20 | 161 ± 5 | / | 0.90 ± 0.17 |
liq 50:50 | 337 ± 13 | / | 1.01 ± 0.15 |
liq 20:80 | 441 ± 29 | / | 1.13 ± 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zampetti, E.; Mancuso, M.A.; Capocecera, A.; Papa, P.; Macagnano, A. Improving Aerosol Characterization Using an Optical Particle Counter Coupled with a Quartz Crystal Microbalance with an Integrated Microheater. Sensors 2024, 24, 2500. https://doi.org/10.3390/s24082500
Zampetti E, Mancuso MA, Capocecera A, Papa P, Macagnano A. Improving Aerosol Characterization Using an Optical Particle Counter Coupled with a Quartz Crystal Microbalance with an Integrated Microheater. Sensors. 2024; 24(8):2500. https://doi.org/10.3390/s24082500
Chicago/Turabian StyleZampetti, Emiliano, Maria Aurora Mancuso, Alessandro Capocecera, Paolo Papa, and Antonella Macagnano. 2024. "Improving Aerosol Characterization Using an Optical Particle Counter Coupled with a Quartz Crystal Microbalance with an Integrated Microheater" Sensors 24, no. 8: 2500. https://doi.org/10.3390/s24082500
APA StyleZampetti, E., Mancuso, M. A., Capocecera, A., Papa, P., & Macagnano, A. (2024). Improving Aerosol Characterization Using an Optical Particle Counter Coupled with a Quartz Crystal Microbalance with an Integrated Microheater. Sensors, 24(8), 2500. https://doi.org/10.3390/s24082500