Smart Sensing Chairs for Sitting Posture Detection, Classification, and Monitoring: A Comprehensive Review
Abstract
:1. Introduction
2. Research Methodology
2.1. Formulation of Research Questions
2.2. Search Strategy
2.3. Study Screening and Selection
2.4. Data Extraction
3. Sitting Posture Selection
4. Technologies Used in Smart Sensing Chairs
4.1. Sensor Technology
4.1.1. Force Sensing/Sensitive Sensor (FSR)
4.1.2. Textile Pressure Sensor
4.1.3. Load Cells
4.1.4. Flex Sensors
4.1.5. Image-Based Sensors
4.2. Pressure Sensor Placement Strategy
4.2.1. Dense Sensor Configuration
4.2.2. Sparse Sensor Configuration
4.3. Integration with the Internet of Things (IoT)
4.4. User Feedback System
5. Techniques for Posture Detection in Smart Sensing Chairs
5.1. Rule-Based Systems
5.2. Statistical Models
5.3. Deep Learning Models
5.4. Evaluation of Machine Learning Model performance
6. Discussion
6.1. Technology
Multiple Sensor Types
6.2. Classification Algorithm
6.3. Research Gaps
6.3.1. Lack of User Feedback Evaluation
6.3.2. Lack of Diversity of Training Datasets
6.4. Feasibility of Implementing Smart Sensing Chair Systems in Real-World Settings
7. Conclusions and Recommendations for Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gill, T.K.; Mittinty, M.M.; March, L.M.; Steinmetz, J.D.; Culbreth, G.T.; Cross, M.; Kopec, J.A.; Woolf, A.D.; Haile, L.M.; Hagins, H.; et al. Global, Regional, and National Burden of Other Musculoskeletal Disorders, 1990–2020, and Projections to 2050: A Systematic Analysis of the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023, 5, e670–e682. [Google Scholar] [CrossRef] [PubMed]
- Bevan, S. Economic Impact of Musculoskeletal Disorders (MSDs) on Work in Europe. Best Pract. Res. Clin. Rheumatol. 2015, 29, 356–373. [Google Scholar] [CrossRef] [PubMed]
- Devi, R.R.; Singh, C.I.; Singh, K.C. Incidence and Profile of Neonatal Musculoskeletal Birth Defects at a Tertiary Hospital in North East India. Int. J. Sci. Study 2015, 3, 163–167. [Google Scholar]
- Collange, C.; Burde, M.-A. Musculoskeletal Problems of Neurogenic Origin. Best Pract. Res. Clin. Rheumatol. 2000, 14, 325–343. [Google Scholar] [CrossRef] [PubMed]
- European Agency for Safety and Health at Work. Musculoskeletal Disorders among Children and Young People: Prevalence, Risk Factors and Preventive Measures: A Scoping Review; Publications Office: Luxembourg, 2021.
- Arora, S.N.; Khatri, S. Prevalence of Work-Related Musculoskeletal Disorder in Sitting Professionals. Int. J. Community Med. Public Health 2022, 9, 892. [Google Scholar] [CrossRef]
- Putsa, B.; Jalayondeja, W.; Mekhora, K.; Bhuanantanondh, P.; Jalayondeja, C. Factors Associated with Reduced Risk of Musculoskeletal Disorders among Office Workers: A Cross-Sectional Study 2017 to 2020. BMC Public Health 2022, 22, 1503. [Google Scholar] [CrossRef] [PubMed]
- Van Eerd, D.; Irvin, E.; Le Pouésard, M.; Butt, A.; Nasir, K. Workplace Musculoskeletal Disorder Prevention Practices and Experiences. INQUIRY 2022, 59, 004695802210921. [Google Scholar] [CrossRef] [PubMed]
- Keskin, Y. Correlation between Sitting Duration and Position and Lumbar Pain among Office Workers. Haydarpasa Numune Med. J. 2019, 61, 1. [Google Scholar] [CrossRef]
- Bontrup, C.; Taylor, W.R.; Fliesser, M.; Visscher, R.; Green, T.; Wippert, P.-M.; Zemp, R. Low Back Pain and Its Relationship with Sitting Behaviour among Sedentary Office Workers. Appl. Ergon. 2019, 81, 102894. [Google Scholar] [CrossRef]
- Yoon, D.H.; Lee, J.-Y.; Song, W. Effects of Resistance Exercise Training on Cognitive Function and Physical Performance in Cognitive Frailty: A Randomized Controlled Trial. J. Nutr. Health Aging 2018, 22, 944–951. [Google Scholar] [CrossRef]
- Partlow, A. A Knowledge Based Engineering System for the Prescription and Manufacture of Custom Contoured Seating for Clients with Severe Musculoskeletal and Postural Conditions; University of South Wales, Faculty of Computing, Engineering and Science: Wales, UK, 2014. [Google Scholar]
- Kulon, J.; Partlow, A.; Gibson, C.; Wilson, I.; Wilcox, S. Rule-Based Algorithm for the Classification of Sitting Postures in the Sagittal Plane from the Cardiff Body Match Measurement System. J. Med. Eng. Technol. 2014, 38, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Partlow, A.; Gibson, C.; Kulon, J.; Wilson, I.; Wilcox, S. Pelvis Feature Extraction and Classification of Cardiff Body Match Rig Base Measurements for Input into a Knowledge-Based System. J. Med. Eng. Technol. 2012, 36, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Amendt, L.E.; Ause-Ellias, K.L.; Eybers, J.L.; Wadsworth, C.T.; Nielsen, D.H.; Weinstein, S.L. Validity and Reliability Testing of the Scoliometer®. Phys. Ther. 1990, 70, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Berthonnaud, E.; Dimnet, J. Analysis of Structural Features of Deformed Spines in Frontal and Sagittal Projections. Comput. Med. Imaging Graph. 2007, 31, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Burwell, R.; James, N.; Johnson, F.; Webb, J.; Wilson, Y. Standardised Trunk Asymmetry Scores. A Study of Back Contour in Healthy School Children. J. Bone Jt. Surg. Br. Vol. 1983; 65-B, 452–463. [Google Scholar] [CrossRef]
- Jaremko, J.L.; Poncet, P.; Ronsky, J.; Harder, J.; Dansereau, J.; Labelle, H.; Zernicke, R.F. Indices of Torso Asymmetry Related to Spinal Deformity in Scoliosis. Clin. Biomech. 2002, 17, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.; Arnrich, B.; Schumm, J.; Troster, G. Design and Modeling of a Textile Pressure Sensor for Sitting Posture Classification. IEEE Sens. J. 2010, 10, 1391–1398. [Google Scholar] [CrossRef]
- Partlow, A.; Gibson, C.; Kulon, J. 3D Posture Visualisation from Body Shape Measurements Using Physics Simulation, to Ascertain the Orientation of the Pelvis and Femurs in a Seated Position. Comput. Methods Programs Biomed. 2021, 198, 105772. [Google Scholar] [CrossRef] [PubMed]
- Kulon, J.; Voysey, M.; Partlow, A.; Rogers, P.; Gibson, C. Development of a System for Anatomical Landmarks Localization Using Ultrasonic Signals. In Proceedings of the 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Benevento, Italy, 15–18 May 2016; pp. 1–6. [Google Scholar]
- Tan, H.Z.; Slivovsky, L.A.; Pentland, A. A Sensing Chair Using Pressure Distribution Sensors. IEEE/ASME Trans. Mechatron. 2001, 6, 261–268. [Google Scholar] [CrossRef]
- Pereira, L.; Plácido Da Silva, H. A Novel Smart Chair System for Posture Classification and Invisible ECG Monitoring. Sensors 2023, 23, 719. [Google Scholar] [CrossRef]
- Ahmad, J.; Sidén, J.; Andersson, H. A Proposal of Implementation of Sitting Posture Monitoring System for Wheelchair Utilizing Machine Learning Methods. Sensors 2021, 21, 6349. [Google Scholar] [CrossRef]
- Huang, M.; Gibson, I.; Yang, R. Smart Chair for Monitoring of Sitting Behavior. KEG 2017, 2, 274. [Google Scholar] [CrossRef]
- Martínez-Estrada, M.; Vuohijoki, T.; Poberznik, A.; Shaikh, A.; Virkki, J.; Gil, I.; Fernández-García, R. A Smart Chair to Monitor Sitting Posture by Capacitive Textile Sensors. Materials 2023, 16, 4838. [Google Scholar] [CrossRef] [PubMed]
- Matuska, S.; Paralic, M.; Hudec, R. A Smart System for Sitting Posture Detection Based on Force Sensors and Mobile Application. Mob. Inf. Syst. 2020, 2020, 1–13. [Google Scholar] [CrossRef]
- Aminosharieh Najafi, T.; Abramo, A.; Kyamakya, K.; Affanni, A. Development of a Smart Chair Sensors System and Classification of Sitting Postures with Deep Learning Algorithms. Sensors 2022, 22, 5585. [Google Scholar] [CrossRef] [PubMed]
- Wan, Q.; Zhao, H.; Li, J.; Xu, P. Hip Positioning and Sitting Posture Recognition Based on Human Sitting Pressure Image. Sensors 2021, 21, 426. [Google Scholar] [CrossRef] [PubMed]
- Ran, X.; Wang, C.; Xiao, Y.; Gao, X.; Zhu, Z.; Chen, B. A Portable Sitting Posture Monitoring System Based on a Pressure Sensor Array and Machine Learning. Sens. Actuators A Phys. 2021, 331, 112900. [Google Scholar] [CrossRef]
- Roh, J.; Park, H.; Lee, K.; Hyeong, J.; Kim, S.; Lee, B. Sitting Posture Monitoring System Based on a Low-Cost Load Cell Using Machine Learning. Sensors 2018, 18, 208. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, H.; Park, J.; Jee, K.-K.; Lim, J.A.; Park, M.-C. Real-Time Sitting Posture Correction System Based on Highly Durable and Washable Electronic Textile Pressure Sensors. Sens. Actuators A Phys. 2018, 269, 394–400. [Google Scholar] [CrossRef]
- Feng, L.; Li, Z.; Liu, C. Are You Sitting Right?-Sitting Posture Recognition Using RF Signals. In Proceedings of the 2019 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), Victoria, BC, Canada, 21–23 August 2019; pp. 1–6. [Google Scholar]
- Hu, Q.; Tang, X.; Tang, W. A Smart Chair Sitting Posture Recognition System Using Flex Sensors and FPGA Implemented Artificial Neural Network. IEEE Sens. J. 2020, 20, 8007–8016. [Google Scholar] [CrossRef]
- Jeong, H.; Park, W. Developing and Evaluating a Mixed Sensor Smart Chair System for Real-Time Posture Classification: Combining Pressure and Distance Sensors. IEEE J. Biomed. Health Inform. 2021, 25, 1805–1813. [Google Scholar] [CrossRef]
- Martins, L.; Lucena, R.; Belo, J.; Santos, M.; Quaresma, C.; Jesus, A.P.; Vieira, P. Intelligent Chair Sensor. In Engineering Applications of Neural Networks; Iliadis, L., Papadopoulos, H., Jayne, C., Eds.; Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 383, pp. 182–191. ISBN 978-3-642-41012-3. [Google Scholar]
- Mutlu, B.; Krause, A.; Forlizzi, J.; Guestrin, C.; Hodgins, J. Robust, Low-Cost, Non-Intrusive Sensing and Recognition of Seated Postures. In Proceedings of the 20th Annual ACM Symposium on User Interface Software and Technology, Newport, RI, USA, 7–10 October 2007; pp. 149–158. [Google Scholar]
- Ma, C.; Li, W.; Gravina, R.; Fortino, G. Posture Detection Based on Smart Cushion for Wheelchair Users. Sensors 2017, 17, 719. [Google Scholar] [CrossRef] [PubMed]
- Zemp, R.; Tanadini, M.; Plüss, S.; Schnüriger, K.; Singh, N.B.; Taylor, W.R.; Lorenzetti, S. Application of Machine Learning Approaches for Classifying Sitting Posture Based on Force and Acceleration Sensors. BioMed Res. Int. 2016, 2016, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.-C.; Chu, E.T.-H.; Lee, C.-R. An Automated Sitting Posture Recognition System Utilizing Pressure Sensors. Sensors 2023, 23, 5894. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Son, Y.; Kim, W.; Jin, B.; Yun, M. Classification of Children’s Sitting Postures Using Machine Learning Algorithms. Appl. Sci. 2018, 8, 1280. [Google Scholar] [CrossRef]
- Luna-Perejón, F.; Montes-Sánchez, J.M.; Durán-López, L.; Vazquez-Baeza, A.; Beasley-Bohórquez, I.; Sevillano-Ramos, J.L. IoT Device for Sitting Posture Classification Using Artificial Neural Networks. Electronics 2021, 10, 1825. [Google Scholar] [CrossRef]
- Cai, W.; Zhao, D.; Zhang, M.; Xu, Y.; Li, Z. Improved Self-Organizing Map-Based Unsupervised Learning Algorithm for Sitting Posture Recognition System. Sensors 2021, 21, 6246. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Hu, X.; Chen, W.-M.; Zhang, D.-W.; Ma, X. A Deep Learning Based 2-Dimensional Hip Pressure Signals Analysis Method for Sitting Posture Recognition. Biomed. Signal Process. Control 2022, 73, 103432. [Google Scholar] [CrossRef]
- Chen, K. Sitting Posture Recognition Based on OpenPose. IOP Conf. Ser. Mater. Sci. Eng. 2019, 677, 032057. [Google Scholar] [CrossRef]
- Ma, C.; Li, W.; Gravina, R.; Du, J.; Li, Q.; Fortino, G. Smart Cushion-Based Activity Recognition: Prompting Users to Maintain a Healthy Seated Posture. IEEE Syst. Man Cybern. Mag. 2020, 6, 6–14. [Google Scholar] [CrossRef]
- Ren, X.; Yu, B.; Lu, Y.; Zhang, B.; Hu, J.; Brombacher, A. LightSit: An Unobtrusive Health-Promoting System for Relaxation and Fitness Microbreaks at Work. Sensors 2019, 19, 2162. [Google Scholar] [CrossRef]
- Wang, J.; Hafidh, B.; Dong, H.; El Saddik, A. Sitting Posture Recognition Using a Spiking Neural Network. IEEE Sens. J. 2021, 21, 1779–1786. [Google Scholar] [CrossRef]
- Nishitha, R.; Sudhakar, T.; Bethanney Janney, J.; Krishnamoorthy, N.R.; Dhanalakshmi, K.; Vigneshwaran, S. Sitting Posture Analysis Using CNN and RCNN. In Proceedings of the 2023 International Conference on Bio Signals, Images, and Instrumentation (ICBSII), Chennai, India, 16–17 March 2023; pp. 1–5. [Google Scholar]
- Fu, T.; Macleod, A. IntelliChair: An Approach for Activity Detection and Prediction via Posture Analysis. In Proceedings of the 2014 International Conference on Intelligent Environments, Shanghai, China, 30 June–4 July 2014; pp. 211–213. [Google Scholar]
- AbuTerkia, I.; Hannoun, M.; Suwal, B.; Ahmed, M.S.; Sundaravdivel, P. FPGA-Based Smart Chair Recognition System Using Flex Sensors. In Proceedings of the 2022 IEEE 15th Dallas Circuit And System Conference (DCAS), Dallas, TX, USA, 17–19 June 2022; pp. 1–2. [Google Scholar]
- Xu, W.; Huang, M.-C.; Amini, N.; He, L.; Sarrafzadeh, M. eCushion: A Textile Pressure Sensor Array Design and Calibration for Sitting Posture Analysis. IEEE Sens. J. 2013, 13, 3926–3934. [Google Scholar] [CrossRef]
- La Mura, M.; De Gregorio, M.; Lamberti, P.; Tucci, V. IoT System for Real-Time Posture Asymmetry Detection. Sensors 2023, 23, 4830. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Choi, H.-J.; Lee, C.-E.; Sir, C.-W. Sitting Posture Prediction and Correction System Using Arduino-Based Chair and Deep Learning Model. In Proceedings of the 2019 IEEE 12th Conference on Service-Oriented Computing and Applications (SOCA), Kaohsiung, Taiwan, 18–21 November 2019; pp. 98–102. [Google Scholar]
- Bourahmoune, K.; Ishac, K.; Amagasa, T. Intelligent Posture Training: Machine-Learning-Powered Human Sitting Posture Recognition Based on a Pressure-Sensing IoT Cushion. Sensors 2022, 22, 5337. [Google Scholar] [CrossRef] [PubMed]
- Vermander, P.; Mancisidor, A.; Cabanes, I.; Perez, N.; Torres-Unda, J. Intelligent Sitting Posture Classifier for Wheelchair Users. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 944–953. [Google Scholar] [CrossRef] [PubMed]
- Fragkiadakis, E.; Dalakleidi, K.V.; Nikita, K.S. Design and Development of a Sitting Posture Recognition System. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 3364–3367. [Google Scholar]
- Jaffery, M.H.; Ashraf, M.A.; Almogren, A.; Asim, H.M.; Arshad, J.; Khan, J.; Rehman, A.U.; Hussen, S. FSR-Based Smart System for Detection of Wheelchair Sitting Postures Using Machine Learning Algorithms and Techniques. J. Sens. 2022, 2022, 1–10. [Google Scholar] [CrossRef]
- Gelaw, T.A.; Hagos, M.T. Posture Prediction for Healthy Sitting Using a Smart Chair. In Advances of Science and Technology; Berihun, M.L., Ed.; Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Springer International Publishing: Cham, Switzerland, 2022; Volume 411, pp. 401–411. ISBN 978-3-030-93708-9. [Google Scholar]
- Javaid, A.; Abbas, A.; Arshad, J.; Rahmani, M.K.I.; Chauhdary, S.T.; Jaffery, M.H.; Banga, A.S. Force Sensitive Resistors-Based Real-Time Posture Detection System Using Machine Learning Algorithms. CMC 2023, 77, 1795–1814. [Google Scholar] [CrossRef]
- Tavares, C.; Silva, J.O.E.; Mendes, A.; Rebolo, L.; Domingues, M.D.F.; Alberto, N.; Lima, M.; Radwan, A.; Da Silva, H.P.; Da Costa Antunes, P.F. Smart Office Chair for Working Conditions Optimization. IEEE Access 2023, 11, 50497–50509. [Google Scholar] [CrossRef]
- Slater, D.; Korakakis, V.; O’Sullivan, P.; Nolan, D.; O’Sullivan, K. “Sit Up Straight”: Time to Re-Evaluate. J. Orthop. Sports Phys. Ther. 2019, 49, 562–564. [Google Scholar] [CrossRef]
- Korakakis, V.; O’Sullivan, K.; O’Sullivan, P.B.; Evagelinou, V.; Sotiralis, Y.; Sideris, A.; Sakellariou, K.; Karanasios, S.; Giakas, G. Physiotherapist Perceptions of Optimal Sitting and Standing Posture. Musculoskelet. Sci. Pract. 2019, 39, 24–31. [Google Scholar] [CrossRef]
- Paredes-Madrid, L.; Matute, A.; Bareño, J.; Parra Vargas, C.; Gutierrez Velásquez, E. Underlying Physics of Conductive Polymer Composites and Force Sensing Resistors (FSRs). A Study on Creep Response and Dynamic Loading. Materials 2017, 10, 1334. [Google Scholar] [CrossRef]
- Sadun, A.S.; Jalani, J.; Sukor, J.A. Force Sensing Resistor (FSR): A Brief Overview and the Low-Cost Sensor for Active Compliance Control. In Proceedings of the First International Workshop on Pattern Recognition, Tokyo, Japan, 11–13 May 2016; p. 1001112. [Google Scholar]
- Velásquez, E.I.G.; Gómez, V.; Paredes-Madrid, L.; Colorado, H.A. Error Compensation in Force Sensing Resistors. Sens. Bio-Sens. Res. 2019, 26, 100300. [Google Scholar] [CrossRef]
- Ohmite FSR Series Integration Guide: Force Sensing Resistor. Available online: https://www.mouser.com/pdfdocs/Ohmite-FSR-Integration-Guide-V1-0_11-01-18.pdf (accessed on 28 February 2024).
- Interlink Electronics FSR 402 Data Sheet. Available online: https://cdn.sparkfun.com/assets/8/a/1/2/0/2010-10-26-DataSheet-FSR402-Layout2.pdf (accessed on 28 February 2024).
- Interlink Electronics FSR 406 Data Sheet. Available online: https://cdn.sparkfun.com/assets/c/4/6/8/b/2010-10-26-DataSheet-FSR406-Layout2.pdf (accessed on 28 February 2024).
- Pizarro, F.; Villavicencio, P.; Yunge, D.; Rodríguez, M.; Hermosilla, G.; Leiva, A. Easy-to-Build Textile Pressure Sensor. Sensors 2018, 18, 1190. [Google Scholar] [CrossRef] [PubMed]
- Kamble, V.; Shinde, V.D.; Kittur, J.K. Overview of Load Cells. J. Mech. Mech. Eng. 2020, 6, 22–29. [Google Scholar]
- Mouser. SEN-10245 Datasheet. 2024. Available online: https://www.mouser.co.uk/datasheet/2/813/loadsensor-2488871.pdf (accessed on 28 April 2024).
- Saggio, G.; Riillo, F.; Sbernini, L.; Quitadamo, L.R. Resistive Flex Sensors: A Survey. Smart Mater. Struct. 2016, 25, 013001. [Google Scholar] [CrossRef]
- SpectraSymbol. Flex Sensor Data Sheet 2014. 2014. Available online: https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/FLEX%20SENSOR%20DATA%20SHEET%202014.pdf (accessed on 28 April 2024).
- SpectraSymbol. Flex Sensor 2.2. 2024. Available online: https://www.sparkfun.com/products/10264 (accessed on 28 April 2024).
- Mallare, J.C.T.; Pineda, D.F.G.; Trinidad, G.M.; Serafica, R.D.; Villanueva, J.B.K.; Dela Cruz, A.R.; Vicerra, R.R.P.; Serrano, K.K.D.; Roxas, E.A. Sitting Posture Assessment Using Computer Vision. In Proceedings of the 2017IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Manila, Philippines, 1–3 December 2017; pp. 1–5. [Google Scholar]
- Rejeb, A.; Rejeb, K.; Treiblmaier, H.; Appolloni, A.; Alghamdi, S.; Alhasawi, Y.; Iranmanesh, M. The Internet of Things (IoT) in Healthcare: Taking Stock and Moving Forward. Internet Things 2023, 22, 100721. [Google Scholar] [CrossRef]
- Liu, H.; Gegov, A.; Stahl, F. Categorization and Construction of Rule Based Systems. In Engineering Applications of Neural Networks; Mladenov, V., Jayne, C., Iliadis, L., Eds.; Communications in Computer and Information Science; Springer International Publishing: Cham, Switzerland, 2014; Volume 459, pp. 183–194. ISBN 978-3-319-11070-7. [Google Scholar]
- Angeli, C. Online Expert Systems for Fault Diagnosis in Technical Processes. Expert Syst. 2008, 25, 115–132. [Google Scholar] [CrossRef]
- Davison, A.C. Statistical Models; Cambridge University Press: Cambridge, UK, 2003; ISBN 978-0-511-67497-6. [Google Scholar]
- Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN Comput. Sci. 2021, 2, 420. [Google Scholar] [CrossRef]
- Jiang, X.; Hu, Z.; Wang, S.; Zhang, Y. A Survey on Artificial Intelligence in Posture Recognition. Comput. Model. Eng. Sci. 2023, 137, 35–82. [Google Scholar] [CrossRef]
- Tharwat, A. Classification Assessment Methods. ACI 2021, 17, 168–192. [Google Scholar] [CrossRef]
- Qi, J.; Yang, P.; Newcombe, L.; Peng, X.; Yang, Y.; Zhao, Z. An Overview of Data Fusion Techniques for Internet of Things Enabled Physical Activity Recognition and Measure. Inf. Fusion 2020, 55, 269–280. [Google Scholar] [CrossRef]
- Lopez, J.; Rios, R.; Bao, F.; Wang, G. Evolving Privacy: From Sensors to the Internet of Things. Future Gener. Comput. Syst. 2017, 75, 46–57. [Google Scholar] [CrossRef]
- Munirathinam, S. Drift Detection Analytics for IoT Sensors. Procedia Comput. Sci. 2021, 180, 903–912. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Wang, S.; Zhang, Y. A Review of IoT Applications in Healthcare. Neurocomputing 2024, 565, 127017. [Google Scholar] [CrossRef]
- Al-rawashdeh, M.; Keikhosrokiani, P.; Belaton, B.; Alawida, M.; Zwiri, A. IoT Adoption and Application for Smart Healthcare: A Systematic Review. Sensors 2022, 22, 5377. [Google Scholar] [CrossRef]
- Nappi, I.; De Campos Ribeiro, G. Internet of Things Technology Applications in the Workplace Environment: A Critical Review. JCRE 2020, 22, 71–90. [Google Scholar] [CrossRef]
- Laubheimer, P. Beyond the NPS: Measuring Perceived Usability with the SUS, NASA-TLX, and the Single Ease Question After Tasks and Usability Tests. Available online: https://www.nngroup.com/articles/measuring-perceived-usability/ (accessed on 11 March 2024).
- Suh, H.; Shahriaree, N.; Hekler, E.B.; Kientz, J.A. Developing and Validating the User Burden Scale: A Tool for Assessing User Burden in Computing Systems. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; pp. 3988–3999. [Google Scholar]
ID | Research Question and Rationale |
---|---|
RQ1 | In the context of posture detection, what are the most used sensors in smart sensing chair studies, and how do they compare in terms of accuracy and reliability? Rationale: This question aimed to uncover common trends in sensor technology that can inform the development of more effective and sensitive smart chairs for posture detection. |
RQ2 | What methods are being used to classify different sitting postures? Rationale: This question addressed the computational approaches employed to process sensor data, which is essential for the effective classification of sitting postures. Understanding the methods used can highlight the most successful strategies and potential areas for innovation in posture classification algorithms. |
RQ3 | What technological, methodological, and application-based limitations and research gaps are identified in the current literature on smart sensing chairs? Rationale: This question sought to pinpoint the shortcomings of current studies on smart sensing chairs, laying the groundwork for future research to address these areas. |
RQ4 | What user feedback mechanisms are implemented in smart sensing chairs, and how do they impact user satisfaction and posture correction outcomes? Rationale: The incorporation of user feedback mechanisms is critical for the practical application of smart sensing chairs, influencing user compliance and the effectiveness of posture correction strategies. This question focused on the interaction between users and the technology, a key factor in the adoption and success of these systems. |
ID | Keywords |
---|---|
SK1 | Smart Sensing Chair |
SK2 | Sitting Posture Recognition |
SK3 | Posture Classification |
SK4 | Sitting Posture Classification Using Machine Learning |
SK5 | Sitting Posture Monitoring |
SK6 | Sitting Posture Detection |
Study | Publication Year | Sensor Type | # of Postures | Classification Method | Accuracy | # of Test Subjects | User Feedback Mechanism |
---|---|---|---|---|---|---|---|
[23] | 2023 | Load Cell | 8 | KNN | 98.50% | 10 | - |
[24] | 2021 | Pressure Sensor | 4 | LightGBM | 99.03% | 32 | - |
[25] | 2017 | Pressure Sensor | 8 | ANN | 92.20% | - | - |
[26] | 2023 | Pressure Sensor | 9 | - | - | 5 | - |
[27] | 2020 | Pressure Sensor | 9 | - | - | 12 | Mobile App |
[28] | 2022 | Pressure Sensor | 8 | EMN | 91.68% | 40 | - |
[29] | 2021 | Pressure Sensor | 12 | SVM | 89.60% | 3 | - |
[30] | 2021 | Pressure Sensor | 7 | ANN | 97.07% | 100 | Haptic Feedback |
[31] | 2018 | Load Cell | 6 | SVM | 97.94% | 9 | - |
[32] | 2018 | Pressure Sensor | 7 | - | - | - | - |
[33] | 2019 | Camera and RFID Tags | 3 | RF | 99.27% | 14 | - |
[34] | 2020 | Flex Sensor | 7 | ANN | 97.43% | 11 | - |
[35] | 2021 | Pressure Sensor and Ultrasonic Sensor | 11 | KNN | 92% | 36 | - |
[36] | 2013 | Pressure Sensor | 8 | ANN | 70% | 30 | Mobile App |
[37] | 2007 | Pressure Sensor | 10 | SimpleLogistic | 78% | 20 | - |
[38] | 2017 | Pressure Sensor | 5 | DT | 99.47% | 12 | - |
[39] | 2016 | Pressure Sensor | 7 | RF | 90.90% | 41 | - |
[40] | 2023 | Pressure Sensor | 10 | SVM | 99.10% | 20 | Desktop App |
[41] | 2018 | Pressure Sensor | 5 | CNN | 95.30% | 10 | - |
[42] | 2021 | Pressure Sensor | 7 | ANN | 81% | 12 | Desktop App |
[43] | 2021 | Pressure Sensor | 6 | SOM (ISOM-SPR) | 95.67% | 40 | Mobile App |
[44] | 2022 | Pressure Sensor | 5 | CNN | 99.82 | 8 | - |
[45] | 2019 | Camera | - | CNN | 90% | - | Desktop App |
[46] | 2020 | Pressure Sensor | 5 | DT | 89% | - | - |
[47] | 2019 | Pressure Sensor | - | ANN | - | - | RGB LED |
[48] | 2021 | Pressure Sensor | 15 | SNN | 88.52% | 19 | Desktop App |
[49] | 2023 | Camera | 6 | RCNN and CNN | 92.50% | - | - |
[50] | 2014 | Pressure Sensor | 7 | DT | - | - | - |
[51] | 2022 | Flex Sensor | 7 | - | - | - | - |
[52] | 2013 | Pressure Sensor | 7 | Dynamic Time Warping | 85.90% | 14 | - |
[53] | 2023 | Pressure Sensor | 6 | - | - | 2 | Desktop App |
[54] | 2019 | Pressure Sensor and Ultrasonic Sensor | 15 | CNN and LBCNet | 96% | 8 | Mobile App |
[55] | 2022 | Pressure Sensor | 15 | RF | 98.82% | 18 | Mobile App and Haptic Feedback |
[56] | 2023 | Pressure Sensor | 6 | - | 95% | 37 | Desktop App |
[57] | 2019 | Pressure Sensor | 5 | KNN | 98.33% | 12 | - |
[58] | 2022 | Pressure Sensor | 5 | LightGBM | 95.41% | 40 | - |
[59] | 2022 | Pressure Sensor | 6 | DNN | 93% | 50 | - |
[60] | 2023 | Pressure Sensor | 5 | KNN | 99.99% | 118 | - |
[61] | 2023 | Pressure Sensor and Load Cell | 6 | - | 100% | 6 | Mobile App and Desktop App |
Model | Manufacturer | Dimensions (Length × Width × Thickness) (mm) | Force Sensitivity Range (Newtons) |
---|---|---|---|
FSR 402 [68] | Interlink Electronics | 14.68 × 14.68 × 0.46 | 0.1–100 N |
FSR 406 [69] | Interlink Electronics | 39.60 × 39.60 × 0.46 | 0.1–100 N |
FSR01CE [67] | Ohmite | 39.70 × 39.70 × 0.375 | Up to 49 N |
Model | Manufacturer | Dimensions (Length × Width) (mm) | Capacity (kg) |
---|---|---|---|
SEN-10245 [72] | SparkFun Electronics | 34 × 34 | 40–50 |
P0236-142 [31] | Hanjin Data Corps | 34 × 34 | - |
Model | Manufacturer | Dimensions (Length × Width) (mm) | Flat Resistance |
---|---|---|---|
FS-L-055-253-ST [74] | Spectra Symbol | 112.24 × 6.35 | 10 K Ohms |
Flex Sensor 2.2 [75] | Spectra Symbol | 73.66 × 6.35 | 25 K Ohms |
Sensor | Accuracy | # of Postures |
---|---|---|
Textile Pressure Sensor Array [52] | 85% | 14 |
52 × 44 Piezo-Resistive Sensor Array [25] | 92% | 8 |
32 × 32 Pressure Sensor Array [29] | 89.60% | 4 |
Textile Pressure Sensors (Woven Fabric) [32] | - | 7 |
8 × 8 Pressure Mat Sensor [41] | 95% | 5 |
400 mm × 400 mm Flexible Array Pressure Sensor [43] | 95% | 6 |
11 × 13 Pressure Array (IMM00014, I-MOTION) [30] | 97% | 7 |
Screen-Printed Pressure Sensor Units (16-Array) [24] | 99% | 4 |
Two Pressure Sensor Arrays (FSR) [48] | 88% | 15 |
44 × 52 Pressure Sensor Array [44] | 99% | 5 |
32 × 32 Pressure Sensor Array [59] | 93% | 6 |
Sensor | Accuracy | # of Postures |
---|---|---|
10 Textile Capacitive Sensors (PreCaTex) [26] | - | 8 |
19 4 × 4 Pressure Sensors (Force Sensing Resistors) [37] | 78% | 10 |
6 Flexible Force Sensors (FSR402) [27] | - | 9 |
8 Force Sensing Resistors [28] | 91% | 8 |
6 Pressure Sensors and 6 Infrared Reflective Distance Sensors [35] | 92% | 11 |
8 Low-Resolution Matrices of Pressure Sensors [36] | 70% | 8 |
12 Pressure Sensors (Force Sensitive Resistor) [38] | 99% | 5 |
16 Force Sensors and Accelerometer [39] | 90% | 7 |
13 Pressure Sensors (FSR-406) [40] | 99% | 10 |
6 Force Sensitive Resistors (FSRs) [42] | 81% | 7 |
6 FSR Sensors [46] | 89% | 5 |
6 Square-Type Force Sensing Resistors [47] | - | - |
8 Force Sensing Resistors FSR 406 [50] | - | 7 |
5 Flex Sensors [51] | - | 7 |
4 FSR Pressure Sensors [53] | - | 6 |
16 Pressure Sensors and 2 Ultrasonic Sensors [54] | 96% | 15 |
9 E-Textile Pressure Sensors [55] | 98% | 15 |
9 FSR Sensors [60] | 99% | 5 |
4 FSR Sensors and 4 Load Cells [61] | 100% | 6 |
9 FSR Sensors [58] | 95% | 5 |
13 Piezoresistive Sensors [57] | 98% | 5 |
16 FSR Sensors [56] | 95% | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odesola, D.F.; Kulon, J.; Verghese, S.; Partlow, A.; Gibson, C. Smart Sensing Chairs for Sitting Posture Detection, Classification, and Monitoring: A Comprehensive Review. Sensors 2024, 24, 2940. https://doi.org/10.3390/s24092940
Odesola DF, Kulon J, Verghese S, Partlow A, Gibson C. Smart Sensing Chairs for Sitting Posture Detection, Classification, and Monitoring: A Comprehensive Review. Sensors. 2024; 24(9):2940. https://doi.org/10.3390/s24092940
Chicago/Turabian StyleOdesola, David Faith, Janusz Kulon, Shiny Verghese, Adam Partlow, and Colin Gibson. 2024. "Smart Sensing Chairs for Sitting Posture Detection, Classification, and Monitoring: A Comprehensive Review" Sensors 24, no. 9: 2940. https://doi.org/10.3390/s24092940
APA StyleOdesola, D. F., Kulon, J., Verghese, S., Partlow, A., & Gibson, C. (2024). Smart Sensing Chairs for Sitting Posture Detection, Classification, and Monitoring: A Comprehensive Review. Sensors, 24(9), 2940. https://doi.org/10.3390/s24092940