Identifying the Primary Kinetic Factors Influencing the Anterior–Posterior Center of Mass Displacement in Barbell Squats: A Factor Regression Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Data Analysis
2.4. Statistical Analysis
3. Results
3.1. Correlation Analysis Results Among Independent Variables
3.2. Results of Factor Analysis
3.3. Results of Multiple Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goodman, W.; Flores, V.; Cotter, J.A.; Graham, D.; Becker, J. Support moment distribution during the back squat at different depths and loads in recreationally trained females. J. Sci. Med. Sport 2024, 27, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Larsen, S.; de Zee, M.; Kristiansen, E.L.; van den Tillaar, R. A Biomechanical Comparison Between a High and Low Barbell Placement on Net Joint Moments, Kinematics, Muscle Forces, and Muscle-Specific Moments in 3 Repetition Maximum Back Squats. J. Strength Cond. Res. 2024, 38, 1221–1230. [Google Scholar] [CrossRef]
- O’Neill, K.E.; Psycharakis, S.G. The effect of back squat depth and load on lower body muscle activity in group exercise participants. Sports Biomech. 2024, 23, 555–566. [Google Scholar] [CrossRef] [PubMed]
- Escamilla, R.F.; Fleisig, G.S.; Zheng, N.; Lander, J.E.; Barrentine, S.W.; Andrews, J.R.; Bergemann, B.W.; Moorman, C.T., III. Effects of technique variations on knee biomechanics during the squat and leg press. Med. Sci. Sports Exerc. 2001, 33, 1552–1566. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.T.; Matthews, T.D.; Murray, M.; Van Raalte, J.; Jensen, B.E. Psychological correlates of performance in female athletes during a 12-week off-season strength and conditioning program. J. Strength Cond. Res. 2010, 24, 619–628. [Google Scholar] [CrossRef]
- Kushner, A.M.; Brent, J.L.; Schoenfeld, B.J.; Hugentobler, J.; Lloyd, R.S.; Vermeil, A.; Chu, D.A.; Harbin, J.; McGill, S.M.; Myer, G.D. The back squat: Targeted training techniques to correct functional deficits and technical factors that limit performance. Strength Cond. J. 2015, 37, 13–60. [Google Scholar] [CrossRef]
- Lander, J.E.; Bates, B.T.; Devita, P. Biomechanics of the squat exercise using a modified center of mass bar. Med. Sci. Sports Exerc. 1986, 18, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Nagorna, V.; Mytko, A.; Borysova, O.; Zhyhailova, L.; Achermann, B.; Lorenzetti, S. Biomechanical analysis: Exploring gender-specific differences in velocity-based strength training. Spectrum 2024, 2, 20–26. [Google Scholar] [CrossRef]
- Russell, P.J.; Phillips, S.J. A preliminary comparison of front and back squat exercises. Res. Q. Exerc. Sport 1989, 60, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Cissik, J.M. Coaching the front squat. Strength Cond. J. 2000, 22, 7. [Google Scholar] [CrossRef]
- Bird, S.P.; Casey, S. Exploring the front squat. Strength Cond. J. 2012, 34, 27–33. [Google Scholar]
- Glassbrook, D.J.; Helms, E.R.; Brown, S.R.; Storey, A.G. A review of the biomechanical differences between the high-bar and low-bar back-squat. J. Strength Cond. Res. 2017, 31, 2618–2634. [Google Scholar]
- Glassbrook, D.J.; Brown, S.R.; Helms, E.R.; Duncan, S.; Storey, A.G. The high-bar and low-bar back-squats: A biomechanical analysis. J. Strength Cond. Res. 2019, 33, S1–S18. [Google Scholar] [PubMed]
- Fry, A.C.; Smith, J.C.; Schilling, B.K. Effect of knee position on hip and knee torques during the barbell squat. J. Strength Cond. Res. 2003, 17, 629–633. [Google Scholar] [PubMed]
- Van den Tillaar, R. Effect of descent velocity upon muscle activation and performance in two-legged free weight back squats. Sports 2019, 7, 15. [Google Scholar] [CrossRef]
- Brice, S.M.; Doma, K.; Harland, L.; Spratford, W. Impact of performing heavy-loaded barbell back squats to volitional failure on lower limb and lumbo-pelvis mechanics in skilled lifters. J. Sports Sci. 2020, 38, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Bryanton, M.A.; Kennedy, M.D.; Carey, J.P.; Chiu, L.Z. Effect of squat depth and barbell load on relative muscular effort in squatting. J. Strength Cond. Res. 2012, 26, 2820–2828. [Google Scholar]
- Case, M.J.; Knudson, D.V.; Downey, D.L. Barbell squat relative strength as an identifier for lower extremity injury in collegiate athletes. J. Strength Cond. Res. 2020, 34, 1249–1253. [Google Scholar] [PubMed]
- Clark, D.R.; Lambert, M.I.; Hunter, A.M. Muscle activation in the loaded free barbell squat: A brief review. J. Strength Cond. Res. 2012, 26, 1169–1178. [Google Scholar]
- Morrissey, M.C.; Harman, E.A.; Frykman, P.N.; Han, K.H. Early phase differential effects of slow and fast barbell squat training. Am. J. Sports Med. 1998, 26, 221–230. [Google Scholar]
- Norrbrand, L.; Tous-Fajardo, J.; Vargas, R.; Tesch, P.A. Quadriceps muscle use in the flywheel and barbell squat. Aviat. Space Environ. Med. 2011, 82, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Heise, G.D. Influence of weight distribution asymmetry on the biomechanics of a barbell back squat. J. Strength Cond. Res. 2012, 26, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Murtagh, F.; Heck, A. Multivariate Data Analysis; Springer Science & Business Media: Dordrecht, The Netherlands, 2012; Volume 131. [Google Scholar]
- Costello, A.B.; Osborne, J. Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Pract. Assess. Res. Eval. 2019, 10, 7. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Li, X.; Xuan, R.; Song, Y.; Bíró, I.; Liang, M.; Gu, Y. Effect of heel lift insoles on lower extremity muscle activation and joint work during barbell squats. Bioengineering 2022, 9, 301. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.; Comfort, P. Advanced Strength and Conditioning; Routledge: London, UK, 2022. [Google Scholar]
- Sayers, M.G.; Bachem, C.; Schütz, P.; Taylor, W.R.; List, R.; Lorenzetti, S.; Nasab, S.H. The effect of elevating the heels on spinal kinematics and kinetics during the back squat in trained and novice weight trainers. J. Sports Sci. 2020, 38, 1000–1008. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Fekete, G.; Baker, J.S.; Gu, Y. Foot motion character during forward and backward walking with shoes and barefoot. J. Mot. Behav. 2020, 52, 214–225. [Google Scholar] [CrossRef] [PubMed]
- Kasahara, S.; Ishida, T.; Linjing, J.; Chiba, A.; Samukawa, M.; Tohyama, H. Relationship among the COM Motion, the Lower Extremity and the Trunk during the Squat. J. Hum. Kinet. 2024, 93, 23–39. [Google Scholar] [CrossRef] [PubMed]
- Macadam, P.; Cronin, J.B.; Contreras, B. An Examination of the gluteal muscle activity associated with dynamic hip abduction and hip external rotation exercise: A systematic review. Int. J. Sports Phys. Ther. 2015, 10, 573–591. [Google Scholar] [PubMed]
- Stone, M.H.; Hornsby, W.G.; Mizuguchi, S.; Sato, K.; Gahreman, D.; Duca, M.; Carroll, K.M.; Ramsey, M.W.; Stone, M.E.; Pierce, K.C.; et al. The Use of Free Weight Squats in Sports: A Narrative Review—Terminology and Biomechanics. Appl. Sci. 2024, 14, 1977. [Google Scholar] [CrossRef]
- Ford, K.R.; Myer, G.D.; Hewett, T.E. Valgus knee motion during landing in high school female and male basketball players. Med. Sci. Sports Exerc. 2003, 35, 1745–1750. [Google Scholar] [CrossRef] [PubMed]
- Hewett, T.E.; Ford, K.R.; Myer, G.D. Anterior cruciate ligament injuries in female athletes: Part 2, a meta-analysis of neuromuscular interventions aimed at injury prevention. Am. J. Sports Med. 2006, 34, 490–498. [Google Scholar] [CrossRef]
- Newton, R.U.; Gerber, A.; Nimphius, S.; Shim, J.K.; Doan, B.K.; Robertson, M.; Pearson, D.R.; Craig, B.W.; Häkkinen, K.; Kraemer, W.J. Determination of functional strength imbalance of the lower extremities. J. Strength Cond. Res. 2006, 20, 971–977. [Google Scholar] [PubMed]
- Escamilla, R.F. Knee biomechanics of the dynamic squat exercise. Med. Sci. Sports Exerc. 2001, 33, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Hughes, G.; Watkins, J. A risk-factor model for anterior cruciate ligament injury. Sports Med. 2006, 36, 411–428. [Google Scholar] [CrossRef] [PubMed]
- Ekstrom, R.A.; Donatelli, R.A.; Carp, K.C. Electromyographic analysis of core trunk, hip, and thigh muscles during 9 rehabilitation exercises. J. Orthop. Sports Phys. Ther. 2007, 37, 754–762. [Google Scholar] [CrossRef] [PubMed]
- Boren, K.; Conrey, C.; Le Coguic, J.; Paprocki, L.; Voight, M.; Robinson, T.K. Electromyographic analysis of gluteus medius and gluteus maximus during rehabilitation exercises. Int. J. Sports Phys. Ther. 2011, 6, 206. [Google Scholar]
- Myers, T.W. Anatomy Trains: Myofascial Meridians for Manual and Movement Therapists; Elsevier Health Sciences: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Choe, K.H.; Coburn, J.W.; Costa, P.B.; Pamukoff, D.N. Hip and knee kinetics during a back squat and deadlift. J. Strength Cond. Res. 2021, 35, 1364–1371. [Google Scholar] [CrossRef]
- Willson, J.D.; Ireland, M.L.; Davis, I. Core strength and lower extremity alignment during single leg squats. Med. Sci. Sports Exerc. 2006, 38, 945. [Google Scholar] [CrossRef]
- Dawson, S.J.; Herrington, L. Improving single-legged–squat performance: Comparing 2 training methods with potential implications for injury prevention. J. Athl. Train. 2015, 50, 921–929. [Google Scholar] [CrossRef]
- Comfort, P.; Jones, P.A.; Smith, L.C.; Herrington, L. Joint kinetics and kinematics during common lower limb rehabilitation exercises. J. Athl. Train. 2015, 50, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Escamilla, R.F.; Fleisig, G.S.; Zheng, N.; Barrentine, S.W.; Wilk, K.E.; Andrews, J.R. Biomechanics of the knee during closed kinetic chain and open kinetic chain exercises. Med. Sci. Sports Exerc. 1998, 30, 556–569. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J. Squatting kinematics and kinetics and their application to exercise performance. J. Strength Cond. Res. 2010, 24, 3497–3506. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, H.; Wirth, K.; Klusemann, M. Analysis of the Load on the Knee Joint and Vertebral Column with Changes in Squatting Depth and Weight Load. Sports Med. 2013, 43, 993–1008. [Google Scholar] [CrossRef] [PubMed]
- Trypuc, A.A. Effects of Knee Sleeves on Knee Mechanics During Squats at Variable Depths. Master’s Thesis, Old Dominion University, Norfolk, VA, USA, 2018. [Google Scholar]
- Myer, G.D.; Kushner, A.M.; Brent, J.L.; Schoenfeld, B.J.; Hugentobler, J.A.; Lloyd, R.S.; Vermeil, A.; Chu, D.A.; Harbin, J.; McGill, S.M. The Back Squat: A Proposed Assessment of Functional Deficits and Technical Factors That Limit Performance. Strength Cond. J. 2014, 36, 4–27. [Google Scholar] [CrossRef] [PubMed]
- Contreras, B.; Vigotsky, A.D.; Schoenfeld, B.J.; Beardsley, C.; Cronin, J. A Comparison of Gluteus Maximus, Biceps Femoris, and Vastus Lateralis Electromyography Amplitude in the Parallel, Full, and Front Squat Variations in Resistance-Trained Females. J. Appl. Biomech. 2016, 32, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Swinton, P.A.; Lloyd, R.; Keogh, J.W.L.; Agouris, I.; Stewart, A.D. A Biomechanical Comparison of the Traditional Squat, Powerlifting Squat, and Box Squat. J. Strength Cond. Res. 2012, 26, 1805–1816. [Google Scholar] [CrossRef] [PubMed]
- Warner, M.B.; Wilson, D.A.; Herrington, L.; Dixon, S.; Power, C.; Jones, R.; Heller, M.O.; Carden, P.; Lewis, C.L. A systematic review of the discriminating biomechanical parameters during the single leg squat. Phys. Ther. Sport 2019, 36, 78–91. [Google Scholar] [CrossRef] [PubMed]
- Hoch, M.C.; Staton, G.S.; McKeon, P.O. Dorsiflexion range of motion significantly influences dynamic balance. J. Sci. Med. Sport 2011, 14, 90–92. [Google Scholar] [CrossRef]
- Terada, M.; Harkey, M.S.; Wells, A.M.; Pietrosimone, B.G.; Gribble, P.A. The influence of ankle dorsiflexion and self-reported patient outcomes on dynamic postural control in participants with chronic ankle instability. Gait Posture 2014, 40, 193–197. [Google Scholar] [CrossRef]
- Walsh, J.C.; Quinlan, J.F.; Stapleton, R.; FitzPatrick, D.P.; McCormack, D. Three-dimensional motion analysis of the lumbar spine during “free squat” weight lift training. Am. J. Sports Med. 2007, 35, 927–932. [Google Scholar] [CrossRef]
- Han, J.; Goel, V.; Ahn, J.; Winterbottom, J.; McGowan, D.; Weinstein, J.; Cook, T. Loads in the spinal structures during lifting: Development of a three-dimensional comprehensive biomechanical model. Eur. Spine J. 1995, 4, 153–168. [Google Scholar] [CrossRef]
- McGill, S.M.; McDermott, A.V.; Fenwick, C.M. Comparison of Different Strongman Events: Trunk Muscle Activation and Lumbar Spine Motion, Load, and Stiffness. J. Strength Cond. Res. 2009, 23, 1148–1161. [Google Scholar] [CrossRef] [PubMed]
- Swinton, P.A.; Lloyd, R.; Agouris, I.; Stewart, A. Contemporary Training Practices in Elite British Powerlifters: Survey Results From an International Competition. J. Strength Cond. Res. 2009, 23, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Winwood, P.W.; Keogh, J.W.L.; Harris, N.K. The Strength and Conditioning Practices of Strongman Competitors. J. Strength Cond. Res. 2011, 25, 3118–3128. [Google Scholar] [CrossRef]
- Winwood, P.W.; Hume, P.; Cronin, J.B.; Keogh, J.W. Retrospective Injury Epidemiology of Strongman Athletes. J. Strength Cond. Res. 2014, 28, 28–42. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, H.J.; Keogh, J.W.L.; Barnes, M.J.; McGuigan, M. Effects and Mechanisms of Tapering in Maximizing Muscular Strength. Strength Cond. J. 2015, 37, 72–83. [Google Scholar] [CrossRef]
Squat Mode | Component | Total | Percentage of Variance | Cumulative % |
---|---|---|---|---|
FBS | 1 | 11.600 | 64.446 | 64.446 |
FBS | 2 | 4.252 | 23.624 | 88.069 |
FBS | 3 | 1.187 | 6.596 | 94.665 |
HBBS | 1 | 12.851 | 71.396 | 71.396 |
HBBS | 2 | 3.562 | 19.788 | 91.184 |
LBBS | 1 | 13.173 | 73.184 | 73.184 |
LBBS | 2 | 2.692 | 14.954 | 88.139 |
LBBS | 3 | 1.186 | 6.589 | 94.728 |
Squat Mode | Variable | Factor 1 | Factor 2 | Factor 3 | Variable | Factor 1 | Factor 2 | Factor 3 |
---|---|---|---|---|---|---|---|---|
FBS | L_ANKLE_X | 0.981 | −0.053 | 0.037 | R_ANKLE_X | 0.949 | −0.056 | −0.087 |
FBS | L_ANKLE_Y | −0.548 | 0.774 | −0.201 | R_ANKLE_Y | −0.874 | −0.429 | −0.117 |
FBS | L_ANKLE_Z | −0.677 | 0.538 | 0.165 | R_ANKLE_Z | −0.800 | 0.483 | 0.347 |
FBS | L_HIP_X | 0.932 | −0.230 | −0.266 | R_HIP_X | 0.868 | −0.342 | −0.310 |
FBS | L_HIP_Y | 0.984 | 0.113 | −0.126 | R_HIP_Y | 0.982 | 0.019 | −0.163 |
FBS | L_HIP_Z | −0.165 | −0.860 | −0.381 | R_HIP_Z | 0.032 | 0.342 | 0.859 |
FBS | L_KNEE_X | −0.677 | 0.472 | 0.544 | R_KNEE_X | −0.671 | 0.432 | 0.588 |
FBS | L_KNEE_Y | −0.306 | 0.852 | 0.351 | R_KNEE_Y | −0.568 | 0.175 | 0.771 |
FBS | L_KNEE_Z | 0.779 | −0.499 | −0.323 | R_KNEE_Z | −0.221 | −0.912 | −0.299 |
HBBS | L_ANKLE_X | 0.966 | −0.141 | / | R_ANKLE_X | 0.967 | −0.170 | / |
HBBS | L_ANKLE_Y | −0.040 | 0.897 | / | R_ANKLE_Y | 0.757 | −0.453 | / |
HBBS | L_ANKLE_Z | −0.711 | 0.465 | / | R_ANKLE_Z | −0.856 | 0.490 | / |
HBBS | L_HIP_X | 0.926 | −0.360 | / | R_HIP_X | 0.883 | −0.441 | / |
HBBS | L_HIP_Y | 0.991 | 0.036 | / | R_HIP_Y | 0.979 | −0.119 | / |
HBBS | L_HIP_Z | 0.116 | −0.969 | / | R_HIP_Z | 0.908 | 0.373 | / |
HBBS | L_KNEE_X | −0.790 | 0.591 | / | R_KNEE_X | −0.754 | 0.629 | / |
HBBS | L_KNEE_Y | −0.311 | 0.927 | / | R_KNEE_Y | −0.606 | 0.562 | / |
HBBS | L_KNEE_Z | 0.844 | −0.411 | / | R_KNEE_Z | 0.131 | −0.954 | / |
LBBS | L_ANKLE_X | 0.838 | −0.318 | −0.397 | R_ANKLE_X | 0.879 | −0.339 | −0.314 |
LBBS | L_ANKLE_Y | −0.215 | 0.867 | 0.232 | R_ANKLE_Y | 0.905 | 0.010 | 0.345 |
LBBS | L_ANKLE_Z | −0.747 | 0.391 | 0.479 | R_ANKLE_Z | −0.770 | 0.587 | 0.227 |
LBBS | L_HIP_X | 0.849 | −0.336 | −0.395 | R_HIP_X | 0.850 | −0.388 | −0.331 |
LBBS | L_HIP_Y | 0.928 | −0.008 | −0.349 | R_HIP_Y | 0.916 | −0.086 | −0.379 |
LBBS | L_HIP_Z | 0.180 | −0.948 | −0.214 | R_HIP_Z | −0.307 | 0.210 | 0.842 |
LBBS | L_KNEE_X | −0.860 | 0.446 | 0.202 | R_KNEE_X | −0.822 | 0.533 | 0.128 |
LBBS | L_KNEE_Y | −0.361 | 0.812 | 0.403 | R_KNEE_Y | −0.445 | 0.692 | 0.289 |
LBBS | L_KNEE_Z | 0.950 | −0.286 | −0.037 | R_KNEE_Z | 0.050 | −0.944 | 0.263 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Sun, D.; Li, F.; Wang, D.; Zhou, Z.; Gao, Z.; Gu, Y. Identifying the Primary Kinetic Factors Influencing the Anterior–Posterior Center of Mass Displacement in Barbell Squats: A Factor Regression Analysis. Sensors 2025, 25, 572. https://doi.org/10.3390/s25020572
Chen D, Sun D, Li F, Wang D, Zhou Z, Gao Z, Gu Y. Identifying the Primary Kinetic Factors Influencing the Anterior–Posterior Center of Mass Displacement in Barbell Squats: A Factor Regression Analysis. Sensors. 2025; 25(2):572. https://doi.org/10.3390/s25020572
Chicago/Turabian StyleChen, Diwei, Dong Sun, Fengping Li, Dongxu Wang, Zhanyi Zhou, Zixiang Gao, and Yaodong Gu. 2025. "Identifying the Primary Kinetic Factors Influencing the Anterior–Posterior Center of Mass Displacement in Barbell Squats: A Factor Regression Analysis" Sensors 25, no. 2: 572. https://doi.org/10.3390/s25020572
APA StyleChen, D., Sun, D., Li, F., Wang, D., Zhou, Z., Gao, Z., & Gu, Y. (2025). Identifying the Primary Kinetic Factors Influencing the Anterior–Posterior Center of Mass Displacement in Barbell Squats: A Factor Regression Analysis. Sensors, 25(2), 572. https://doi.org/10.3390/s25020572