Symmetry Breaking as a Basis for Characterization of Dielectric Materials
Abstract
:1. Introduction
2. Theoretical Background
2.1. Dispersion Equations
2.2. Stopband Properties of Broken Symmetric Structures
3. Sensor Design
3.1. Optimization Procedure
3.2. Numerical Validation
3.3. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RCWA | Rigorous Coupled Wave Analysis |
BM | Broken mirror |
BG | Broken glide |
TE | Transverse electric |
TM | Transverse magnetic |
SUT | Substrate under test |
LMS | Least mean squares |
Appendix A
References
- Venkatesh, M.; Raghavan, V.G. An overview of dielectric properties measuring techniques. Can. Biosyst. Eng. 2005, 47, 15–30. [Google Scholar]
- Krupka, J. Frequency domain complex permittivity measurements at microwave frequencies. Meas. Sci. Technol. 2006, 17, R55–R70. [Google Scholar] [CrossRef]
- Tereshchenko, O.V.; Buesink, F.J.K.; Leferink, F.B.J. An overview of the techniques for measuring the dielectric properties of materials. In Proceedings of the 2011 XXXth URSI General Assembly and Scientific Symposium, Istanbul, Turkey, 13–20 August 2011; pp. 1–4. [Google Scholar] [CrossRef]
- Sheen, J. Comparisons of microwave dielectric property measurements by transmission/reflection techniques and resonance techniques. Meas. Sci. Technol. 2009, 20, 042001. [Google Scholar] [CrossRef]
- Homola, J. Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem. Rev. 2008, 108, 462–493. [Google Scholar] [CrossRef] [PubMed]
- Telezhnikova, O.; Homola, J. New approach to spectroscopy of surface plasmons. Opt. Lett. 2006, 31, 3339–3341. [Google Scholar] [CrossRef]
- Zafar, R.; Salim, M. Enhanced Figure of Merit in Fano Resonance-Based Plasmonic Refractive Index Sensor. IEEE Sens. J. 2015, 15, 6313–6317. [Google Scholar] [CrossRef]
- Pu, M.; Hu, C.; Huang, C.; Wang, C.; Zhao, Z.; Wang, Y.; Luo, X. Investigation of Fano resonance in planar metamaterial with perturbed periodicity. Opt. Express 2013, 21, 992–1001. [Google Scholar] [CrossRef]
- Crepeau, P.; McIsaac, P. Consequences of symmetry in periodic structures. Proc. IEEE 1964, 52, 33–43. [Google Scholar] [CrossRef]
- Quevedo-Teruel, O.; Valerio, G.; Šipuš, Z.; Rajo-Iglesias, E. Periodic Structures with Higher Symmetries: Their Applications in Electromagnetic Devices. IEEE Microw. Mag. 2020, 21, 36–49. [Google Scholar] [CrossRef]
- Kieburtz, R.; Impagliazzo, J. Multimode propagation on radiating traveling-wave structures with glide-symmetric excitation. IEEE Trans. Antennas Propag. 1970, 18, 3–7. [Google Scholar] [CrossRef]
- Hessel, A.; Chen, M.H.; Li, R.; Oliner, A. Propagation in periodically loaded waveguides with higher symmetries. Proc. IEEE 1973, 61, 183–195. [Google Scholar] [CrossRef]
- Quesada, R.; Martín-Cano, D.; García-Vidal, F.J.; Bravo-Abad, J. Deep-subwavelength negative-index waveguiding enabled by coupled conformal surface plasmons. Opt. Lett. 2014, 39, 2990–2993. [Google Scholar] [CrossRef]
- Padilla, P.; Palomares-Caballero, Á.; Alex-Amor, A.; Valenzuela-Valdés, J.; Fernández-González, J.M.; Quevedo-Teruel, O. Broken Glide-Symmetric Holey Structures for Bandgap Selection in Gap-Waveguide Technology. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 327–329. [Google Scholar] [CrossRef]
- Roberts, S.; Von Hippel, A. A New Method for Measuring Dielectric Constant and Loss in the Range of Centimeter Waves. J. Appl. Phys. 1946, 17, 610–616. [Google Scholar] [CrossRef]
- Baker-Jarvis, J.; Vanzura, E.J.; Kissick, W.A. Improved technique for determining complex permittivity with the transmission/reflection method. IEEE Trans. Microw. Theory Tech. 1990, 38, 1096–1103. [Google Scholar] [CrossRef]
- Moharam, M.G.; Gaylord, T.K. Rigorous coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am. 1981, 71, 811–818. [Google Scholar] [CrossRef]
- Li, L. Use of Fourier series in the analysis of discontinuous periodic structures. J. Opt. Soc. Am. A 1996, 13, 1870–1876. [Google Scholar] [CrossRef]
- Li, L. Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity. J. Opt. Soc. Am. A 1993, 10, 2581–2591. [Google Scholar] [CrossRef]
- Peng, S.T. Rigorous formulation of scattering and guidance by dielectric grating waveguides: General case of oblique incidence. J. Opt. Soc. Am. A 1989, 6, 1869–1883. [Google Scholar] [CrossRef]
- Quevedo-Teruel, O.; Chen, Q.; Mesa, F.; Fonseca, N.J.G.; Valerio, G. On the Benefits of Glide Symmetries for Microwave Devices. IEEE J. Microw. 2021, 1, 457–469. [Google Scholar] [CrossRef]
- Tomić, D.; Šipuš, Z. Rigorous Coupled Wave Analysis of Parallel-Plate Waveguides Loaded with Glide-Symmetric Dielectric Structures. IEEE Trans. Microw. Theory Tech. 2024, 72, 4542–4554. [Google Scholar] [CrossRef]
- Styan, G.P. Hadamard products and multivariate statistical analysis. Linear Algebra Appl. 1973, 6, 217–240. [Google Scholar] [CrossRef]
- Peng, S.; Tamir, T.; Bertoni, H. Theory of Periodic Dielectric Waveguides. IEEE Trans. Microw. Theory Tech. 1975, 23, 123–133. [Google Scholar] [CrossRef]
- Tomić, D. Exploring the Use of Rigorous Coupled Wave Analysis for Multi-Layer Higher-Symmetric Structures; Internal report; University of Zagreb Faculty of Electrical Engineering and Computing: Zagreb, Croatia, 2024. [Google Scholar]
- Avient. Available online: https://www.avient.com/products/engineered-polymer-formulations/conductive-signal-radiation-shielding-formulations/preperm-low-loss-dielectric-thermoplastics (accessed on 16 January 2025).
- Zhang, J.; Koledintseva, M.; Antonini, G.; Drewniak, J.; Orlandi, A.; Rozanov, K. Planar transmission line method for characterization of printed circuit board dielectrics. Prog. Electromagn. Res. 2010, 102, 267–286. [Google Scholar] [CrossRef]
- Djordjevic, A.; Biljie, R.; Likar-Smiljanic, V.; Sarkar, T. Wideband frequency-domain characterization of FR-4 and time-domain causality. IEEE Trans. Electromagn. Compat. 2001, 43, 662–667. [Google Scholar] [CrossRef]
(GHz) | (GHz) | (GHz) | (GHz) | (GHz) | (GHz) | ||
---|---|---|---|---|---|---|---|
3.8 | 10.803 | 10.680 | 10.744 | 4.4 | 10.576 | 10.464 | 10.539 |
3.9 | 10.760 | 10.646 | 10.708 | 4.5 | 10.539 | 10.426 | 10.507 |
4.0 | 10.720 | 10.613 | 10.671 | 4.6 | 10.507 | 10.397 | 10.476 |
4.1 | 10.687 | 10.576 | 10.636 | 4.7 | 10.476 | 10.380 | 10.445 |
4.2 | 10.648 | 10.536 | 10.603 | 4.8 | 10.440 | 10.345 | 10.416 |
4.3 | 10.606 | 10.502 | 10.572 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomić, D.; Šipuš, Z. Symmetry Breaking as a Basis for Characterization of Dielectric Materials. Sensors 2025, 25, 532. https://doi.org/10.3390/s25020532
Tomić D, Šipuš Z. Symmetry Breaking as a Basis for Characterization of Dielectric Materials. Sensors. 2025; 25(2):532. https://doi.org/10.3390/s25020532
Chicago/Turabian StyleTomić, Dubravko, and Zvonimir Šipuš. 2025. "Symmetry Breaking as a Basis for Characterization of Dielectric Materials" Sensors 25, no. 2: 532. https://doi.org/10.3390/s25020532
APA StyleTomić, D., & Šipuš, Z. (2025). Symmetry Breaking as a Basis for Characterization of Dielectric Materials. Sensors, 25(2), 532. https://doi.org/10.3390/s25020532