Helping Blind People Grasp: Evaluating a Tactile Bracelet for Remotely Guiding Grasping Movements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Technical Setup
2.3. Experimental Procedure
2.4. Pilot Study Procedures
2.5. Statistical Analysis
3. Results
3.1. Localization Task
3.2. Grasping Task
3.3. Questionnaire
3.4. Pilot Study with Blind Participants
3.5. Pilot Study with AI Control System
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Blindness and Vision Impairment. Available online: https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment (accessed on 16 January 2024).
- Twitchell, T.E. The automatic grasping responses of infants. Neuropsychologia 1965, 3, 247–259. [Google Scholar] [CrossRef]
- von Hofsten, C. Mastering Reaching and Grasping: The Development of Manual Skills in Infancy. Adv. Psychol. 1989, 61, 223–258. [Google Scholar] [CrossRef]
- Schneiberg, S.; Sveistrup, H.; McFadyen, B.; McKinley, P.; Levin, M.F. The development of coordination for reach-to-grasp movements in children. Exp. Brain Res. 2002, 146, 142–154. [Google Scholar] [CrossRef]
- Bock, O.; Züll, A. Characteristics of grasping movements in a laboratory and in an everyday-like context. Hum. Mov. Sci. 2013, 32, 249–256. [Google Scholar] [CrossRef]
- O’Shea, H.; Redmond, S.J. A review of the neurobiomechanical processes underlying secure gripping in object manipulation. Neurosci. Biobehav. Rev. 2021, 123, 286–300. [Google Scholar] [CrossRef] [PubMed]
- Jeannerod, M. Visuomotor channels: Their integration in goal-directed prehension. Hum. Mov. Sci. 1999, 18, 201–218. [Google Scholar] [CrossRef]
- Smeets, J.B.; van der Kooij, K.; Brenner, E. A review of grasping as the movements of digits in space. J. Neurophysiol. 2019, 122, 1578–1597. [Google Scholar] [CrossRef]
- Pardhan, S.; Gonzalez-Alvarez, C.; Subramanian, A. How does the presence and duration of central visual impairment affect reaching and grasping movements? Ophthalmic Physiol. Opt. 2011, 31, 233–239. [Google Scholar] [CrossRef]
- Langelaan, M.; De Boer, M.R.; Van Nispen, R.M.; Wouters, B.; Moll, A.C.; Van Rens, G.H. Impact of visual impairment on quality of life: A comparison with quality of life in the general population and with other chronic conditions. Ophthalmic Epidemiol. 2007, 14, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Jeannerod, M. The timing of natural prehension movements. J. Mot. Behav. 1984, 16, 235–254. [Google Scholar] [CrossRef]
- Smeets, J.B.; Brenner, E. A New View on Grasping. Mot. Control 1999, 3, 237–271. [Google Scholar] [CrossRef] [PubMed]
- Stone, K.; Gonzalez, C. The contributions of vision and haptics to reaching and grasping. Front. Psychol. 2015, 6, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Caraiman, S.; Zvoristeanu, O.; Burlacu, A.; Herghelegiu, P. Stereo Vision Based Sensory Substitution for the Visually Impaired. Sensors 2019, 19, 2771. [Google Scholar] [CrossRef] [PubMed]
- Gomez, J.D.; Bologna, G.; Pun, T. See ColOr: An extended sensory substitution device for the visually impaired. J. Assist. Technol. 2014, 8, 77–94. [Google Scholar] [CrossRef]
- Hanneton, S.; Auvray, M.; Durette, B. The Vibe: A versatile vision-to-audition sensory substitution device. Appl. Bionics Biomech. 2010, 7, 269–276. [Google Scholar] [CrossRef]
- Ward, J.; Meijer, P. Visual experiences in the blind induced by an auditory sensory substitution device. Conscious. Cogn. 2010, 19, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Bach-y Rita, P.; Collins, C.C.; Saunders, F.A.; White, B.; Scadden, L. Vision Substitution by Tactile Image Projection. Nature 1969, 221, 963–964. [Google Scholar] [CrossRef] [PubMed]
- Striem-Amit, E.; Cohen, L.; Dehaene, S.; Amedi, A. Reading with Sounds: Sensory Substitution Selectively Activates the Visual Word Form Area in the Blind. Neuron 2012, 76, 640–652. [Google Scholar] [CrossRef] [PubMed]
- Abboud, S.; Hanassy, S.; Levy-Tzedek, S.; Maidenbaum, S.; Amedi, A. EyeMusic: Introducing a ’visual’ colorful experience for the blind using auditory sensory substitution. Restor. Neurol. Neurosci. 2014, 32, 247–257. [Google Scholar] [CrossRef]
- Röder, B.; Teder-Sälejärvi, W.; Sterr, A.; Rösler, F.; Hillyard, S.A.; Neville, H.J. Improved auditory spatial tuning in blind humans. Nature 1999, 400, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Kerdegari, H.; Kim, Y.; Prescott, T.J. Head-Mounted Sensory Augmentation Device: Designing a Tactile Language. IEEE Trans. Haptics 2016, 9, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.T.; Yoon, H.U.; Hur, P. A portable sensory augmentation device for balance rehabilitation using fingertip skin stretch feedback. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Schumann, F.; O’Regan, J.K. Sensory augmentation: Integration of an auditory compass signal into human perception of space. Sci. Rep. 2017, 7, 42197. [Google Scholar] [CrossRef] [PubMed]
- Macpherson, F. Sensory Substitution and Augmentation: An Introduction. In Sensory Substitution and Augmentation; Proceedings of the British Academy: London, UK, 2018; pp. 1–42. [Google Scholar] [CrossRef]
- O’Regan, J.K.; Noë, A. A sensorimotor account of vision and visual consciousness. Behav. Brain Sci. 2001, 24, 939–973. [Google Scholar] [CrossRef]
- Kärcher, S.M.; Fenzlaff, S.; Hartmann, D.; Nagel, S.K.; König, P. Sensory augmentation for the blind. Front. Hum. Neurosci. 2012, 6, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kaspar, K.; König, S.; Schwandt, J.; König, P. The experience of new sensorimotor contingencies by sensory augmentation. Conscious. Cogn. 2014, 28, 47–63. [Google Scholar] [CrossRef]
- Yu, Z.; Horvath, S.; Delazio, A.; Wang, J.; Almasi, R.; Klatzky, R.; Galeotti, J.; Stetten, G.D. PalmSight: An Assistive Technology Helping the Blind to Locate and Grasp Objects; Technical Report; Carnegie Mellon University: Pittsburgh, PA, USA, 2016; pp. 16–59. [Google Scholar]
- Satpute, S.A.; Canady, J.R.; Klatzky, R.L.; Stetten, G.D. FingerSight: A Vibrotactile Wearable Ring for Assistance with Locating and Reaching Objects in Peripersonal Space. IEEE Trans. Haptics 2020, 13, 325–333. [Google Scholar] [CrossRef] [PubMed]
- de Paz, C.; Ibáñez-Gijón, J.; Travieso, D.; Jacobs, D.M. Grasping objects with a sensory substitution glove. Int. J. Hum. Comput. Stud. 2023, 170, 102963. [Google Scholar] [CrossRef]
- Zacharias, R. Augmenting Functional Vision Using Tactile Guidance. Bachelor’s Thesis, Osnabrück University, Osnabrück, Germany, 2023. [Google Scholar]
- Kording, K.P.; Blohm, G.; Schrater, P.; Kay, K. Appreciating the variety of goals in computational neuroscience. arXiv 2020, arXiv:2002.03211. [Google Scholar]
- Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.; NanoCode012; Kwon, Y.; Michael, K.; Xie, T.; Fang, J.; Imyhxy; et al. ultralytics/yolov5: v7.0—YOLOv5 SOTA Realtime Instance Segmentation. Zenodo 2022. Available online: https://zenodo.org/records/7347926 (accessed on 16 January 2024).
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. In Proceedings of the Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014; pp. 740–755. [Google Scholar] [CrossRef]
- Bambach, S.; Lee, S.; Crandall, D.J.; Yu, C. Lending A Hand: Detecting Hands and Recognizing Activities in Complex Egocentric Interactions. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1949–1957. [Google Scholar] [CrossRef]
- Fisk, G. The wrist. Review article. J. Bone Jt. Surg. Br. 1984, 66, 396–407. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, J.; Ke, P.; Guo, X.; Yiu, C.K.; Yao, K.; Cai, S.; Li, D.; Zhou, Y.; Li, J.; et al. A skin-integrated multimodal haptic interface for immersive tactile feedback. Nat. Electron. 2023, 6, 1020–1031. [Google Scholar] [CrossRef]
- Johansson, R.S.; Vallbo, A.B. Tactile sensibility in the human hand: Relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J. Physiol. 1979, 286, 283–300. [Google Scholar] [CrossRef]
- See, A.R.; Choco, J.A.G.; Chandramohan, K. Touch, Texture and Haptic Feedback: A Review on How We Feel the World around Us. Appl. Sci. 2022, 12, 4686. [Google Scholar] [CrossRef]
- Wessberg, J.; Olausson, H.; Fernström, K.W.; Vallbo, Å.B. Receptive Field Properties of Unmyelinated Tactile Afferents in the Human Skin. J. Neurophysiol. 2003, 89, 1567–1575. [Google Scholar] [CrossRef]
- Koutsoklenis, A.; Papadopoulos, K. Auditory Cues Used for Wayfinding in Urban Environments by Individuals with Visual Impairments. J. Vis. Impair. Blind. 2011, 105, 703–714. [Google Scholar] [CrossRef]
- Lerens, E.; Renier, L. Does visual experience influence the spatial distribution of auditory attention? Acta Psychol. 2014, 146, 58–62. [Google Scholar] [CrossRef]
- Papadopoulos, K.; Papadimitriou, K.; Koutsoklenis, A. The role of sound cues in the spatial knowledge of blind individuals. Int. J. Spec. Educ. 2012, 27, 169–180. [Google Scholar]
- Waisbourd, M.; Ahmed, O.M.; Newman, J.; Sahu, M.; Robinson, D.; Siam, L.; Reamer, C.B.; Zhan, T.; Goldstein, M.; Kurtz, S.; et al. The Effect of an Innovative Vision Simulator (OrCam) on Quality of Life in Patients with Glaucoma. J. Vis. Impair. Blind. 2019, 113, 332–340. [Google Scholar] [CrossRef]
- Merchel, S.; Altinsoy, M.E. Psychophysical comparison of the auditory and tactile perception: A survey. J. Multimodal User Interfaces 2020, 14, 271–283. [Google Scholar] [CrossRef]
- Doucet, M.E.; Guillemot, J.P.; Lassonde, M.; Gagné, J.P.; Leclerc, C.; Lepore, F. Blind subjects process auditory spectral cues more efficiently than sighted individuals. Exp. Brain Res. 2005, 160, 194–202. [Google Scholar] [CrossRef]
- Occelli, V.; Spence, C.; Zampini, M. Auditory, tactile, and audiotactile information processing following visual deprivation. Psychol. Bull. 2013, 139, 189–212. [Google Scholar] [CrossRef]
- Bottini, R.; Crepaldi, D.; Casasanto, D.; Crollen, V.; Collignon, O. Space and time in the sighted and blind. Cognition 2015, 141, 67–72. [Google Scholar] [CrossRef]
- Goldreich, D.; Kanics, I.M. Performance of blind and sighted humans on a tactile grating detection task. Percept. Psychophys. 2006, 68, 1363–1371. [Google Scholar] [CrossRef]
- Cattaneo, Z.; Vecchi, T.; Cornoldi, C.; Mammarella, I.; Bonino, D.; Ricciardi, E.; Pietrini, P. Imagery and spatial processes in blindness and visual impairment. Neurosci. Biobehav. Rev. 2008, 32, 1346–1360. [Google Scholar] [CrossRef]
- Monegato, M.; Cattaneo, Z.; Pece, A.; Vecchi, T. Comparing the Effects of Congenital and Late Visual Impairments on Visuospatial Mental Abilities. J. Vis. Impair. Blind. 2007, 101, 278–295. [Google Scholar] [CrossRef]
- Amedi, A.; Malach, R.; Hendler, T.; Peled, S.; Zohary, E. Visuo-haptic object-related activation in the ventral visual pathway. Nat. Neurosci. 2001, 4, 324–330. [Google Scholar] [CrossRef]
- Dormal, G.; Pelland, M.; Rezk, M.; Yakobov, E.; Lepore, F.; Collignon, O. Functional Preference for Object Sounds and Voices in the Brain of Early Blind and Sighted Individuals. J. Cogn. Neurosci. 2018, 30, 86–106. [Google Scholar] [CrossRef]
- Nyquist, J.B.; Lappin, J.S.; Zhang, R.; Tadin, D. Perceptual training yields rapid improvements in visually impaired youth. Sci. Rep. 2016, 6, 1–13. [Google Scholar] [CrossRef]
- Gori, M. Multisensory Integration and Calibration in Children and Adults with and without Sensory and Motor Disabilities. Multisensory Res. 2015, 28, 71–99. [Google Scholar] [CrossRef]
Principal Component Grouping | Questions |
---|---|
PC1—Vibrations |
|
PC2—Bracelet Overall |
|
PC3—Experiment |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Powell, P.; Pätzold, F.; Rouygari, M.; Furtak, M.; Kärcher, S.M.; König, P. Helping Blind People Grasp: Evaluating a Tactile Bracelet for Remotely Guiding Grasping Movements. Sensors 2024, 24, 2949. https://doi.org/10.3390/s24092949
Powell P, Pätzold F, Rouygari M, Furtak M, Kärcher SM, König P. Helping Blind People Grasp: Evaluating a Tactile Bracelet for Remotely Guiding Grasping Movements. Sensors. 2024; 24(9):2949. https://doi.org/10.3390/s24092949
Chicago/Turabian StylePowell, Piper, Florian Pätzold, Milad Rouygari, Marcin Furtak, Silke M. Kärcher, and Peter König. 2024. "Helping Blind People Grasp: Evaluating a Tactile Bracelet for Remotely Guiding Grasping Movements" Sensors 24, no. 9: 2949. https://doi.org/10.3390/s24092949
APA StylePowell, P., Pätzold, F., Rouygari, M., Furtak, M., Kärcher, S. M., & König, P. (2024). Helping Blind People Grasp: Evaluating a Tactile Bracelet for Remotely Guiding Grasping Movements. Sensors, 24(9), 2949. https://doi.org/10.3390/s24092949