Fetal ECG Signal Extraction from Maternal Abdominal ECG Signals Using Attention R2W-Net
Abstract
:1. Introduction
- (1)
- An end-to-end deep learning algorithm for single-channel extraction of FECG signals was developed.
- (2)
- The Attention R2W-Net effectively extracts clean FECG signals from maECG while preserving the morphological characteristics of the FECG signals, enabling the detection of P-wave and T-wave information.
- (3)
- The use of RRC blocks in both the encoder and decoder enhances feature extraction depth and signal representation capability, while residual connections retain original feature information, assisting the network in better signal separation and reconstruction.
2. Related Work
3. Methodology
3.1. Overall Framework
3.2. Dataset Description
3.2.1. Simulation Data
3.2.2. Real Data
3.3. The Proposed Method
3.3.1. Preprocessing
3.3.2. Model Architecture
Attention R2W-Net Architecture
Encoder and Decoder
3.3.3. Training Parameters
3.4. Performance Evaluation Methods
3.4.1. Objective Evaluation Methods
Evaluation of FECG Signal Extraction Quality
Evaluation of FECG R-Peak Detection
3.4.2. Subjective Evaluation Metrics
4. Results
4.1. FECG Extraction Results
4.2. FQRS Detection Results
4.3. Ablation Experiments
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andreotti, F.; Graser, F.; Malberg, H.; Zaunseder, S. Non-invasive Fetal ECG Signal Quality Assessment for Multichannel Heart Rate Estimation. IEEE Trans. Biomed. Eng. 2017, 64, 2793–2802. [Google Scholar] [CrossRef]
- Martinek, R.; Kahankova, R.; Jaros, R.; Barnova, K.; Matonia, A.; Jezewski, M.; Czabanski, R.; Horoba, K.; Jezewski, J. Non-Invasive Fetal Electrocardiogram Extraction Based on Novel Hybrid Method for Intrapartum ST Segment Analysis. IEEE Access 2021, 9, 28608–28631. [Google Scholar] [CrossRef]
- Clifford, G.D.; Silva, I.; Behar, J.; Moody, G.B. Non-invasive fetal ECG analysis. Physiol. Meas. 2014, 35, 1521. [Google Scholar] [CrossRef]
- Tran-Gia, J.; Lassmann, M. Optimizing Image Quantification for 177Lu SPECT/CT Based on a 3D Printed 2-Compartment Kidney Phantom. J. Nucl. Med. 2018, 59, 616–624. [Google Scholar] [CrossRef] [PubMed]
- Faiz, M.M.U.; Kale, I. Removal of multiple artifacts from ECG signal using cascaded multistage adaptive noise cancellers. Array 2022, 14, 100133. [Google Scholar] [CrossRef]
- Sarafan, S.; Le, T.; Lau, M.P.H.; Hameed, A.; Ghirmai, T.; Cao, H. Fetal Electrocardiogram Extraction from the Mother's Abdominal Signal Using the Ensemble Kalman Filter. Sensors 2022, 22, 2788. [Google Scholar] [CrossRef]
- Mian Qaisar, S.; Barnova, K.; Martinek, R.; Jaros, R.; Kahankova, R.; Matonia, A.; Jezewski, M.; Czabanski, R.; Horoba, K.; Jezewski, J. A novel algorithm based on ensemble empirical mode decomposition for non-invasive fetal ECG extraction. PLoS ONE 2021, 16, e0256154. [Google Scholar] [CrossRef]
- Ramli, D.A.; Shiong, Y.H.; Hassan, N. Blind Source Separation (BSS) of Mixed Maternal and Fetal Electrocardiogram (ECG) Signal: A comparative Study. Procedia Comput. Sci. 2020, 176, 582–591. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, J.; Wu, X. Comprehensive Separation Algorithm for Single-Channel Signals Based on Symplectic Geometry Mode Decomposition. Sensors 2024, 24, 462. [Google Scholar] [CrossRef]
- Oyarzún, L.; Castillo, E.; Parrilla, L.; García, A. Window Polarization in PCA-based Analysis of Non-Invasive Fetal ECG recordings. In Proceedings of the 2021 XXXVI Conference on Design of Circuits and Integrated Systems (DCIS), Vila do Conde, Portugal, 24–26 November 2021; pp. 1–6. [Google Scholar]
- Lee, J.S.; Seo, M.; Kim, S.W.; Choi, M. Fetal QRS Detection Based on Convolutional Neural Networks in Noninvasive Fetal Electrocardiogram. In Proceedings of the 2018 4th International Conference on Frontiers of Signal Processing (ICFSP), Poitiers, France, 24–27 September 2018; pp. 75–78. [Google Scholar]
- Zhou, Z.; Huang, K.; Qiu, Y.; Shen, H.; Ming, Z. Morphology extraction of fetal electrocardiogram by slow-fast LSTM network. Biomed. Signal Process. Control 2021, 68, 102664. [Google Scholar] [CrossRef]
- Jimenez-Perez, G.; Acosta, J.; Bocanegra-Pérez, Á.J.; Arana-Rueda, E.; Frutos-López, M.; Sánchez-Brotons, J.A.; Llamas-López, H.; Di Massa Pezzutti, R.; González de la Portilla Concha, C.; Camara, O.; et al. Delineation of intracavitary electrograms for the automatic quantification of decrement-evoked potentials in the coronary sinus with deep-learning techniques. Front. Physiol. 2024, 15, 1331852. [Google Scholar] [CrossRef] [PubMed]
- Shokouhmand, A.; Tavassolian, N. Fetal Electrocardiogram Extraction Using Dual-Path Source Separation of Single-Channel Non-Invasive Abdominal Recordings. IEEE Trans. Biomed. Eng. 2023, 70, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Ghonchi, H.; Abolghasemi, V. A Dual Attention-Based Autoencoder Model for Fetal ECG Extraction From Abdominal Signals. IEEE Sens. J. 2022, 22, 22908–22918. [Google Scholar] [CrossRef]
- Zhong, W.; Zhao, W. Fetal ECG extraction using short time Fourier transform and generative adversarial networks. Physiol. Meas. 2021, 42, 105011. [Google Scholar] [CrossRef] [PubMed]
- Basak, P.; Nazmus Sakib, A.H.M.; Chowdhury, M.E.H.; Al-Emadi, N.; Cagatay Yalcin, H.; Pedersen, S.; Mahmud, S.; Kiranyaz, S.; Al-Maadeed, S. A novel deep learning technique for morphology preserved fetal ECG extraction from mother ECG using 1D-CycleGAN. Expert Syst. Appl. 2024, 235, 121196. [Google Scholar] [CrossRef]
- Lee, K.J.; Lee, B. End-to-End Deep Learning Architecture for Separating Maternal and Fetal ECGs Using W-Net. IEEE Access 2022, 10, 39782–39788. [Google Scholar] [CrossRef]
- Kahankova, R.; Martinek, R.; Jaros, R.; Behbehani, K.; Matonia, A.; Jezewski, M.; Behar, J.A. A Review of Signal Processing Techniques for Non-Invasive Fetal Electrocardiography. IEEE Rev. Biomed. Eng. 2020, 13, 51–73. [Google Scholar] [CrossRef] [PubMed]
- Sameni, R.; Clifford, G.D. A Review of Fetal ECG Signal Processing; Issues and Promising Directions. Open Pacing Electrophysiol. Ther. J. 2010, 3, 4–20. [Google Scholar] [CrossRef]
- Bailey, J.J.; Berson, A.S.; Garson, A.; Horan, L.G.; Macfarlane, P.W.; Mortara, D.W.; Zywietz, C. Recommendations for standardization and specifications in automated electrocardiography: Bandwidth and digital signal processing. A report for health professionals by an ad hoc writing group of the Committee on Electrocardiography and Cardiac Electrophysiology of the Council on Clinical Cardiology, American Heart Association. Circulation 1990, 81, 730–739. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, C.; Zhao, M.; Liu, Q.; Wu, H. A Novel Convolutional Neural Network Model to Remove Muscle Artifacts from EEG. In Proceedings of the ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 1265–1269. [Google Scholar]
- Liu, J.; Chao, F.; Lin, C.-M.; Zhou, C.; Shang, C. DK-CNNs: Dynamic kernel convolutional neural networks. Neurocomputing 2021, 422, 95–108. [Google Scholar] [CrossRef]
- Alom, M.Z.; Yakopcic, C.; Taha, T.M.; Asari, V.K. Nuclei Segmentation with Recurrent Residual Convolutional Neural Networks based U-Net (R2U-Net). In Proceedings of the NAECON 2018—IEEE National Aerospace and Electronics Conference, Dayton, OH, USA, 23–26 July 2018; pp. 228–233. [Google Scholar]
- Assaleh, K. Extraction of Fetal Electrocardiogram Using Adaptive Neuro-Fuzzy Inference Systems. IEEE Trans. Biomed. Eng. 2007, 54, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; Liao, L.; Guo, X.; Wang, G. Fetal electrocardiography extraction with residual convolutional encoder-decoder networks. Australas. Phys. Eng. Sci. Med. 2019, 42, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; He, Z.; Lin, Z.; Han, Y.; Liu, T.; Lu, J.; Xie, S. PA²Net: Period-Aware Attention Network for Robust Fetal ECG Detection. IEEE Trans. Instrum. Meas. 2022, 71, 1–12. [Google Scholar] [CrossRef]
- Mohebbian, M.R.; Vedaei, S.S.; Wahid, K.A.; Dinh, A.; Marateb, H.R.; Tavakolian, K. Fetal ECG Extraction From Maternal ECG Using Attention-Based CycleGAN. IEEE J. Biomed. Health Inform. 2022, 26, 515–526. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Mahmud, S.; Chowdhury, M.E.H.; Yalcin, H.C.; Khandakar, A.; Mutlu, O.; Mahbub, Z.B.; Kamal, R.Y.; Pedersen, S. Fetal ECG extraction from maternal ECG using deeply supervised LinkNet++ model. Eng. Appl. Artif. Intell. 2023, 123, 106414. [Google Scholar] [CrossRef]
- Almadani, M.; Hadjileontiadis, L.; Khandoker, A. One-Dimensional W-NETR for Non-Invasive Single Channel Fetal ECG Extraction. IEEE J. Biomed. Health Inform. 2023, 27, 3198–3209. [Google Scholar] [CrossRef] [PubMed]
C0 | C1 | C2 | C3 | C4 | C5 | Total | |
---|---|---|---|---|---|---|---|
MSE | 0.079 | 0.083 | 0.081 | 0.122 | 0.114 | 0.097 | 0.096 ± 0.016 |
MAE | 0.075 | 0.077 | 0.082 | 0.093 | 0.085 | 0.079 | 0.082 ± 0.006 |
Data | MSE | MAE | qSNR |
---|---|---|---|
R01 | 0.019 | 0.009 | 9.08 |
R04 | 0.024 | 0.013 | 7.17 |
R07 | 0.031 | 0.017 | 7.94 |
R08 | 0.025 | 0.010 | 8.41 |
R10 | 0.027 | 0.014 | 7.53 |
MEAN ± STD | 0.025 ± 0.004 | 0.013 ± 0.003 | 8.03 ± 0.67 |
Method | Database | MSE | MAE |
---|---|---|---|
RCED-Net [26] | FECGSYNDB | 0.171 ± 0.015 | 0.128 ± 0.012 |
ADFECGDB | 0.061 ± 0.006 | 0.019 ± 0.005 | |
PA2NET [27] | FECGSYNDB | 0.249 ± 0.039 | 0.172 ± 0.027 |
ADFECGDB | 0.146 ± 0.014 | 0.098 ± 0.007 | |
CycleGAN [28] | FECGSYNDB | 0.109 ± 0.011 | 0.092 ± 0.009 |
ADFECGDB | 0.042 ± 0.008 | 0.011 ± 0.004 | |
LinkNet++ [29] | ADFECGDB | 0.089 ± 0.002 | 0.068 ± 0.011 |
AEDL [15] | ADFECGDB | 0.059 ± 0.002 | 0.018 ± 0.003 |
The proposed Attention R2W-Net | FECGSYNDB | 0.096 ± 0.016 | 0.082 ± 0.006 |
ADFECGDB | 0.025 ± 0.004 | 0.013 ± 0.003 |
Method | Database | P_MSE | P_MAE |
---|---|---|---|
RCED-Net [26] | FECGSYNDB | 8.066 × 10−6 | 5.040 × 10−5 |
ADFECGDB | 1.066 × 10−5 | 5.743 × 10−2 | |
PA2NET [27] | FECGSYNDB | 6.333 × 10−5 | 3.212 × 10−4 |
ADFECGDB | 1.531 × 10−5 | 8.343 × 10−7 | |
CycleGAN [28] | FECGSYNDB | 1.359 × 10−2 | 4.974 × 10−2 |
ADFECGDB | 5.626 × 10−3 | 2.952 × 10−2 | |
LinkNet++ [29] | ADFECGDB | 7.979 × 10−8 | 1.958 × 10−4 |
AEDL [15] | ADFECGDB | 3.175 × 10−6 | 2.993 × 10−2 |
Data | SE (%) | PPV (%) | F1 (%) |
---|---|---|---|
R01 | 99.46 | 99.34 | 99.40 |
R04 | 99.14 | 99.22 | 99.18 |
R07 | 99.30 | 99.18 | 99.24 |
R08 | 99.23 | 98.94 | 99.08 |
R10 | 99.07 | 98.85 | 98.96 |
Total | 99.24 | 99.11 | 99.17 |
Method | Database | Se (%) | PPV (%) | F1 (%) |
---|---|---|---|---|
RCED-Net [26] | ADFECGDB | 96.06 | 92.25 | 94.10 |
PCDB | 92.60 | 94.68 | 93.62 | |
CycleGAN [28] | FECGSYNDB | 95.90 | 96.30 | 96.10 |
ADFECGDB | 99.40 | 99.60 | 99.70 | |
PCDB | 96.80 | 97.20 | 97.90 | |
1D-CycleGAN [17] | ADFECGDB | 97.69 | 94.87 | 96.26 |
AEDL [15] | PCDB | 97.36 | 98.68 | 98.02 |
NIFECGDB | 91.21 | 94.65 | 92.87 | |
DPSS [14] | ADFECGDB | 97.30 | 98.09 | 97.70 |
PCDB | 94.20 | 96.50 | 95.30 | |
W-Net [18] | ADFECGDB | 98.23 | 99.30 | 98.81 |
PCDB | 95.74 | 97.45 | 96.91 | |
W-NETR [30] | ADFECGDB | 99.45 | 99.50 | 99.88 |
PCDB | 97.82 | 98.60 | 98.21 | |
The proposed Attention R2W-Net | FECGSYNDB | 97.43 | 97.98 | 97.56 |
ADFECGDB | 99.24 | 99.11 | 99.17 | |
PCDB | 98.23 | 97.74 | 98.03 | |
NIFECGDB | 96.76 | 97.39 | 97.08 |
SE | PPV | F1 | |
---|---|---|---|
Forward convolution block | 96.12 | 96.34 | 96.41 |
Residual convolution block | 98.52 | 97.96 | 98.29 |
Recurrent convolution block | 98.74 | 98.20 | 98.50 |
RRC block | 99.24 | 99.11 | 99.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Wu, S.; Zhou, Z. Fetal ECG Signal Extraction from Maternal Abdominal ECG Signals Using Attention R2W-Net. Sensors 2025, 25, 601. https://doi.org/10.3390/s25030601
Chen L, Wu S, Zhou Z. Fetal ECG Signal Extraction from Maternal Abdominal ECG Signals Using Attention R2W-Net. Sensors. 2025; 25(3):601. https://doi.org/10.3390/s25030601
Chicago/Turabian StyleChen, Lin, Shuicai Wu, and Zhuhuang Zhou. 2025. "Fetal ECG Signal Extraction from Maternal Abdominal ECG Signals Using Attention R2W-Net" Sensors 25, no. 3: 601. https://doi.org/10.3390/s25030601
APA StyleChen, L., Wu, S., & Zhou, Z. (2025). Fetal ECG Signal Extraction from Maternal Abdominal ECG Signals Using Attention R2W-Net. Sensors, 25(3), 601. https://doi.org/10.3390/s25030601