The Inversion of SPAD Value in Pear Tree Leaves by Integrating Unmanned Aerial Vehicle Spectral Information and Textural Features
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Acquisition and Processing
2.2.1. UAV Image Acquisition and Pre-Processing
2.2.2. Ground Truthing Data Acquisition
2.2.3. Multispectral Vegetation Index Selection and Calculation
2.2.4. Multispectral Textural Feature Extraction
2.3. Model Construction and Evaluation
2.3.1. Model Construction Method
- (1)
- eXtreme Gradient Boosting Algorithm
- (2)
- Random Forest Algorithm
- (3)
- Back-Propagation Neural Network Algorithm
- (4)
- Optimization Integration Algorithm Model
2.3.2. Evaluation of Model Accuracy
3. Results
3.1. Vegetation Index Correlation Analysis and Selection
3.2. Textural Feature Correlation Analysis and Selection
3.3. The Best Model for Predicting SPAD in Pear Leaves
3.3.1. The Best Model Based on Vegetation Indices
3.3.2. The Best Model Based on Textural Features
3.3.3. The Best Model for Combining Vegetation Indices with Textural Features
3.4. Model Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leschevin, M.; Ksas, B.; Baltenweck, R.; Hugueney, P.; Caffarri, S.; Havaux, M. Photosystem rearrangements, photosynthetic efficiency, and plant growth in far red-enriched light. Plant J. 2024, 120, 2536–2552. [Google Scholar] [CrossRef] [PubMed]
- Bauriegel, E.; Herppich, W. Hyperspectral and chlorophyll fluorescence imaging for early detection of plant diseases, with special reference to fusarium spec. Infections on wheat. Agriculture 2014, 4, 32–57. [Google Scholar] [CrossRef]
- Dray, F.A.; Center, T.D.; Mattison, E.D. In situ estimates of waterhyacinth leaf tissue nitrogen using a spad-502 chlorophyll meter. Aquat. Bot. 2012, 100, 72–75. [Google Scholar] [CrossRef]
- Křížová, K.; Kadeřábek, J.; Novák, V.; Linda, R.; Kurešová, G.; Šařec, P. Using a single-board computer as a low-cost instrument for spad value estimation through colour images and chlorophyll-related spectral indices. Ecol. Inform. 2022, 67, 101496. [Google Scholar] [CrossRef]
- Mukiibi, A.; Machakaire, A.T.B.; Franke, A.C.; Steyn, J.M. A systematic review of vegetation indices for potato growth monitoring and tuber yield prediction from remote sensing. Potato Res. 2024, 1–40. [Google Scholar] [CrossRef]
- Du, R.; Lu, J.; Xiang, Y.; Zhang, F.; Chen, J.; Tang, Z.; Shi, H.; Wang, X.; Li, W. Estimation of winter canola growth parameter from uav multi-angular spectral-texture information using stacking-based ensemble learning model. Comput. Electron. Agric. 2024, 222, 109074. [Google Scholar] [CrossRef]
- Kim, K.Y.; Haagenson, R.; Kansara, P.; Rajaram, H.; Lakshmi, V. Augmenting daily modis lst with airs surface temperature retrievals to estimate ground temperature and permafrost extent in high mountain asia. Remote Sens. Environ. 2024, 305, 114075. [Google Scholar] [CrossRef]
- Kun, X.; Wei, W.; Sun, Y.; Wang, Y.; Xin, Q. Mapping fine-spatial-resolution vegetation spring phenology from individual landsat images using a convolutional neural network. Int. J. Remote Sens. 2023, 44, 3059–3081. [Google Scholar] [CrossRef]
- Chen, A.; Xu, C.; Zhang, M.; Guo, J.; Xing, X.; Yang, D.; Xu, B.; Yang, X. Cross-scale mapping of above-ground biomass and shrub dominance by integrating uav and satellite data in temperate grassland. Remote Sens. Environ. 2024, 304, 114024. [Google Scholar] [CrossRef]
- Geng, T.; Yu, H.; Yuan, X.; Ma, R.; Li, P. Research on segmentation method of maize seedling plant instances based on uav multispectral remote sensing images. Plants 2024, 13, 1842. [Google Scholar] [CrossRef]
- Xiang, H.; Tian, L. Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (uav). Biosyst. Eng. 2011, 108, 174–190. [Google Scholar] [CrossRef]
- Jiang, Y.; Wei, Z.; Hu, G. Detection of tea leaf blight in uav remote sensing images by integrating super-resolution and detection networks. Environ. Monit. Assess. 2024, 196, 1044. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Gao, M.; Cao, C.; You, J.; Zhang, X.; Shen, L. Winter wheat chlorophyll content retrieval based on machine learning using in situ hyperspectral data. Comput. Electron. Agric. 2022, 193, 106728. [Google Scholar] [CrossRef]
- Tian, B.; Yu, H.; Zhang, S.; Wang, X.; Yang, L.; Li, J.; Cui, W.; Wang, Z.; Lu, L.; Lan, Y.; et al. Inversion of cotton soil and plant analytical development based on unmanned aerial vehicle multispectral imagery and mixed pixel decomposition. Agriculture 2024, 14, 1452. [Google Scholar] [CrossRef]
- Schirrmann, M.; Giebel, A.; Gleiniger, F.; Pflanz, M.; Lentschke, J.; Dammer, K.-H. Monitoring agronomic parameters of winter wheat crops with low-cost uav imagery. Remote Sens. 2016, 8, 706. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, X.; Shi, M.; Wang, P. Performance comparison of rgb and multispectral vegetation indices based on machine learning for estimating hopea hainanensis spad values under different shade conditions. Front. Plant Sci. 2022, 13, 928953. [Google Scholar] [CrossRef]
- Sun, X.; Yang, Z.; Su, P.; Wei, K.; Wang, Z.; Yang, C.; Wang, C.; Qin, M.; Xiao, L.; Yang, W.; et al. Non-destructive monitoring of maize lai by fusing uav spectral and textural features. Front. Plant Sci. 2023, 14, 1158837. [Google Scholar] [CrossRef]
- Khosravi, I.; Alavipanah, S.K. A random forest-based framework for crop mapping using temporal, spectral, textural and polarimetric observations. Int. J. Remote Sens. 2019, 40, 7221–7251. [Google Scholar] [CrossRef]
- Zheng, H.; Ma, J.; Zhou, M.; Li, D.; Yao, X.; Cao, W.; Zhu, Y.; Cheng, T. Enhancing the nitrogen signals of rice canopies across critical growth stages through the integration of textural and spectral information from unmanned aerial vehicle (uav) multispectral imagery. Remote Sens. 2020, 12, 957. [Google Scholar] [CrossRef]
- Li, S.; Yuan, F.; Ata-Ui-Karim, S.T.; Zheng, H.; Cheng, T.; Liu, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cao, Q. Combining color indices and textures of uav-based digital imagery for rice lai estimation. Remote Sens. 2019, 11, 1763. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, L.; Li, Y.; Shi, J.; Yan, M.; Ji, Y. Forest above-ground biomass inversion using optical and sar images based on a multi-step feature optimized inversion model. Remote Sens. 2022, 14, 1608. [Google Scholar] [CrossRef]
- Xu, W.; Yang, F.; Ma, G.; Wu, J.; Wu, J.; Lan, Y. Multiscale inversion of leaf area index in citrus tree by merging uav lidar with multispectral remote sensing data. Agronomy 2023, 13, 2747. [Google Scholar] [CrossRef]
- Chen, J.; Wu, S.; Dong, F.; Li, J.; Zeng, L.; Tang, J.; Gu, D. Mechanism underlying the shading-induced chlorophyll accumulation in tea leaves. Front. Plant Sci. 2021, 12, 779819. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Cui, N.; Zhang, W.; Gong, D.; Liu, C.; Liu, Q.; Zheng, S.; Wang, Z.; Zhao, L.; Yang, Y. Inversion of large-scale citrus soil moisture using multi-temporal sentinel-1 and landsat-8 data. Agric. Water Manag. 2024, 294, 108718. [Google Scholar] [CrossRef]
- Pan, K.; Zhang, X.; Chen, L. Research on the training and application methods of a lightweight agricultural domain-specific large language model supporting mandarin chinese and uyghur. Appl. Sci. 2024, 14, 5764. [Google Scholar] [CrossRef]
- Sivabalan, K.R.; Ramaraj, E. Surface segmentation and environment change analysis using band ratio phenology index method—Supervised aspect. IET Image Process. 2020, 14, 1813–1821. [Google Scholar] [CrossRef]
- Sotoodeh, M.; Moosavi, M.R.; Boostani, R. A structural based feature extraction for detecting the relation of hidden substructures in coral reef images. Multimed. Tools Appl. 2019, 78, 34513–34539. [Google Scholar] [CrossRef]
- Du, R.; Chen, J.; Xiang, Y.; Xiang, R.; Yang, X.; Wang, T.; He, Y.; Wu, Y.; Yin, H.; Zhang, Z.; et al. Timely monitoring of soil water-salt dynamics within cropland by hybrid spectral unmixing and machine learning models. Int. Soil Water Conserv. Res. 2024, 12, 726–740. [Google Scholar] [CrossRef]
- Elbasi, E.; Mostafa, N.; Zaki, C.; AlArnaout, Z.; Topcu, A.E.; Saker, L. Optimizing agricultural data analysis techniques through ai-powered decision-making processes. Appl. Sci. 2024, 14, 8018. [Google Scholar] [CrossRef]
- Shi, Y.; Gao, Y.; Wang, Y.; Luo, D.; Chen, S.; Ding, Z.; Fan, K. Using unmanned aerial vehicle-based multispectral image data to monitor the growth of intercropping crops in tea plantation. Front. Plant Sci. 2022, 13, 820585. [Google Scholar] [CrossRef]
- Bansal, M.; Malik, S.K. A multi-faceted optimization scheduling framework based on the particle swarm optimization algorithm in cloud computing. Sustain. Comput. Inform. Syst. 2020, 28, 100429. [Google Scholar] [CrossRef]
- Munawar, A.A.; Zulfahrizal; Mörlein, D. Prediction accuracy of near infrared spectroscopy coupled with adaptive machine learning methods for simultaneous determination of chlorogenic acid and caffeine on intact coffee beans. Case Stud. Chem. Environ. Eng. 2024, 10, 100913. [Google Scholar] [CrossRef]
- Yu, X.; Huo, X.; Qian, L.; Du, Y.; Liu, D.; Cao, Q.; Wang, W.E.; Hu, X.; Yang, X.; Fan, S. Combining uav multispectral and thermal infrared data for maize growth parameter estimation. Agriculture 2024, 14, 2004. [Google Scholar] [CrossRef]
- Wang, R.; Tuerxun, N.; Zheng, J. Improved estimation of spad values in walnut leaves by combining spectral, texture, and structural information from uav-based multispectral image. Sci. Hortic. 2024, 328, 112940. [Google Scholar] [CrossRef]
- Evri, M.; Akiyama, T.; Kawamura, K. Spectrum analysis of hyperspectral red edge position to predict rice biophysical parameters and grain weight. J. Jpn. Soc. Photogramm. Remote Sens. 2008, 47, 4–15. [Google Scholar] [CrossRef]
- Kanke, Y.; Raun, W.; Solie, J.; Stone, M.; Taylor, R. Red edge as a potential index for detecting differences in plant nitrogen status in winter wheat. J. Plant Nutr. 2012, 35, 1526–1541. [Google Scholar] [CrossRef]
- Deng, L.; Mao, Z.; Li, X.; Hu, Z.; Duan, F.; Yan, Y. Uav-based multispectral remote sensing for precision agriculture: A comparison between different cameras. ISPRS J. Photogramm. Remote Sens. 2018, 146, 124–136. [Google Scholar] [CrossRef]
- Zheng, Z.; Yuan, J.; Yao, W.; Kwan, P.; Yao, H.; Liu, Q.; Guo, L. Fusion of uav-acquired visible images and multispectral data by applying machine-learning methods in crop classification. Agronomy 2024, 14, 2670. [Google Scholar] [CrossRef]
- Dhakal, R.; Maimaitijiang, M.; Chang, J.; Caffe, M. Utilizing spectral, structural and textural features for estimating oat above-ground biomass using uav-based multispectral data and machine learning. Sensors 2023, 23, 9708. [Google Scholar] [CrossRef]
- Wu, J.; Bai, T.; Li, X. Inverting chlorophyll content in jujube leaves using a back-propagation neural network–random forest–ridge regression algorithm with combined hyperspectral data and image color channels. Agronomy 2024, 14, 140. [Google Scholar] [CrossRef]
- Peng, Y.; Nguy-Robertson, A.; Arkebauer, T.; Gitelson, A. Assessment of canopy chlorophyll content retrieval in maize and soybean: Implications of hysteresis on the development of generic algorithms. Remote Sens. 2017, 9, 226. [Google Scholar] [CrossRef]
Vegetation Index | Calculation Formula |
---|---|
Textural Index | Formula |
---|---|
Mean (mean) | |
Variance (var) | |
Homogeneity (hom) | |
Contrast (con) | |
Dissimilarity (dis) | |
Entropy (ent) | |
Second Moment (sem) | |
Correlation (cor) |
Correlation Coefficient | Relevant Intensity |
---|---|
0.0–0.2 | Very Weak Correlation or No Correlation |
0.2–0.4 | Weak Correlation |
0.4–0.6 | Moderate Correlation |
0.6–0.8 | Strong Correlation |
0.8–1.0 | High Correlation |
Textural Feature | Wave Band | ||||
---|---|---|---|---|---|
R | G | B | RE | NIR | |
mean | 0.590 ** | 0.423 ** | 0.465 ** | 0.210 | 0.179 |
var | 0.410 ** | 0.266 * | 0.392 ** | 0.201 | 0.130 |
hom | −0.396 ** | −0.282 * | −0.313 * | −0.188 | −0.155 |
contrast | 0.428 ** | 0.256 * | 0.364 ** | 0.214 | 0.146 |
dis | 0.431 ** | 0.281 * | 0.362 ** | 0.179 | 0.151 |
entropy | 0.373 ** | 0.257 * | 0.271 * | 0.186 | 0.142 |
sec | −0.333 ** | −0.235 | −0.247 | −0.191 | −0.139 |
corr | 0.019 | −0.052 | 0.066 | 0.075 | −0.159 |
Input Quantity | Model | Training Set | Validation Set | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE | RPD | R2 | RMSE | RPD | ||
Vegetation Indices | XGBoost | 0.812 | 0.921 | 2.184 | 0.749 | 1.432 | 2.071 |
RF | 0.713 | 1.443 | 1.862 | 0.673 | 1.501 | 1.442 | |
BPNN | 0.680 | 1.512 | 1.483 | 0.634 | 1.682 | 1.236 | |
OIA | 0.893 | 0.684 | 2.461 | 0.826 | 0.934 | 2.382 | |
Textural Features | XGBoost | 0.823 | 0.904 | 2.251 | 0.767 | 1.215 | 2.114 |
RF | 0.721 | 1.371 | 1.884 | 0.687 | 1.483 | 1.542 | |
BPNN | 0.655 | 1.634 | 1.287 | 0.610 | 1.754 | 1.138 | |
OIA | 0.865 | 0.802 | 2.364 | 0.816 | 0.893 | 2.320 | |
Vegetation Indices + Textural Features | XGBoost | 0.843 | 0.856 | 2.401 | 0.802 | 0.942 | 2.153 |
RF | 0.816 | 0.845 | 2.293 | 0.762 | 1.272 | 1.991 | |
BPNN | 0.725 | 1.052 | 1.941 | 0.713 | 1.425 | 1.732 | |
OIA | 0.931 | 0.564 | 2.782 | 0.877 | 0.675 | 2.674 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, N.; Qin, Y.; Wang, H.; Wang, Q.; Hu, F.; Wu, Y.; Zhang, X.; Li, X. The Inversion of SPAD Value in Pear Tree Leaves by Integrating Unmanned Aerial Vehicle Spectral Information and Textural Features. Sensors 2025, 25, 618. https://doi.org/10.3390/s25030618
Yan N, Qin Y, Wang H, Wang Q, Hu F, Wu Y, Zhang X, Li X. The Inversion of SPAD Value in Pear Tree Leaves by Integrating Unmanned Aerial Vehicle Spectral Information and Textural Features. Sensors. 2025; 25(3):618. https://doi.org/10.3390/s25030618
Chicago/Turabian StyleYan, Ning, Yasen Qin, Haotian Wang, Qi Wang, Fangyu Hu, Yuwei Wu, Xuedong Zhang, and Xu Li. 2025. "The Inversion of SPAD Value in Pear Tree Leaves by Integrating Unmanned Aerial Vehicle Spectral Information and Textural Features" Sensors 25, no. 3: 618. https://doi.org/10.3390/s25030618
APA StyleYan, N., Qin, Y., Wang, H., Wang, Q., Hu, F., Wu, Y., Zhang, X., & Li, X. (2025). The Inversion of SPAD Value in Pear Tree Leaves by Integrating Unmanned Aerial Vehicle Spectral Information and Textural Features. Sensors, 25(3), 618. https://doi.org/10.3390/s25030618