A Label-Free Colorimetric Aptasensor for Flavokavain B Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Apparatus
2.3. SELEX Procedure
2.4. High-Throughput Sequencing and Bioinformatics Analysis
2.5. Gel Elution Assay
2.6. Microscale Thermophoresis Assay
2.7. AuNPs-Based Colorimetric Assay for Detection of FKB
3. Results
3.1. Generation of Aptamer for FKB
3.2. High-Throughput Sequencing Analysis
3.3. Characterization and Truncation of the Aptamer
3.4. Principle of the Aptamer/AuNP Aggregation-Based Colorimetric Assay
3.5. Optimization of the Detection Conditions
3.6. Evaluating the Analytical Performance of Aptasensor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bian, T.; Corral, P.; Wang, Y.; Botello, J.; Kingston, R.; Daniels, T.; Salloum, R.G.; Johnston, E.; Huo, Z.; Lu, J.; et al. Kava as a clinical nutrient: Promises and challenges. Nutrients 2020, 12, 3044. [Google Scholar] [CrossRef]
- Volgin, A.; Yang, L.; Amstislavskaya, T.G.; Demin, K.; Wang, D.; Yan, D.; Wang, J.; Wang, M.; Alpyshov, E.; Hu, G.; et al. DARK classics in chemical neuroscience: Kava. ACS Chem. Neurosci. 2020, 11, 3893–3904. [Google Scholar] [CrossRef] [PubMed]
- Norton, S.A.; Ruze, P. Kava dermopathy. J. Am. Acad. Dermatol. 1994, 31, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Bilia, A.R.; Gallori, S.; Vincieri, F.F. Kava-kava and anxiety: Growing knowledge about the efficacy and safety. Life Sci. 2002, 70, 2581–2597. [Google Scholar] [CrossRef]
- Wheatley, D. Kava and valerian in the treatment of stress-induced insomnia. Phytother. Res. 2001, 15, 549–551. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Zakaria, Z.A.; Gyawali, R.; Ibrahim, S.A.; Rajkovic, J.; Shinwari, Z.K.; Khan, T.; Sharifi-Rad, J.; Ozleyen, A.; Turkdonmez, E.; et al. Piper species: A comprehensive review on their phytochemistry, biological activities and applications. Molecules 2019, 24, 1364. [Google Scholar] [CrossRef] [PubMed]
- Soares, R.B.; Dinis-Oliveira, R.J.; Oliveira, N.G. An updated review on the psychoactive, toxic and anticancer properties of kava. J. Clin. Med. 2022, 11, 4039. [Google Scholar] [CrossRef]
- Jhoo, J.-W.; Freeman, J.P.; Heinze, T.M.; Moody, J.D.; Schnackenberg, L.K.; Beger, R.D.; Dragull, K.; Tang, C.-S.; Ang, C.Y.W. In vitro cytotoxicity of nonpolar constituents from different parts of kava plant (Piper methysticum). J. Agric. Food Chem. 2006, 54, 3157–3162. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Gross, S.; Liu, J.H.; Yu, B.Y.; Feng, L.L.; Nolta, J.; Sharma, V.; Piwnica-Worms, D.; Qiu, S.X. Flavokawain B, the hepatotoxic constituent from kava root, induces GSH-sensitive oxidative stress through modulation of IKK/NF-κB and MAPK signaling pathways. FASEB J. 2010, 24, 4722. [Google Scholar]
- Teschke, R.; Lebot, V. Proposal for a kava quality standardization code. Food Chem. Toxicol. 2011, 49, 2503–2516. [Google Scholar] [CrossRef]
- Teschke, R.; Sarris, J.; Lebot, V. Kava hepatotoxicity solution: A six-point plan for new kava standardization. Phytomedicine 2011, 18, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Fields, C. A UHPLC-UV method development and validation for determining kavalactones and flavokavains in Piper methysticum (kava). Molecules 2019, 24, 1245. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lund, J.A.; Murch, S.J.; Brown, P.N. Single-lab validation for determination of kavalactones and flavokavains in Piper methysticum (kava). Planta Med. 2018, 84, 1213–1218. [Google Scholar] [CrossRef] [PubMed]
- Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Dunn, M.R.; Jimenez, R.M.; Chaput, J.C. Analysis of aptamer discovery and technology. Nat. Rev. Chem. 2017, 1, 0076. [Google Scholar] [CrossRef]
- Jayasena, S.D. Aptamers: An emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 1999, 45, 1628–1650. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, M.; Ke, S.; Tian, J.; Yu, H.; Liu, X.; Yu, B.-Y. Generation of a high-affinity DNA aptamer for on-site screening of toxic aristolochic acid I in herbal medicines and botanical products. Anal. Chim. Acta 2023, 1264, 341302. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Yu, H.; Alkhamis, O.; Liu, Y.; Lou, X.; Yu, B.; Xiao, Y. Label-free, visual detection of small molecules using highly target-responsive multimodule split aptamer constructs. Anal. Chem. 2019, 91, 7199–7207. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Chen, Y.; Xiu, F.-R.; Hou, J. An aptamer-based colorimetric sensing of acetamiprid in environmental samples: Convenience, sensitivity and practicability. Sens. Actuators B 2020, 304, 127359. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Y.; Ma, R.; Wang, W.; Zhang, L.; Li, J.; Sun, J.; Mao, X. Aptasensing a class of small molecules based on split aptamers and hybridization chain reaction-assisted AuNPs nanozyme. Food Chem. 2023, 401, 134053. [Google Scholar] [CrossRef]
- Hua, Z.; Yu, T.; Liu, D.; Xianyu, Y. Recent advances in gold nanoparticles-based biosensors for food safety detection. Biosens. Bioelectron. 2021, 179, 113076. [Google Scholar] [CrossRef]
- Yu, H.; Luo, Y.; Alkhamis, O.; Canoura, J.; Yu, B.; Xiao, Y. Isolation of natural DNA aptamers for challenging small-molecule targets, cannabinoids. Anal. Chem. 2021, 93, 3172–3180. [Google Scholar] [CrossRef]
- Yang, W.; Yu, H.; Alkhamis, O.; Liu, Y.; Canoura, J.; Fu, F.; Xiao, Y. In vitro isolation of class-specific oligonucleotide-based small-molecule receptors. Nucleic Acids Res. 2019, 47, e71. [Google Scholar] [CrossRef]
- Hoinka, J.; Backofen, R.; Przytycka, T.M. AptaSUITE: A full-featured bioinformatics framework for the comprehensive analysis of aptamers from HT-SELEX experiments. Mol. Ther.-Nucleic Acids 2018, 11, 515–517. [Google Scholar] [CrossRef] [PubMed]
- Gaviria-Arroyave, M.I.; Arango, J.P.; Urdinola, K.B.; Cano, J.B.; Mesa, G.A.P. Fluorescent nanostructured carbon dot-aptasensor for chlorpyrifos detection: Elucidating the interaction mechanism for an environmentally hazardous pollutant. Anal. Chim. Acta 2023, 1278, 341711. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, H.; Alkhamis, O.; Moliver, J.; Xiao, Y. Tuning biosensor cross-reactivity using aptamer mixtures. Anal. Chem. 2020, 92, 5041–5047. [Google Scholar] [CrossRef]
- Yang, Y.; Yin, Y.; Wang, S.; Dong, Y. Simultaneous determination of zearalenone and ochratoxin A based on microscale thermophoresis assay with a bifunctional aptamer. Anal. Chim. Acta 2021, 1155, 338345. [Google Scholar] [CrossRef] [PubMed]
- Jenison, R.D.; Gill, S.C.; Pardi, A.; Polisky, B. High-resolution molecular discrimination by RNA. Science 1994, 263, 1425–1429. [Google Scholar] [CrossRef] [PubMed]
- Canoura, J.; Alkhamis, O.; Byrd, C.; Wang, L.; Bryant, A.; Xiao, Y. Determining the Precision of High-Throughput Sequencing and Its Influence on Aptamer Selection. Anal. Chem. 2024, 96, 17720–17729. [Google Scholar] [CrossRef]
- Zhu, C.; Li, L.; Yang, G.; Qu, F. Investigating the influences of random-region length on aptamer selection efficiency based on capillary electrophoresis–SELEX and high-throughput sequencing. Anal. Chem. 2021, 93, 17030–17035. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Luo, D.; Zheng, S.; Zhang, Y.; Wang, Z.; Fu, F. Screening of Cross-Reactive Aptamers for the Detection of 24 Quinolones by Using a Liebig’s Law-Guided Parallel-Series Strategy. Anal. Chem. 2024, 96, 8576–8585. [Google Scholar] [CrossRef]
- Kypr, J.; Kejnovska, I.; Renciuk, D.; Vorlickova, M. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res. 2009, 37, 1713–1725. [Google Scholar] [CrossRef] [PubMed]
- del Villar-Guerra, R.; Trent, J.O.; Chaires, J.B. G-quadruplex secondary structure obtained from circular dichroism spectroscopy. Angew. Chem. 2018, 130, 7289–7293. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ke, S.; Wang, N.; Chen, X.; Tian, J.; Li, J.; Yu, B. A Label-Free Colorimetric Aptasensor for Flavokavain B Detection. Sensors 2025, 25, 569. https://doi.org/10.3390/s25020569
Ke S, Wang N, Chen X, Tian J, Li J, Yu B. A Label-Free Colorimetric Aptasensor for Flavokavain B Detection. Sensors. 2025; 25(2):569. https://doi.org/10.3390/s25020569
Chicago/Turabian StyleKe, Sisi, Ningrui Wang, Xingyu Chen, Jiangwei Tian, Jiwei Li, and Boyang Yu. 2025. "A Label-Free Colorimetric Aptasensor for Flavokavain B Detection" Sensors 25, no. 2: 569. https://doi.org/10.3390/s25020569
APA StyleKe, S., Wang, N., Chen, X., Tian, J., Li, J., & Yu, B. (2025). A Label-Free Colorimetric Aptasensor for Flavokavain B Detection. Sensors, 25(2), 569. https://doi.org/10.3390/s25020569