NeuroFlex: Feasibility of EEG-Based Motor Imagery Control of a Soft Glove for Hand Rehabilitation
Abstract
:1. Introduction
2. Methodology
2.1. EEG Data Acquisition and Experimental Protocol
2.2. Transformer-Based Architecture
- Multi-Head Attention: This layer allows the model to focus on different parts of the EEG sequence simultaneously, helping it capture complex temporal patterns. The attention mechanism works by projecting the input into query, key, and value matrices and then computing a weighted sum of these values. With its multi-head design, the attention layer can analyze multiple parts of the sequence concurrently, enhancing the model’s ability to capture different signal aspects.
- Feed-Forward Neural Network (FFNN): After the attention layer, the output passes through a feed-forward network consisting of two dense layers with a non-linear activation function. These layers enable the model to capture more complex data features. Dropout and layer normalization are applied to prevent overfitting.
3. Design and Fabrication of the Soft Glove
3.1. Design of the Soft Fingers
3.2. Three-Dimensional Printing Process and Parameters
3.3. Design of the Full Glove
4. Rehabilitation Control Loop
Algorithm 1 Real-time monitoring and pressure control for pneumatic actuators |
|
5. Results
6. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anwer, S.; Waris, A.; Gilani, S.O.; Iqbal, J.; Shaikh, N.; Pujari, A.N.; Niazi, I.K. Rehabilitation of upper limb motor impairment in stroke: A narrative review on the prevalence, risk factors, and economic statistics of stroke and state of the art therapies. Healthcare 2022, 10, 190. [Google Scholar] [CrossRef] [PubMed]
- Cramer, S.C.; Sur, M.; Dobkin, B.H.; O’Brien, C.; Sanger, T.D.; Trojanowski, J.Q.; Rumsey, J.M.; Hicks, R.; Cameron, J.; Chen, D.; et al. Harnessing neuroplasticity for clinical applications. Brain 2011, 134, 1591–1609. [Google Scholar] [CrossRef] [PubMed]
- Murphy, T.H.; Corbett, D. Plasticity during stroke recovery: From synapse to behaviour. Nat. Rev. Neurosci. 2009, 10, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xu, G.; Xie, J.; Chen, C. A review: Motor rehabilitation after stroke with control based on human intent. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2018, 232, 344–360. [Google Scholar] [CrossRef]
- Ho, N.; Tong, K.; Hu, X.; Fung, K.; Wei, X.; Rong, W.; Susanto, E. An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: Task training system for stroke rehabilitation. In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011; pp. 1–5. [Google Scholar]
- Colombo, R.; Pisano, F.; Micera, S.; Mazzone, A.; Delconte, C.; Carrozza, M.C.; Dario, P.; Minuco, G. Robotic techniques for upper limb evaluation and rehabilitation of stroke patients. IEEE Trans. Neural Syst. Rehabil. Eng. 2005, 13, 311–324. [Google Scholar] [CrossRef]
- Chang, W.H.; Kim, Y.H. Robot-assisted therapy in stroke rehabilitation. J. Stroke 2013, 15, 174. [Google Scholar] [CrossRef]
- Barbosa, I.M.; Alves, P.R.; Silveira, Z.d.C. Upper limbs’ assistive devices for stroke rehabilitation: A systematic review on design engineering solutions. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 236. [Google Scholar] [CrossRef]
- Ochieze, C.; Zare, S.; Sun, Y. Wearable upper limb robotics for pervasive health: A review. Prog. Biomed. Eng. 2023, 5, 032003. [Google Scholar] [CrossRef]
- Nycz, C.J.; Delph, M.A.; Fischer, G.S. Modeling and design of a tendon actuated soft robotic exoskeleton for hemiparetic upper limb rehabilitation. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 3889–3892. [Google Scholar]
- Natividad, R.F.; Hong, S.W.; Miller-Jackson, T.M.; Yeow, C.H. The exosleeve: A soft robotic exoskeleton for assisting in activities of daily living. In Proceedings of the Wearable Robotics: Challenges and Trends: Proceedings of the 4th International Symposium on Wearable Robotics, WeRob2018, Pisa, Italy, 16–20 October 2018; Springer: Berlin/Heidelberg, Germany, 2019; pp. 406–409. [Google Scholar]
- Rudd, G.; Daly, L.; Jovanovic, V.; Cuckov, F. A low-cost soft robotic hand exoskeleton for use in therapy of limited hand–motor function. Appl. Sci. 2019, 9, 3751. [Google Scholar] [CrossRef]
- Mane, R.; Chouhan, T.; Guan, C. BCI for stroke rehabilitation: Motor and beyond. J. Neural Eng. 2020, 17, 041001. [Google Scholar] [CrossRef]
- Saldarriaga, A.; Gutierrez-Velasquez, E.I.; Colorado, H.A. Soft Hand Exoskeletons for Rehabilitation: Approaches to Design, Manufacturing Methods, and Future Prospects. Robotics 2024, 13, 50. [Google Scholar] [CrossRef]
- Polygerinos, P.; Lyne, S.; Wang, Z.; Nicolini, L.F.; Mosadegh, B.; Whitesides, G.M.; Walsh, C.J. Towards a soft pneumatic glove for hand rehabilitation. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 1512–1517. [Google Scholar]
- Polygerinos, P.; Wang, Z.; Galloway, K.C.; Wood, R.J.; Walsh, C.J. Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. 2015, 73, 135–143. [Google Scholar] [CrossRef]
- Yap, H.K.; Lim, J.H.; Nasrallah, F.; Goh, J.C.; Yeow, R.C. A soft exoskeleton for hand assistive and rehabilitation application using pneumatic actuators with variable stiffness. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 4967–4972. [Google Scholar]
- Ueki, S.; Nishimoto, Y.; Abe, M.; Kawasaki, H.; Ito, S.; Ishigure, Y.; Mizumoto, J.; Ojika, T. Development of virtual reality exercise of hand motion assist robot for rehabilitation therapy by patient self-motion control. In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 4282–4285. [Google Scholar]
- Kutner, N.G.; Zhang, R.; Butler, A.J.; Wolf, S.L.; Alberts, J.L. Quality-of-life change associated with robotic-assisted therapy to improve hand motor function in patients with subacute stroke: A randomized clinical trial. Phys. Ther. 2010, 90, 493–504. [Google Scholar] [CrossRef] [PubMed]
- Polotto, A.; Modulo, F.; Flumian, F.; Xiao, Z.G.; Boscariol, P.; Menon, C. Index finger rehabilitation/assistive device. In Proceedings of the 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 24–27 June 2012; pp. 1518–1523. [Google Scholar]
- Carmeli, E.; Peleg, S.; Bartur, G.; Elbo, E.; Vatine, J.J. HandTutorTM enhanced hand rehabilitation after stroke—A pilot study. Physiother. Res. Int. 2011, 16, 191–200. [Google Scholar] [CrossRef]
- Wang, J.; Fei, Y.; Pang, W. Design, modeling, and testing of a soft pneumatic glove with segmented pneunets bending actuators. IEEE/ASME Trans. Mechatron. 2019, 24, 990–1001. [Google Scholar] [CrossRef]
- Xavier, M.S.; Tawk, C.D.; Zolfagharian, A.; Pinskier, J.; Howard, D.; Young, T.; Lai, J.; Harrison, S.M.; Yong, Y.K.; Bodaghi, M.; et al. Soft pneumatic actuators: A review of design, fabrication, modeling, sensing, control and applications. IEEE Access 2022, 10, 59442–59485. [Google Scholar] [CrossRef]
- Deng, M.; Wang, A.; Wakimoto, S.; Kawashima, T. Characteristic analysis and modeling of a miniature pneumatic curling rubber actuator. In Proceedings of the The 2011 International Conference on Advanced Mechatronic Systems, Zhengzhou, China, 11–13 August 2011; pp. 534–539. [Google Scholar]
- Faudzi, A.A.M.; Razif, M.R.M.; Nordin, I.N.A.M.; Suzumori, K.; Wakimoto, S.; Hirooka, D. Development of bending soft actuator with different braided angles. In Proceedings of the 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Kaohsiung, Taiwan, 11–14 July 2012; pp. 1093–1098. [Google Scholar]
- Gu, S.; Ye, Z.; Zhang, L.; Peng, R.; Wang, J.; Li, H. Research on a Novel Hand Exoskeleton Rehabilitation Training System. In Proceedings of the 2024 IEEE International Conference on Mechatronics and Automation (ICMA), Tianjin, China, 4–7 August 2024; pp. 496–501. [Google Scholar]
- Mohammadi, M.; Knoche, H.; Thøgersen, M.; Bengtson, S.H.; Gull, M.A.; Bentsen, B.; Gaihede, M.; Severinsen, K.E.; Andreasen Struijk, L.N. Eyes-free tongue gesture and tongue joystick control of a five dof upper-limb exoskeleton for severely disabled individuals. Front. Neurosci. 2021, 15, 739279. [Google Scholar] [CrossRef]
- Du Plessis, T.; Djouani, K.; Oosthuizen, C. A review of active hand exoskeletons for rehabilitation and assistance. Robotics 2021, 10, 40. [Google Scholar] [CrossRef]
- Sunny, M.S.H.; Zarif, M.I.I.; Rulik, I.; Sanjuan, J.; Rahman, M.H.; Ahamed, S.I.; Wang, I.; Schultz, K.; Brahmi, B. Eye-gaze control of a wheelchair mounted 6DOF assistive robot for activities of daily living. J. NeuroEng. Rehabil. 2021, 18, 173. [Google Scholar] [CrossRef]
- Remsik, A.B.; van Kan, P.L.; Gloe, S.; Gjini, K.; Williams, L., Jr.; Nair, V.; Caldera, K.; Williams, J.C.; Prabhakaran, V. BCI-FES with multimodal feedback for motor recovery poststroke. Front. Hum. Neurosci. 2022, 16, 725715. [Google Scholar] [CrossRef]
- Elashmawi, W.H.; Ayman, A.; Antoun, M.; Mohamed, H.; Mohamed, S.E.; Amr, H.; Talaat, Y.; Ali, A. A Comprehensive Review on Brain–Computer Interface (BCI)-Based Machine and Deep Learning Algorithms for Stroke Rehabilitation. Appl. Sci. 2024, 14, 6347. [Google Scholar] [CrossRef]
- Lima, J.P.; Silva, L.A.; Delisle-Rodriguez, D.; Cardoso, V.F.; Nakamura-Palacios, E.M.; Bastos-Filho, T.F. Unraveling Transformative Effects after tDCS and BCI Intervention in Chronic Post-Stroke Patient Rehabilitation—An Alternative Treatment Design Study. Sensors 2023, 23, 9302. [Google Scholar] [CrossRef] [PubMed]
- Sebastián-Romagosa, M.; Cho, W.; Ortner, R.; Sieghartsleitner, S.; Von Oertzen, T.J.; Kamada, K.; Laureys, S.; Allison, B.Z.; Guger, C. Brain–computer interface treatment for gait rehabilitation in stroke patients. Front. Neurosci. 2023, 17, 1256077. [Google Scholar] [CrossRef]
- Britton, J. Electroencephalography (EEG): An Introductory Text and Atlas of Normal and Abnormal Findings in Adults, Children, and Infants; Louis, E.K., Frey, L.C., Eds.; American Epilepsy Society: Chicago, IL, USA, 2016. [Google Scholar]
- Liao, W.; Li, J.; Zhang, X.; Li, C. Motor imagery brain–computer interface rehabilitation system enhances upper limb performance and improves brain activity in stroke patients: A clinical study. Front. Hum. Neurosci. 2023, 17, 1117670. [Google Scholar] [CrossRef] [PubMed]
- Teo, W.P.; Chew, E. Is motor-imagery brain-computer interface feasible in stroke rehabilitation? PM&R 2014, 6, 723–728. [Google Scholar]
- Li, F.; Zhang, T.; Li, B.J.; Zhang, W.; Zhao, J.; Song, L.P. Motor imagery training induces changes in brain neural networks in stroke patients. Neural Regen. Res. 2018, 13, 1771–1781. [Google Scholar]
- Zhang, Y.; Chen, W.; Lin, C.L.; Pei, Z.; Chen, J.; Chen, Z. Boosting-LDA algriothm with multi-domain feature fusion for motor imagery EEG decoding. Biomed. Signal Process. Control 2021, 70, 102983. [Google Scholar] [CrossRef]
- Chatterjee, R.; Bandyopadhyay, T. EEG based motor imagery classification using SVM and MLP. In Proceedings of the 2016 2nd International Conference on Computational Intelligence and Networks (CINE), Bhubaneswar, India, 11 January 2016; pp. 84–89. [Google Scholar]
- Jiang, A.; Shang, J.; Liu, X.; Tang, Y.; Kwan, H.K.; Zhu, Y. Efficient CSP algorithm with spatio-temporal filtering for motor imagery classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1006–1016. [Google Scholar] [CrossRef]
- Wu, C.; Wang, Y.; Qiu, S.; He, H. A bimodal deep learning network based on CNN for fine motor imagery. Cogn. Neurodynamics 2024, 18, 3791–3804. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Qi, W.; Kong, D.; Wang, W. BrainGridNet: A two-branch depthwise CNN for decoding EEG-based multi-class motor imagery. Neural Netw. 2024, 170, 312–324. [Google Scholar] [CrossRef]
- Zare, S.; Sun, Y. Understanding Human Motion Intention from Motor Imagery Eeg Based on Convolutional Neural Network. Available online: https://ssrn.com/abstract=5005300 (accessed on 19 November 2024).
- Zhang, R.; Zong, Q.; Dou, L.; Zhao, X.; Tang, Y.; Li, Z. Hybrid deep neural network using transfer learning for EEG motor imagery decoding. Biomed. Signal Process. Control 2021, 63, 102144. [Google Scholar] [CrossRef]
- Khademi, Z.; Ebrahimi, F.; Kordy, H.M. A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals. Comput. Biol. Med. 2022, 143, 105288. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, P.; Dhankhar, N.; Singhal, A.; Rana, K. A two-stage transformer based network for motor imagery classification. Med. Eng. Phys. 2024, 128, 104154. [Google Scholar] [CrossRef] [PubMed]
- Zare, S.; Sun, Y. EEG Motor Imagery Classification using Integrated Transformer-CNN for Assistive Technology Control. In Proceedings of the 2024 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Wilmington, DE, USA, 19–21 June 2024; pp. 189–190. [Google Scholar]
- Jurcak, V.; Tsuzuki, D.; Dan, I. 10/20, 10/10, and 10/5 systems revisited: Their validity as relative head-surface-based positioning systems. Neuroimage 2007, 34, 1600–1611. [Google Scholar] [CrossRef]
- Ahn, M.; Cho, H.; Ahn, S.; Jun, S.C. High theta and low alpha powers may be indicative of BCI-illiteracy in motor imagery. PLoS ONE 2013, 8, e80886. [Google Scholar] [CrossRef]
- Abhang, P.A.; Gawali, B.W.; Mehrotra, S.C. Introduction to EEG-and Speech-Based Emotion Recognition; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Blanco, K.; Navas, E.; Emmi, L.; Fernandez, R. Manufacturing of 3D Printed Soft Grippers: A Review. IEEE Access 2024, 12, 30434–30451. [Google Scholar] [CrossRef]
- Beaber, S.I.; Liu, Z.; Sun, Y. Physics-Guided Deep Learning Enabled Surrogate Modeling for Pneumatic Soft Robots. IEEE Robot. Autom. Lett. 2024, 9, 11441–11448. [Google Scholar] [CrossRef]
- Gafford, J.; Ding, Y.; Harris, A.; McKenna, T.; Polygerinos, P.; Holland, D.; Moser, A.; Walsh, C. Shape deposition manufacturing of a soft, atraumatic, deployable surgical grasper. J. Med. Devices 2014, 8, 030927. [Google Scholar] [CrossRef]
- Sun, Y.; Song, Y.S.; Paik, J. Characterization of silicone rubber based soft pneumatic actuators. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 4446–4453. [Google Scholar]
- Tolley, M.T.; Shepherd, R.F.; Mosadegh, B.; Galloway, K.C.; Wehner, M.; Karpelson, M.; Wood, R.J.; Whitesides, G.M. A resilient, untethered soft robot. Soft Robot. 2014, 1, 213–223. [Google Scholar] [CrossRef]
- Dong, H.; Weng, T.; Zheng, K.; Sun, H.; Chen, B. Application of 3D Printing Technology in Soft Robots. 3D Print. Addit. Manuf. 2024, 11, 954–976. [Google Scholar] [CrossRef]
- Zaghloul, A.; Bone, G.M. 3D shrinking for rapid fabrication of origami-inspired semi-soft pneumatic actuators. IEEE Access 2020, 8, 191330–191340. [Google Scholar] [CrossRef]
- Park, C.B.; Hwang, J.S.; Gong, H.S.; Park, H.S. A lightweight dynamic hand orthosis with sequential joint flexion movement for postoperative rehabilitation of flexor tendon repair surgery. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 994–1004. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.C.; Thakor, N.V. A study of the range of motion of human fingers with application to anthropomorphic designs. IEEE Trans. Biomed. Eng. 1988, 35, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Ang, K.K.; Chin, Z.Y.; Wang, C.; Guan, C.; Zhang, H. Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Front. Neurosci. 2012, 6, 39. [Google Scholar] [CrossRef] [PubMed]
- Schirrmeister, R.T.; Springenberg, J.T.; Fiederer, L.D.J.; Glasstetter, M.; Eggensperger, K.; Tangermann, M.; Hutter, F.; Burgard, W.; Ball, T. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 2017, 38, 5391–5420. [Google Scholar] [CrossRef]
- Amin, S.U.; Alsulaiman, M.; Muhammad, G.; Mekhtiche, M.A.; Hossain, M.S. Deep Learning for EEG motor imagery classification based on multi-layer CNNs feature fusion. Future Gener. Comput. Syst. 2019, 101, 542–554. [Google Scholar] [CrossRef]
- Lu, P.; Gao, N.; Lu, Z.; Yang, J.; Bai, O.; Li, Q. Combined CNN and LSTM for motor imagery classification. In Proceedings of the 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Suzhou, China, 19–21 October 2019; pp. 1–6. [Google Scholar]
- Qiao, W.; Bi, X. Deep spatial-temporal neural network for classification of EEG-based motor imagery. In Proceedings of the 2019 International Conference on Artificial Intelligence and Computer Science, Wuhan, China, 12–13 July 2019; pp. 265–272. [Google Scholar]
- Liao, J.J.; Luo, J.J.; Yang, T.; So, R.Q.Y.; Chua, M.C.H. Effects of local and global spatial patterns in EEG motor-imagery classification using convolutional neural network. Brain-Comput. Interfaces 2020, 7, 47–56. [Google Scholar] [CrossRef]
Layer (Type) | Output Shape | Param # | Connected to |
---|---|---|---|
Input Layer | (None, 44, 16) | 0 | - |
Add | (1, 44, 16) | 0 | Input Layer |
Multi-Head Attention | (1, 44, 16) | 17,168 | Add |
Dropout 1 | (1, 44, 16) | 0 | Multi-Head Attention |
Add 1 | (1, 44, 16) | 0 | Dropout 1, Add |
Layer Normalization | (1, 44, 16) | 32 | Add 1 |
Dense | (1, 44, 128) | 2176 | Layer Normalization |
Dropout 2 | (1, 44, 128) | 0 | Dense |
Dense 1 | (1, 44, 16) | 2064 | Dropout 2 |
Add 2 | (1, 44, 16) | 0 | Dense 1, Layer Normalization |
Layer Normalization 2 | (1, 44, 16) | 32 | Add 2 |
Multi-Head Attention 2 | (1, 44, 16) | 17,168 | Layer Normalization 2 |
Dropout 3 | (1, 44, 16) | 0 | Multi-Head Attention 2 |
Add 3 | (1, 44, 16) | 0 | Dropout 3, Layer Normalization 2 |
Global Avg. Pooling | (1, 16) | 0 | Add 3 |
Dense 2 | (1, 128) | 2176 | Global Avg. Pooling |
Batch Normalization | (1, 128) | 512 | Dense 2 |
Dropout 4 | (1, 128) | 0 | Batch Normalization |
Layer Normalization 3 | (1, 128) | 256 | Dropout 4 |
Dense 3 | (1, 64) | 8256 | Layer Normalization 3 |
Batch Normalization 2 | (1, 64) | 256 | Dense 3 |
Dropout 5 | (1, 64) | 0 | Batch Normalization 2 |
Layer Normalization 4 | (1, 64) | 128 | Dropout 5 |
Dense 4 | (1, 2) | 130 | Layer Normalization 4 |
z | m | g | h | t | d | s |
---|---|---|---|---|---|---|
10 mm | 6.8 mm | 3.5 mm | 13.8 mm | 1.6 mm | 17 mm | 2 mm |
Parameter | Value | Unit |
---|---|---|
Print settings | ||
Layers and perimeters | ||
Layer height | 0.1 | mm |
First layer height | 0.2 | mm |
Vertical shells perimeters | 4 | - |
Horizontal shells top | 16 | - |
Horizontal shells bottom | 15 | - |
Extra perimeters on overhangs | Enabled | - |
Avoid crossing perimeters | Enabled | - |
Thick bridges | Enabled | - |
Infill | ||
Fill density | 100 | % |
Enable ironing | Enabled | - |
Ironing type | All top surfaces | - |
Flow rate | 15 | % |
Speed | ||
Speed for print moves | 30 | % |
Speed for non-print moves | 120 | % |
First layer speed | 20 | % |
Advanced | ||
Infill/perimeters overlap | 10 | % |
Filaments | ||
Filament | ||
Temperature | ||
First and other layers | 240 | °C |
Bed | 50 | °C |
Cooling | ||
Bridges’ fan speed | 90 | % |
Filament overrides | ||
Retraction length | 2.5 | mm |
Retraction speed | 60 | mm/s |
Deretraction speed | 25 | mm/s |
Minimum travel after retraction | 3 | mm |
Printers | ||
Nozzle diameter | 0.4 | mm |
ID | F1 Score | Cohen’s Kappa | Accuracy | AUC |
---|---|---|---|---|
1 | 0.8513 | 0.7065 | 0.8533 | 0.9449 |
2 | 0.7669 | 0.5164 | 0.7585 | 0.8316 |
3 | 0.7943 | 0.6065 | 0.8036 | 0.8832 |
Work | Accuracy | Number of Actions and Tasks | Method |
---|---|---|---|
NeuroFlex | 0.8051 | 2 (Fist, Rest) | Transformer DL (this method) |
Ang et al. [60] | 0.6800 | 4 (Left hand, Right hand, Feet, Tongue) | Filter bank CSP |
Schirrmeister et al. [61] | 0.7200 | 4 (Left hand, Right hand, Feet, Tongue) | CNN with cropped training |
Amin et al. [62] | 0.7380 | 4 (Left hand, Right hand, Feet, Tongue) | CCNN |
Lu et al. [63] | 0.7662 | 4 (Left hand, Right hand, Feet, Tongue) | CNN and LSTM |
Qiao and Bi [64] | 0.7662 | 4 (Left hand, Right hand, Feet, Tongue) | Bidirectional GRU |
Liao et al. [65] | 0.7460 | 4 (Left hand, Right hand, Feet, Tongue) | Shallow CNN |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zare, S.; Beaber, S.I.; Sun, Y. NeuroFlex: Feasibility of EEG-Based Motor Imagery Control of a Soft Glove for Hand Rehabilitation. Sensors 2025, 25, 610. https://doi.org/10.3390/s25030610
Zare S, Beaber SI, Sun Y. NeuroFlex: Feasibility of EEG-Based Motor Imagery Control of a Soft Glove for Hand Rehabilitation. Sensors. 2025; 25(3):610. https://doi.org/10.3390/s25030610
Chicago/Turabian StyleZare, Soroush, Sameh I. Beaber, and Ye Sun. 2025. "NeuroFlex: Feasibility of EEG-Based Motor Imagery Control of a Soft Glove for Hand Rehabilitation" Sensors 25, no. 3: 610. https://doi.org/10.3390/s25030610
APA StyleZare, S., Beaber, S. I., & Sun, Y. (2025). NeuroFlex: Feasibility of EEG-Based Motor Imagery Control of a Soft Glove for Hand Rehabilitation. Sensors, 25(3), 610. https://doi.org/10.3390/s25030610