Acoustic Emission in Bone Biomechanics: A Comprehensive Review of Mechanical Properties and Predictive Damage Modeling
Abstract
:1. Introduction
2. Selection Criteria for Reviewed Articles
3. Use of AE in Human Bone Research
Study | Results |
---|---|
AE detection-strain [30] | Tensile tests. Three AE stages:
|
AE detection-load [9,32,33,34,35] | Tensile:
|
Bone pathology [22,36,37,38] | Osteoporotic/Osteoarthritic/Osteopenic:
|
AE-damage [9,20,39] | Specimens with notch:
|
AE-treatment [19,20,40] |
|
3.1. Damage Detection and Failure Mode Characterization
3.2. Amplitude and Number of AE Signals
3.3. Mineralization, Anisotropy, and Porosity
3.4. Correlation with Mechanical Properties
4. Predictive Models Based on AE
4.1. Failure Models and Reliability Theory
4.2. Failure Models and Percolation Theory
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Inclusion and Exclusion Criteria
- Search: the database Scopus was used to search for all documents including the words “acoustic”, “emission”, and “bone”, obtaining 522 results. From these documents, the database was used to include only those:
- −
- English language. Chinese (13), German (7), Japanese (6), Russian (2), or from other languages (13) were excluded, reducing the initial collection to 481 documents.
- −
- Article o review types. Conference papers (76) or conference reviews (12), book chapters (6), and other types of documents (8) were excluded, leaving 379 articles and reviews remaining.
- Screening: the 379 considered documents were filtered in two stages; first automatically based on specific frequent words that are not inside the scope of this article (this first stage was manually reviewed), and second manually to exclude other articles not related.
- −
- First stage: words “ear”, “hearing”, and “hear” were used to filter the data, and those articles inside this filter were manually reviewed (185). The resulting list was limited to 194.
- −
- Second stage: the abstracts of the remaining 194 documents were read. Those articles falling outside the scope, with topics related to otoacoustics or hearing (7), surrogates or materials other than bone (59), illnesses, pathologies, prostheses, coatings, implants or therapies (28), bone machining (13), use of other techniques as radiation, cavitation, vibroacoustics (18), or not directly related to bone mechanical properties or modeling (5) were excluded. A total of 64 documents were included.
- Inclusion: The remaining 64 documents were read. From those, seven articles were not considered, as they were not inside the scope. Finally, 57 articles were included in this review, which dealt with AE and its mechanical performance on bone, or AE modeling in bone.
References
- Asai, H.; Kanai, H. Noninvasive measurement of stiffness and density of bone for its diagnosis using ultrasound. J. Med. Ultrason. 2002, 29, 129–135. [Google Scholar] [CrossRef]
- Burr, D.B. Repair mechanisms for microdamage in bone. J. Bone Miner. Res. 2014, 29, 2534–2536. [Google Scholar] [CrossRef] [PubMed]
- Ciaburro, G.; Iannace, G. Machine-learning-based methods for acoustic emission testing: A review. Appl. Sci. 2022, 12, 10476. [Google Scholar] [CrossRef]
- Rubio-González, C.; de Urquijo-Ventura, M.D.P.; Rodríguez-González, J.A. Damage progression monitoring using self-sensing capability and acoustic emission on glass fiber/epoxy composites and damage classification through principal component analysis. Compos. Part B Eng. 2023, 254, 110608. [Google Scholar] [CrossRef]
- Conward, M.; Samuel, J. The Microstructural Origins of Acoustic Emission Signatures Encountered During Fracture Cutting of Bovine Cortical Bone. J. Manuf. Sci. Eng. 2023, 145, 091009-1. [Google Scholar] [CrossRef]
- Lysak, M.V. Acoustic emission during jumps in subcritical growth of cracks in three-dimensional bodies. Eng. Fract. Mech. 1994, 47, 873–879. [Google Scholar] [CrossRef]
- Trȩbacz, H.; Zdunek, A. Anisotropy of demineralized bone matrix under compressive load. Acta Bioeng. Biomech. 2011, 13, 71–76. [Google Scholar] [PubMed]
- Strantza, M.; Louis, O.; Polyzos, D.; Boulpaep, F.; Van Hemelrijck, D.; Aggelis, D.G. Wave dispersion and attenuation on human femur tissue. Sensors 2014, 14, 15067–15083. [Google Scholar] [CrossRef]
- Karaduman, D.; Ali Bircan, D.; Cetin, A. Assessment of crack initiation and propagation in bone using acoustic emission (AE) techniques. J. Mech. Med. Biol. 2018, 18, 1850031. [Google Scholar] [CrossRef]
- Ono, K. Review on structural health evaluation with acoustic emission. Appl. Sci. 2018, 8, 958. [Google Scholar] [CrossRef]
- Fischer, R.A.; Arms, S.W.; Pope, M.H.; Seligson, D. Analysis of the effect of using two different strain rates on the acoustic emission in bone. J. Biomech. 1986, 19, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, S.; Prakash, R. Future research directions with Acoustic Emission and Acousto–Ultrasonic technique. Int. J. Biomed. Eng. Technol. 2011, 6, 375–386. [Google Scholar] [CrossRef]
- Weiner, S.; Wagner, H.D. The material bone: Structure–mechanical function relations. Annu. Rev. Mater. Sci. 1998, 28, 271–298. [Google Scholar] [CrossRef]
- Reznikov, N.; Shahar, R.; Weiner, S. Bone hierarchical structure in three dimensions. Acta Biomater. 2014, 10, 3815–3826. [Google Scholar] [CrossRef]
- Qiblawey, Y.; Chowdhury, M.E.; Musharavati, F.; Zalnezhad, E.; Khakar, A.; Islam, M.T. Instrumented hip implant: A review. IEEE Sens. J. 2020, 21, 7179–7194. [Google Scholar] [CrossRef]
- Schulze, S.; Rothe, R.; Neuber, C.; Hauser, S.; Ullrich, M.; Pietzsch, J.; Rammelt, S. Men who stare at bone: Multimodal monitoring of bone healing. Biol. Chem. 2021, 402, 1397–1413. [Google Scholar] [CrossRef] [PubMed]
- Hernigou, P. History of bone acoustic in fracture diagnosis: Crepitus in antiquity; bone percussion with Auenbrugger; bone auscultation with Laennec and Lisfranc; monitoring cementless hip arthroplasty fixation with acoustic and sensor. Int. Orthop. 2022, 46, 1657–1666. [Google Scholar] [CrossRef] [PubMed]
- Browne, M.; Roques, A.; Taylor, A. The acoustic emission technique in orthopaedics—A review. J. Strain Anal. Eng. Des. 2005, 40, 59–79. [Google Scholar] [CrossRef]
- Hirasawa, Y.; Takai, S.; Kim, W.C.; Takenaka, N.; Yoshino, N.; Watanabe, Y. Biomechanical monitoring of healing bone based on acoustic emission technology. Clin. Orthop. Relat. Res. 2002, 402, 236–244. [Google Scholar] [CrossRef]
- Akkus, O.; Rimnac, C.M. Fracture resistance of gamma radiation sterilized cortical bone allografts. J. Orthop. Res. 2001, 19, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, B.D.; Pintar, F.A.; Yoganandan, N. Acoustic emission signatures during failure of vertebra and long bone. Biomed. Eng. 2017, 45, 1520–1533. [Google Scholar] [CrossRef] [PubMed]
- Van Toen, C.; Street, J.; Oxl, T.R.; Cripton, P.A. Acoustic emission signals can discriminate between compressive bone fractures and tensile ligament injuries in the spine during dynamic loading. J. Biomech. 2012, 45, 1643–1649. [Google Scholar] [CrossRef] [PubMed]
- O’Toole, J.; Creedon, L.; Hession, J.; Muir, G. Acoustic emission source localisation on bone using multiple regression. Int. J. Nano Biomater. 2012, 17, 128–147. [Google Scholar] [CrossRef]
- O’Toole, J.; Creedon, L.; Hession, J.; Muir, G. Hyperbolic source location of crack related acoustic emission in bone. J. Biomech. Eng. 2013, 135, 011006. [Google Scholar] [CrossRef] [PubMed]
- Jabran, A.; Peach, C.; Ren, L. Biomechanical analysis of plate systems for proximal humerus fractures: A systematic literature review. Biomed. Eng. Online 2018, 17, 47. [Google Scholar] [CrossRef] [PubMed]
- Ossi, Z.; Abdou, W.; Reuben, R.L.; Ibbetson, R.J. Transmission of acoustic emission in bones, implants and dental materials. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2013, 227, 1237–1245. [Google Scholar] [CrossRef]
- Robinson, D.L.; Tse, K.M.; Franklyn, M.; Zhang, J.; Ackl, D.; Lee, P.V.S. Cortical and trabecular bone fracture characterisation in the vertebral body using acoustic emission. Ann. Biomed. Eng. 2019, 47, 2384–2401. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.L.; Tse, K.M.; Franklyn, M.; Ackl, D.C.; Richardson, M.D.; Lee, P.V.S. Occlusion of the lumbar spine canal during high-rate axial compression. Spine J. 2020, 20, 1692–1704. [Google Scholar] [CrossRef] [PubMed]
- Hanagud, S.; Hannon, G.T.; Clinton, R. Acoustic emission and diagnosis of osteoporosis. In Proceedings of the 1974 Ultrasonics Symposium, Milwaukee, WI, USA, 11–14 November 1974; pp. 77–80. [Google Scholar] [CrossRef]
- Knet, I.V.; Krauya, U.E.; Vilks, Y.K. Acoustic emission in human bone tissue subjected to longitudinal extension. Polym. Mech. 1975, 11, 589–593. [Google Scholar] [CrossRef]
- Krauya, U.E.; Lyakh, Y.A. Acoustic emission in restressing human bone tissue. Polym. Mech. 1978, 14, 91–94. [Google Scholar] [CrossRef]
- Aggelis, D.G.; Stranza, M.; Louis, O.; Boulpaep, F.; Polyzos, D.; Van Hemelrijck, D. Fracture of human femur tissue monitored by acoustic emission sensors. Sensors 2015, 15, 5803–5819. [Google Scholar] [CrossRef]
- Tsirigotis, A.; Deligianni, D.D. Combining Digital image correlation and acoustic emission for Monitoring of the strain Distribution until Yielding during compression of Bovine cancellous Bone. Front. Mater. 2017, 4, 44. [Google Scholar] [CrossRef]
- Agcaoglu, S.; Akkus, O. Acoustic emission based monitoring of the microdamage evolution during fatigue of human cortical bone. J. Biomech. Eng. 2013, 135, 081005. [Google Scholar] [CrossRef] [PubMed]
- Netz, P.; Eriksson, K.; Strömbkrg, L. Material reaction of diaphyseal bone under torsion: An experimental study on dogs. Acta Orthop. Scand. 1980, 51, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Leichter, I.; Bivas, A.; Margulies, J.Y.; Roman, I.; Simkin, A. Acoustic emission from trabecular bone during mechanical testing: The effect of osteoporosis and osteoarthritis. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 1990, 204, 123–127. [Google Scholar] [CrossRef]
- Hasegawa, K.; Takahashi, H.E.; Koga, Y.; Kawashima, T.; Hara, T.; Tanabe, Y.; Tanaka, S. Mechanical properties of osteopenic vertebral bodies monitored by acoustic emission. Bone 1993, 14, 737–743. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, K.; Takahashi, H.E.; Koga, Y.; Kawashima, T.; Hara, T.; Tanabe, Y.; Tanaka, S. Failure characteristics of osteoporotic vertebral bodies monitored by acoustic emission. Spine 1993, 18, 2314–2320. [Google Scholar] [CrossRef] [PubMed]
- Akkus, O.; Jepsen, K.J.; Rimnac, C.M. Microstructural aspects of the fracture process in human cortical bone. J. Mater. Sci. 2000, 35, 6065–6074. [Google Scholar] [CrossRef]
- Trebacz, H.; Zdunek, A. Three-point bending and acoustic emission study of adult rat femora after immobilization and free remobilization. J. Biomech. 2006, 39, 237–245. [Google Scholar] [CrossRef]
- Carter, D.R.; Hayes, W.C. Compact bone fatigue damage: A microscopic examination. Orthop. Relat. Res. 1977, 127, 265–274. [Google Scholar] [CrossRef]
- Carter, D.R.; Hayes, W.C. Compact bone fatigue damage—I. Residual strength and stiffness. J. Biomech. 1977, 10, 325–337. [Google Scholar] [CrossRef]
- Hassan, M.M.; Khan, T.I.; Hasemura, Y.; Ide, S. Three-dimensional source location of acoustic emission technique for damage detection in osteoarthritic knee. J. Nondestruct. Eval. 2022, 41, 6. [Google Scholar] [CrossRef]
- Cormier, J.; Manoogian, S.; Bisplinghoff, J.; Rowson, S.; Santago, A.; McNally, C.; Duma, S.; Bolte, J., IV. The tolerance of the nasal bone to blunt impact. Ann. Adv. Automot. Med./Annu. Sci. Conf. 2010, 54, 3–14. [Google Scholar] [PubMed] [PubMed Central]
- Cormier, J.; Manoogian, S.; Bisplinghoff, J.; Rowson, S.; Santago, A.; McNally, C.; Duma, S.; Bolte, J., IV. The tolerance of the frontal bone to blunt impact. J. Biomech. Eng. 2011, 133, 021004. [Google Scholar] [CrossRef] [PubMed]
- Renaud, G.; Callé, S.; Remenieras, J.P.; Defontaine, M. Non-linear acoustic measurements to assess crack density in trabecular bone. Int. J. Non-Linear Mech. 2008, 43, 194–200. [Google Scholar] [CrossRef]
- O’Callaghan, P.; Szarko, M.; Wang, Y.; Luo, J. Effects of bone damage on creep behaviours of human vertebral trabeculae. Bone 2018, 106, 204–210. [Google Scholar] [CrossRef]
- Trȩbacz, H.; Zdunek, A.; Cybulska, J.; Pieczywek, P. Effects of fatigue on microstructure and mechanical properties of bone organic matrix under compression. Australas. Phys. Eng. Sci. Med. 2013, 36, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Moiseev, Y.B. Mechanisms of changes in the human spinal column in response to static and dynamic axial mechanical loading. Hum. Physiol. 2016, 42, 815–819. [Google Scholar] [CrossRef]
- Savoldi, F.; Tsoi, J.K.; Paganelli, C.; Matinlinna, J.P. Biomechanical behaviour of craniofacial sutures during distraction: An evaluation all over the entire craniofacial skeleton. Dent. Mater. 2017, 33, e290–e300. [Google Scholar] [CrossRef] [PubMed]
- Baró, J.; Shyu, P.; Pang, S.; Jasiuk, I.M.; Vives, E.; Salje, E.K.; Planes, A. Avalanche criticality during compression of porcine cortical bone of different ages. Phys. Rev. E 2016, 93, 053001. [Google Scholar] [CrossRef]
- Robinson, D.L.; Tse, K.M.; Franklyn, M.; Zhang, J.; Fernandez, J.W.; Ackl, D.C.; Lee, P.V.S. Specimen-specific fracture risk curves of lumbar vertebrae under dynamic axial compression. J. Mech. Behav. Biomed. Mater. 2021, 118, 104457. [Google Scholar] [CrossRef] [PubMed]
- Makhmudov, K.F.; Makhmudov, A.K. Kinetics of Photon Radiation Formation during Deformation and Destruction of Compact Bone Tissue. Tech. Phys. 2023, 68, 659–662. [Google Scholar] [CrossRef]
- Chen, G.; Luo, H.; Zhang, Z.; Fan, X. Flexural deformation and fracture behaviors of the sandwich turtle rib bones with hierarchical woven fibers. Colloid Interface Sci. Commun. 2020, 34, 100230. [Google Scholar] [CrossRef]
- Lakes, R.; Yoon, H.S.; Katz, J.L. Ultrasonic wave propagation and attenuation in wet bone. J. Biomed. Eng. 1986, 8, 143–148. [Google Scholar] [CrossRef]
- Sánchez-Molina, D.; García-Vilana, S.; Velázquez-Ameijide, J.; Arregui-Dalmases, C. Probabilistic assessment for clavicle fracture under compression loading: Rate-dependent behavior. Biomed. Eng. Appl. Basis Commun. 2020, 32, 2050040. [Google Scholar] [CrossRef]
- Shridharani, J.K.; Ortiz-Paparoni, M.A.; Op’t Eynde, J.; Bass, C.R. Acoustic emissions in vertebral cortical shell failure. J. Biomech. 2021, 117, 110227. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Yan, D.; Liu, M.; Gao, X.; Zhang, Y.; Xu, D. Acoustic Emission Characteristics of Different Porcine Bones Under Loading. Int. J. Acoust. Vib. 2023, 28, 44. [Google Scholar] [CrossRef]
- Wang, M.; Zimmermann, E.A.; Riedel, C.; Busseb, B.; Li, S.; Silberschmidt, V.V. Effect of micro-morphology of cortical bone tissue on fracture toughness and crack propagation. Procedia Struct. Integr. 2017, 6, 64–68. [Google Scholar] [CrossRef]
- Jerban, S.; Lu, X.; Dorthe, E.W.; Alenezi, S.; Ma, Y.; Kakos, L.; Jang, H.; Sah, R.L.; Chag, E.Y.; D’Lima, D.; et al. Correlations of cortical bone microstructural and mechanical properties with water proton fractions obtained from ultrashort echo time (UTE) MRI tricomponent T2* model. NMR Biomed. 2020, 33, e4233. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Velázquez-Ameijide, J.; García-Vilana, S.; Sánchez-Molina, D.; Llumà-Fuentes, J.; Martínez-González, E.; Rebollo-Soria, M.C.; Arregui-Dalmases, C. Prediction of mechanical properties of human rib cortical bone using fractal dimension. Comput. Methods Biomech. Biomed. Eng. 2020, 24, 506–516. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Molina, D.; García-Vilana, S. Acoustic emission applied to stochastic modeling of microdamage in compact bone. Biomech. Model. Mechanobiol. 2024, 23, 1277–1287. [Google Scholar] [CrossRef] [PubMed]
- Montoro-Cazorla, D.; Pérez-Ocón, R. Matrix stochastic analysis of the maintainability of a machine under shocks. Reliab. Eng. Syst. Saf. 2014, 121, 11–17. [Google Scholar] [CrossRef]
- Genest, C.; Mesfioui, M.; Schulz, J. A new bivariate Poisson common shock model covering all possible degrees of dependence. Stat. Probab. Lett. 2018, 140, 202–209. [Google Scholar] [CrossRef]
- Sánchez-Molina, D.; Martínez-González, E.; Velázquez-Ameijide, J.; Llumà, J.; Soria, M.R.; Arregui-Dalmases, C. A stochastic model for soft tissue failure using acoustic emission data. J. Mech. Behav. Biomed. Mater. 2015, 51, 328–336. [Google Scholar] [CrossRef]
- Yeh, L. A note on the optimal replacement problem. Adv. Appl. Probab. 1988, 20, 479–482. [Google Scholar] [CrossRef]
- Mikushina, V.A.; Smolin, I.Y.; Sidorenko, Y.N. Study of effect of damage accumulation on stress distribution parameters in mesovolume of biocomposite and its performance characteristics. Inorg. Mater. Appl. Res. 2019, 10, 66–69. [Google Scholar] [CrossRef]
- Kowalski, A.C.; Mendonça, C.A.; Ofterdinger, U.S.; Rocha, H.R. Fracture critical length estimative using percolation theory and well logging data. J. Environ. Eng. Geophys. 2021, 26, 279–286. [Google Scholar] [CrossRef]
- Bini, F.; Pica, A.; Marinozzi, A.; Marinozzi, F. Percolation networks inside 3D model of the mineralized collagen fibril. Sci. Rep. 2021, 11, 11398. [Google Scholar] [CrossRef]
- García-Vilana, S.; Sánchez-Molina, D.; Llumà, J.; Fernández-Osete, I.; Veláquez-Ameijide, J.; Martínez-González, E. A predictive model for fracture in human ribs based on in vitro acoustic emission data. Med. Phys. 2021, 48, 5540–5548. [Google Scholar] [CrossRef] [PubMed]
Property | Trend |
---|---|
Mineralization [7,34] (higher) |
|
Anisotropy [7] |
|
Porosity (pore size) [48] (higher) |
|
Strain rate [11,49] (higher) |
|
Model | Type | Outcomes | Drawbacks |
---|---|---|---|
Risk curves [44,45,52] | Probabilistic | Failure probability |
|
Percolation [67,68,69,70] | Semi-probabilistic | Approximateultimate stress |
|
Stochastic breaking [62,65] | Stochastic | Probabilitydistribution |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Vilana, S.; Sánchez-Molina, D.; Abdi, H. Acoustic Emission in Bone Biomechanics: A Comprehensive Review of Mechanical Properties and Predictive Damage Modeling. Sensors 2025, 25, 598. https://doi.org/10.3390/s25030598
García-Vilana S, Sánchez-Molina D, Abdi H. Acoustic Emission in Bone Biomechanics: A Comprehensive Review of Mechanical Properties and Predictive Damage Modeling. Sensors. 2025; 25(3):598. https://doi.org/10.3390/s25030598
Chicago/Turabian StyleGarcía-Vilana, Silvia, David Sánchez-Molina, and Hamed Abdi. 2025. "Acoustic Emission in Bone Biomechanics: A Comprehensive Review of Mechanical Properties and Predictive Damage Modeling" Sensors 25, no. 3: 598. https://doi.org/10.3390/s25030598
APA StyleGarcía-Vilana, S., Sánchez-Molina, D., & Abdi, H. (2025). Acoustic Emission in Bone Biomechanics: A Comprehensive Review of Mechanical Properties and Predictive Damage Modeling. Sensors, 25(3), 598. https://doi.org/10.3390/s25030598