Gait Pattern Analysis: Integration of a Highly Sensitive Flexible Pressure Sensor on a Wireless Instrumented Insole
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensor Fabrication
2.2. Working Principle
2.3. Electrical and Mechanical Characterization
2.4. Hardware and Wireless Data Transmission
3. Results and Discussion
3.1. Electrical and Mechanical Properties
3.2. Sensor Performance and Characteristics
3.3. Sensitivity and Linearity Evaluation
3.4. High-Pressure Performance
3.5. Gait Signal Acquisition and Analysis
3.6. Practical Applications and Wireless Monitoring
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muro-de-la-Herran, A.; García-Zapirain, B.; Méndez-Zorrilla, A. Gait Analysis Methods: An Overview of Wearable and Non-Wearable Systems, Highlighting Clinical Applications. Sensors 2014, 14, 3362–3394. [Google Scholar] [CrossRef] [PubMed]
- Gurchiek, R.D.; Choquette, R.H.; Beynnon, B.D.; Slauterbeck, J.R.; Tourville, T.W.; Toth, M.J.; McGinnis, R.S. Open-Source Remote Gait Analysis: A Post-Surgery Patient Monitoring Application. Sci. Rep. 2019, 9, 17966. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.L.; Dai, Y.N.; Grimaldi, N.S.; Lin, J.J.; Hu, B.Y.; Wu, Y.F.; Gao, S. Plantar Pressure-Based Insole Gait Monitoring Techniques for Diseases Monitoring and Analysis: A Review. Adv. Mater. Technol. 2022, 7, 2100566. [Google Scholar] [CrossRef]
- Wang, L.; Jones, D.; Chapman, G.J.; Siddle, H.J.; Russell, D.A.; Alazmani, A.; Culmer, P. A Review of Wearable Sensor Systems to Monitor Plantar Loading in the Assessment of Diabetic Foot Ulcers. IEEE Trans. Biomed. Eng. 2020, 67, 1989–2004. [Google Scholar] [CrossRef]
- Mahmud, S.; Khandakar, A.; Chowdhury, M.E.H.; AbdulMoniem, M.; Reaz, M.B.I.; Mahbub, Z.B.; Sadasivuni, K.K.; Murugappan, M.; Alhatou, M. Fiber Bragg Gratings based smart insole to measure plantar pressure and temperature. Sens. Actuators A Phys. 2023, 350, 114092. [Google Scholar] [CrossRef]
- Bucinskas, V.; Dzedzickis, A.; Rozene, J.; Subaciute-Zemaitiene, J.; Satkauskas, I.; Uvarovas, V.; Bobina, R.; Morkvenaite-Vilkonciene, I. Wearable feet pressure sensor for human gait and falling diagnosis. Sensors 2021, 21, 5240. [Google Scholar] [CrossRef]
- Hegde, N.; Bries, M.; Sazonov, E. A Comparative Review of Footwear-Based Wearable Systems. Electronics 2016, 5, 48. [Google Scholar] [CrossRef]
- Majumder, J.A.; Zerin, I.; Tamma, C.P.; Ahamed, S.I.; Smith, R.O. A Wireless Smart-Shoe System for Gait Assistance. In Proceedings of the 2015 IEEE Great Lakes Biomedical Conference, GLBC 2015, Milwaukee, WI, USA, 14–15 May 2015. [Google Scholar] [CrossRef]
- de Fazio, R.; Perrone, E.; Velázquez, R.; De Vittorio, M.; Visconti, P. Development of a self-powered piezo-resistive smart insole equipped with low-power ble connectivity for remote gait monitoring. Sensors 2021, 21, 4539. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Hong, S.H.; Oh, H.W. Characterization of elastic polymer-based smart insole and a simple foot plantar pressure visualization method using 16 electrodes. Sensors 2019, 19, 44. [Google Scholar] [CrossRef]
- Tao, J.; Dong, M.; Li, L.; Wang, C.; Li, J.; Liu, Y.; Bao, R.; Pan, C. Real-time pressure mapping smart insole system based on a controllable vertical pore dielectric layer. Microsyst. Nanoeng. 2020, 6, 62. [Google Scholar] [CrossRef]
- Jia, W.; Zhang, Q.; Cheng, Y.; Wang, J.; Zhang, H.; Sang, S.; Ji, J. A Flexible Capacitive Paper-Based Pressure Sensor Fabricated Using 3D Printing. Chemosensors 2022, 10, 432. [Google Scholar] [CrossRef]
- Samarentsis, A.G.; Makris, G.; Spinthaki, S.; Christodoulakis, G.; Tsiknakis, M.; Pantazis, A.K. A 3D-Printed Capacitive Smart Insole for Plantar Pressure Monitoring. Sensors 2022, 22, 9725. [Google Scholar] [CrossRef] [PubMed]
- Ntagios, M.; Dahiya, R. 3D Printed Soft and Flexible Insole with Intrinsic Pressure Sensing Capability. IEEE Sens. J. 2023, 23, 23995–24003. [Google Scholar] [CrossRef]
- Huang, H.; Zhong, J.; Ye, Y.; Wu, R.; Luo, B.; Ning, H.; Qiu, T.; Luo, D.; Yao, R.; Peng, J. Research Progresses in Microstructure Designs of Flexible Pressure Sensors. Polymers 2022, 14, 3670. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Koo, S.-M.; Kim, C.H. Capacitive-Type Pressure Sensor for Classification of the Activities of Daily Living. Micro 2023, 3, 35–50. [Google Scholar] [CrossRef]
- Zhang, Z.; He, T.; Zhu, M.; Sun, Z.; Shi, Q.; Zhu, J.; Dong, B.; Yuce, M.R.; Lee, C. Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications. NPJ Flex. Electron. 2020, 4, 29. [Google Scholar] [CrossRef]
- Cui, X.; Huang, F.; Zhang, X.; Song, P.; Zheng, H.; Chevali, V.; Wang, H.; Xu, Z. Flexible Pressure Sensors via Engineering Microstructures for Wearable Human-Machine Interaction and Health Monitoring Applications. iScience 2022, 25, 104148. [Google Scholar] [CrossRef]
- Min, S.D.; Wang, C.; Park, D.S.; Park, J.H. Development of A Textile Capacitive Proximity Sensor and Gait Monitoring System for Smart Healthcare. J. Med. Syst. 2018, 42, 76. [Google Scholar] [CrossRef]
- Hori, K.; Mao, Y.; Ono, Y.; Ora, H.; Hirobe, Y.; Sawada, H.; Inaba, A.; Orimo, S.; Miyake, Y. Inertial Measurement Unit-Based Estimation of Foot Trajectory for Clinical Gait Analysis. Front. Physiol. 2020, 10, 1530. [Google Scholar] [CrossRef]
- Gujarathi, T.; Bhole, K. Gait Analysis Using Imu Sensor. In Proceedings of the 2019 10th International Conference on Computing, Communication and Networking Technologies, ICCCNT 2019, Kanpur, India, 6–8 July 2019. [Google Scholar] [CrossRef]
- Romijnders, R.; Warmerdam, E.; Hansen, C.; Welzel, J.; Schmidt, G.; Maetzler, W. Validation of IMU-based gait event detection during curved walking and turning in older adults and Parkinson’s Disease patients. J. Neuroeng. Rehabil. 2021, 18, 28. [Google Scholar] [CrossRef]
- Shaikh, M.F.; Salcic, Z.; Wang, K. Analysis and Selection of the Force Sensitive Resistors for Gait Characterisation. In Proceedings of the ICARA 2015—2015 6th International Conference on Automation, Robotics and Applications, Queenstown, New Zealand, 17–19 February 2015. [Google Scholar] [CrossRef]
- Park, J.S.; Lee, C.M.; Koo, S.M.; Kim, C.H. Gait Phase Detection Using Force Sensing Resistors. IEEE Sens. J. 2020, 20, 6516–6523. [Google Scholar] [CrossRef]
- Das, P.S.; Ahmed, H.E.U.; Motaghedi, F.; Lester, N.J.; Khalil, A.; Al Janaideh, M.; Anees, S.; Carmichael, T.B.; Bain, A.R.; Rondeau-Gagne, S.; et al. A Wearable Multisensor Patch for Breathing Pattern Recognition. IEEE Sens. J. 2023, 23, 10924–10934. [Google Scholar] [CrossRef]
- Park, S.W.; Das, P.S.; Chhetry, A.; Park, J.Y. A Flexible Capacitive Pressure Sensor for Wearable Respiration Monitoring System. IEEE Sens. J. 2017, 17, 6558–6564. [Google Scholar] [CrossRef]
- Zeng, Y.; Qin, Y.; Yang, Y.; Lu, X. A Low-Cost Flexible Capacitive Pressure Sensor for Health Detection. IEEE Sens. J. 2022, 22, 7665–7673. [Google Scholar] [CrossRef]
- Momin, M.A.; Rahman, M.J.; Mieno, T. Foot pressure sensor system made from MWCNT coated cotton fibers to monitor human activities. Surf. Coat. Technol. 2020, 394, 125749. [Google Scholar] [CrossRef]
- Dinh, T.; Phan, H.P.; Nguyen, T.K.; Fastier-Wooller, J.; Foisal, A.R.M.; Lafta, W.M.; Nguyen, N.T.; Dao, D.V. Sensitive and Fast Response Graphite Pressure Sensor Fabricated by a Solvent-Free Approach. In Proceedings of the IEEE Sensors 2017, Glasgow, UK, 29 October–1 November 2017. [Google Scholar] [CrossRef]
- Cheng, W.; Wang, J.; Ma, Z.; Yan, K.; Wang, Y.; Wang, H.; Li, S.; Li, Y.; Pan, L.; Shi, Y. Flexible Pressure Sensor with High Sensitivity and Low Hysteresis Based on a Hierarchically Microstructured Electrode. IEEE Electron. Device Lett. 2018, 39, 288–291. [Google Scholar] [CrossRef]
- Duan, Z.; Jiang, Y.; Huang, Q.; Yuan, Z.; Zhao, Q.; Wang, S.; Zhang, Y.; Tai, H. A do-it-yourself approach to achieving a flexible pressure sensor using daily use materials. J. Mater. Chem. C Mater. 2021, 9, 13659–13667. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Zhang, Y.L.; Jiao, Z.Z.; Han, D.D.; Sun, H.B. Directly drawing high-performance capacitive sensors on copying tissues. Nanoscale 2018, 10, 17002–17006. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.; Han, X.; Zou, Y.; Qu, X.; Xue, J.; Li, T.; Wang, Y.; Luo, R.; Cui, X.; Xi, Y.; et al. Self-Powered Gesture Recognition Wristband Enabled by Machine Learning for Full Keyboard and Multicommand Input. Adv. Mater. 2022, 34, 2200793. [Google Scholar] [CrossRef]
- Aqueveque, P.; Pastene, F.; Osorio, R.; Saavedra, F.; Pinto, D.; Ortega-Bastidas, P.; Gomez, B. A Novel Capacitive Step Sensor to Trigger Stimulation on Functional Electrical Stimulators Devices for Drop Foot. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 3083–3088. [Google Scholar] [CrossRef]
- Carvalho, A.F.; Fernandes, A.J.S.; Martins, R.; Fortunato, E.; Costa, F.M. Laser-Induced Graphene Piezoresistive Sensors Synthesized Directly on Cork Insoles for Gait Analysis. Adv. Mater. Technol. 2020, 5, 2000630. [Google Scholar] [CrossRef]
- Jung, I.J.; Chang, S.H. Self-Powered Smart Shoes with Functional Ribbon Units for Monitoring Human Gait. Adv. Mater. Technol. 2022, 7, 2200306. [Google Scholar] [CrossRef]
- Li, J.; Liu, P.; Hu, Q.; Tong, W.; Sun, Y.; Feng, H.; Wu, S.; Hu, R.; Liu, C.; Wang, Y.; et al. An Ultra-Sensitive Flexible Resistive Sensor with Double Strain Layer and Crack Inspired by the Physical Structure of Human Epidermis: Design, Fabrication, and Cuffless Blood Pressure Monitoring Application. Adv. Mater. Technol. 2023, 8, 2201466. [Google Scholar] [CrossRef]
- Ramirez-Bautista, J.A.; Huerta-Ruelas, J.A.; Chaparro-Cárdenas, S.L.; Hernández-Zavala, A. A Review in Detection and Monitoring Gait Disorders Using In-Shoe Plantar Measurement Systems. IEEE Rev. Biomed. Eng. 2017, 10, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, M.; Hong, I.; Kim, T.; Lee, E.; Kim, E.A.; Ryu, J.K.; Jo, Y.; Koo, J.; Han, S.; et al. Foot plantar pressure measurement system using highly sensitive crack-based sensor. Sensors 2019, 19, 5504. [Google Scholar] [CrossRef] [PubMed]
- Lou, C.; Wang, S.; Liang, T.; Pang, C.; Huang, L.; Run, M.; Liu, X. A graphene-based flexible pressure sensor with applications to plantar pressure measurement and gait analysis. Materials 2017, 10, 1068. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, D.; Ramalingame, R.; Palaniyappan, S.; Wagner, G.; Kanoun, O. Flexible ultra-thin nanocomposite based piezoresistive pressure sensors for foot pressure distribution measurement. Sensors 2021, 21, 6082. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.S.; Goldberg, D.; Large, E.; Kim, I. Highly Sensitive Flexible/Stretchable Smart Insole Pressure Sensor with Multi-Walled Carbon Nanotubes and Polydimethylsiloxane Double-Layer Composites. In Proceedings of the IEEE Sensors 2020, Rotterdam, The Netherlands, 25–28 October 2020. [Google Scholar] [CrossRef]
- Zhang, X.; Chai, R.; Wang, H.; Ye, X. A plantar pressure sensing system with balancing sensitivity based on tailored MWCNTs/PDMS composites. Micromachines 2018, 9, 466. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.Y.; Fekiri, C.; Kim, H.C.; Lee, I.H. Development of Plantar Pressure Distribution Measurement Shoe Insole with Built-in Printed Curved Sensor Structure. Int. J. Precis. Eng. Manuf. 2022, 23, 565–572. [Google Scholar] [CrossRef]
- Guan, Y.; Bai, M.; Li, Q.; Li, W.; Liu, G.; Liu, C.; Chen, Y.; Lin, Y.; Hui, Y.; Wei, R. A plantar wearable pressure sensor based on hybrid lead zirconate-titanate/microfibrillated cellulose piezoelectric composite films for human health monitoring. Lab Chip 2022, 22, 2376–2391. [Google Scholar] [CrossRef]
- Zheng, Q.; Dai, X.; Wu, Y.; Liang, Q.; Wu, Y.; Yang, J.; Dong, B.; Gao, G.; Qin, Q.; Huang, L. Self-powered high-resolution smart insole system for plantar pressure mapping. BMEMat 2023, 1, e12008. [Google Scholar] [CrossRef]
- Wang, F.; Ren, Z.; Nie, J.; Tian, J.; Ding, Y.; Chen, X. Self-powered sensor based on bionic antennae arrays and triboelectric nanogenerator for identifying noncontact motions. Adv. Mater. Technol. 2019, 5, 1900789. [Google Scholar] [CrossRef]
- Garcia-Soidan, J.L.; Leiros-Rodriguez, R.; Romo-Perez, V.; García-Liñeira, J. Accelerometric assessment of postural balance in children: A systematic review. Diagnostics 2021, 11, 8. [Google Scholar] [CrossRef] [PubMed]
- Pignanelli, J.; Schlingman, K.; Carmichael, T.B.; Rondeau-Gagné, S.; Ahamed, M.J. A comparative analysis of capacitive-based flexible PDMS pressure sensors. Sens. Actuators A Phys. 2019, 285, 427–436. [Google Scholar] [CrossRef]
- Shop Cricut Maker Inc. 2010. Available online: https://cricut.com/en-ca/ (accessed on 10 October 2022).
Parameters | Measured Value/Properties/Justifications |
---|---|
Pressure Range | From 0 to 1000 kPa covers the typical pressures exerted by the foot during activities like walking, running, and standing. We evaluated 0 to 300 kPa. |
Sensitivity | A range of 0.001–10 kPa−1 pressure change is what the sensor should detect. The proposed flexible capacitive pressure sensor exhibits high sensitivity and linearity under low pressure (SS1 = 0.06 kPa−1, R2 = 0.96) and high pressure (SS2 = 0.006 kPa−1, R2 = 0.92) |
Accuracy | The desired level of accuracy for pressure measurements is 90% to 95%. To quantify the sensor error and repeatability, multiple experiments were performed with loading and unloading of the same pressure (5 kPa), as shown in Figure 3B. Results showed that the mean value of ΔC/C0 is 0.6940, standard deviation is 0.0236, and standard error is 0.0016. |
Precision | Accurate measuring is needed to catch small changes in how people walk, so we can study them closely and see how they improve over time. For that reason, we measured the tiny pressure (1 g weight). |
Reliability | The proposed system gives the same results each time we measure. |
Linearity | The sensor’s response is linear across the pressure range. The flexible capacitive pressure sensor exhibits high sensitivity and linearity under low pressure (SS1 = 0.06 kPa−1, R2 = 0.96) and high pressure (SS2 = 0.006 kPa−1, R2 = 0.92). |
Real-Time Monitoring | We made real-time monitoring capability that allows us to see the changes in capacitances with load in real-time. |
User-Friendly Interface | We used a simple microcontroller-based user interface and software for the data collection and analysis. |
Durability | We used PDMS as the substrate which is durable construction and robust materials ensure the longevity and reliability of the gait sensing system. |
Portability | To enhance portability, we designed the data acquisition device to be rechargeable and portable, utilizing lithium polymer (Li-Po) batteries that included built-in protection circuitry. App-based data connectivity. |
Hysteresis | Minimize the difference in sensor output for the same pressure, depending on whether the pressure is increasing or decreasing. Figure 4D shows the variation in relative capacitive change for loading and unloading which indicates low hysteresis. |
Response Time | The capacitive pressure sensor demonstrated response and relaxation periods of 200 ms and 175 ms, respectively, as presented in Figure 3F. |
Stability | The sensor’s performance remains consistent over time, according to Figure 5C,D. |
Size and Form Factor | The thickness of the dielectric layers is approx. 3 mm, and the size of the sensor is approx. 2.5 cm × 4 cm. In addition, the outer diameter of the sensor and the diameter of the detection area (i.e., the electrodes) were approximately 2.5 mm and 7 mm, respectively. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, P.S.; Skaf, D.; Rose, L.; Motaghedi, F.; Carmichael, T.B.; Rondeau-Gagné, S.; Ahamed, M.J. Gait Pattern Analysis: Integration of a Highly Sensitive Flexible Pressure Sensor on a Wireless Instrumented Insole. Sensors 2024, 24, 2944. https://doi.org/10.3390/s24092944
Das PS, Skaf D, Rose L, Motaghedi F, Carmichael TB, Rondeau-Gagné S, Ahamed MJ. Gait Pattern Analysis: Integration of a Highly Sensitive Flexible Pressure Sensor on a Wireless Instrumented Insole. Sensors. 2024; 24(9):2944. https://doi.org/10.3390/s24092944
Chicago/Turabian StyleDas, Partha Sarati, Daniella Skaf, Lina Rose, Fatemeh Motaghedi, Tricia Breen Carmichael, Simon Rondeau-Gagné, and Mohammed Jalal Ahamed. 2024. "Gait Pattern Analysis: Integration of a Highly Sensitive Flexible Pressure Sensor on a Wireless Instrumented Insole" Sensors 24, no. 9: 2944. https://doi.org/10.3390/s24092944
APA StyleDas, P. S., Skaf, D., Rose, L., Motaghedi, F., Carmichael, T. B., Rondeau-Gagné, S., & Ahamed, M. J. (2024). Gait Pattern Analysis: Integration of a Highly Sensitive Flexible Pressure Sensor on a Wireless Instrumented Insole. Sensors, 24(9), 2944. https://doi.org/10.3390/s24092944