3D Metamaterials Facilitate Human Cardiac MRI at 21.0 Tesla: A Proof-of-Concept Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Unit Cell and Metamaterial Design
2.2. Cardiac RF Arrays
2.3. Electromagnetic Field Simulations
2.4. Optimal Transmit Efficiency
2.5. Transmission Field Shaping
3. Results
3.1. Unit Cell and Metamaterial Design
3.2. Cardiac RF Arrays
3.3. Transmission Field Shaping
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ladd, M.E.; Bachert, P.; Meyerspeer, M.; Moser, E.; Nagel, A.M.; Norris, D.G.; Schmitter, S.; Speck, O.; Straub, S.; Zaiss, M. Pros and cons of ultra-high-field MRI/MRS for human application. Prog. Nucl. Magn. Reson. Spectrosc. 2018, 109, 1–50. [Google Scholar] [CrossRef] [PubMed]
- Niendorf, T.; Barth, M.; Kober, F.; Trattnig, S. From ultrahigh to extreme field magnetic resonance: Where physics, biology and medicine meet. Magn. Reson. Mater. Phy. 2016, 29, 309–311. [Google Scholar] [CrossRef] [PubMed]
- Ugurbil, K. Imaging at ultrahigh magnetic fields: History, challenges, and solutions. NeuroImage 2018, 168, 7–32. [Google Scholar] [CrossRef] [PubMed]
- Avdievich, N.I.; Solomakha, G.; Ruhm, L.; Henning, A.; Scheffler, K. Unshielded bent folded-end dipole 9.4 T human head transceiver array decoupled using modified passive dipoles. Magn. Reson. Med. 2021, 86, 581–597. [Google Scholar] [CrossRef]
- Budde, J.; Shajan, G.; Zaitsev, M.; Scheffler, K.; Pohmann, R. Functional MRI in human subjects with gradient-echo and spin-echo EPI at 9.4 T. Magn. Reson. Med. 2014, 71, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, J.; Shajan, G.; Budde, J.; Scheffler, K.; Pohmann, R. Human brain imaging at 9.4 T using a tunable patch antenna for transmission. Magn. Reson. Med. 2013, 69, 1494–1500. [Google Scholar] [CrossRef] [PubMed]
- Ertürk, M.A.; Wu, X.; Eryaman, Y.; Van de Moortele, P.F.; Auerbach, E.J.; Lagore, R.L.; DelaBarre, L.; Vaughan, J.T.; Uğurbil, K.; Adriany, G.; et al. Toward imaging the body at 10.5 tesla. Magn. Reson. Med. 2017, 77, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Steensma, B.; Moortele, P.F.; Ertürk, A.; Grant, A.; Adriany, G.; Luijten, P.; Klomp, D.; Den Berg, N.; Metzger, G.; Raaijmakers, A. Introduction of the snake antenna array: Geometry optimization of a sinusoidal dipole antenna for 10.5 T body imaging with lower peak SAR. Magn. Reson. Med. 2020, 84, 2885–2896. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi-Tarakameh, A.; Jungst, S.; Lanagan, M.; DelaBarre, L.; Wu, X.; Adriany, G.; Metzger, G.J.; Van de Moortele, P.F.; Ugurbil, K.; Atalar, E.; et al. A nine-channel transmit/receive array for spine imaging at 10.5 T: Introduction to a nonuniform dielectric substrate antenna. Magn. Reson. Med. 2022, 87, 2074–2088. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Erturk, M.A.; Grant, A.; Wu, X.; Lagore, R.L.; DelaBarre, L.; Eryaman, Y.; Adriany, G.; Auerbach, E.J.; Van de Moortele, P.F.; et al. First in-vivo human imaging at 10.5T: Imaging the body at 447 MHz. Magn. Reson. Med. 2020, 84, 289–303. [Google Scholar] [CrossRef]
- Le Ster, C.; Grant, A.; Van De Moortele, P.F.; Monreal-Madrigal, A.; Adriany, G.; Vignaud, A.; Mauconduit, F.; Rabrait-Lerman, C.; Poser, B.A.; Uğurbil, K.; et al. Magnetic field strength dependent SNR gain at the center of a spherical phantom and up to 11.7 T. Magn. Reson. Med. 2022, 88, 2131–2138. [Google Scholar] [CrossRef]
- Seo, J.-H.; Chung, J.-Y. A Preliminary Study for Reference RF Coil at 11.7 T MRI: Based on Electromagnetic Field Simulation of Hybrid-BC RF Coil According to Diameter and Length at 3.0, 7.0 and 11.7 T. Sensors 2022, 22, 1512. [Google Scholar] [CrossRef]
- Chu, S.; Gras, V.; Mauconduit, F.; Massire, A.; Boulant, N.; Gunamony, S. Electromagnetic and RF pulse design simulation based optimization of an eight-channel loop array for 11.7T brain imaging. Magn. Reson. Med. 2023, 90, 770–783. [Google Scholar] [CrossRef] [PubMed]
- Boulant, N.; Quettier, L.; Iseult, C. Commissioning of the Iseult CEA 11.7 T whole-body MRI: Current status, gradient-magnet interaction tests and first imaging experience. Magn. Reson. Mater. Phys. Biol. Med. 2023, 36, 175–189. [Google Scholar] [CrossRef]
- Pohmann, R.; Speck, O.; Scheffler, K. Signal-to-Noise Ratio and MR Tissue Parameters in Human Brain Imaging at 3, 7, and 9.4 Tesla Using Current Receive Coil Arrays. Mag. Reson. Med. 2016, 75, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.; Keban, E.; Bollmann, S.; Wiggins, C.J.; Niendorf, T. Scaling the mountains: What lies above 7 Tesla magnetic resonance? Magn. Reson. Mater. Phys. Biol. Med. 2023, 36, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Roell, S. Key designs of a short-bore and cryogen-free high temperature superconducting magnet system for 14 T whole-body MRI. Supercond. Sci. Technol. 2021, 34, 15. [Google Scholar] [CrossRef]
- Bates, S.; Dumoulin, S.O.; Folkers, P.J.M.; Formisano, E.; Goebel, R.; Haghnejad, A.; Helmich, R.C.; Klomp, D.; Van Der Kolk, A.G.; Li, Y.; et al. A vision of 14 T MR for fundamental and clinical science. Magn. Reson. Mater. Phys. Biol. Med. 2023, 36, 211–225. [Google Scholar] [CrossRef] [PubMed]
- Council, D.R. National Roadmap: Nine Projects Receive 140 Million Euros for Large-Scale Research Infrastructure. Available online: https://www.nwo.nl/en/news/national-roadmap-nine-projects-receive-140-million-euros-large-scale-research-infrastructure (accessed on 24 August 2023).
- Ladd, M.E.; Quick, H.H.; Speck, O.; Bock, M.; Doerfler, A.; Forsting, M.; Hennig, J.; Ittermann, B.; Möller, H.E.; Nagel, A.M.; et al. Germany’s journey toward 14 Tesla human magnetic resonance. Magn. Reson. Mater. Phys. Biol. Med. 2023, 36, 191–210. [Google Scholar] [CrossRef]
- Harrevelt, S.D.; Roos, T.H.M.; Klomp, D.W.J.; Steensma, B.R.; Raaijmakers, A.J.E. Simulation-based evaluation of SAR and flip angle homogeneity for five transmit head arrays at 14 T. Magn. Reson. Mater. Phys. Biol. Med. 2023, 36, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Nurzed, B.; Kuehne, A.; Aigner, C.S.; Schmitter, S.; Niendorf, T.; Eigentler, T.W. Radiofrequency antenna concepts for human cardiac MR at 14.0 T. Magn. Reson. Mater. Phys. Biol. Med. 2023, 36, 257–277. [Google Scholar] [CrossRef] [PubMed]
- Budinger, T.F.; Bird, M.D. MRI and MRS of the human brain at magnetic fields of 14T to 20T: Technical feasibility, safety, and neuroscience horizons. NeuroImage 2018, 168, 509–531. [Google Scholar] [CrossRef] [PubMed]
- Budinger, T.F.; Bird, M.D.; Frydman, L.; Long, J.R.; Mareci, T.H.; Rooney, W.D.; Rosen, B.; Schenck, J.F.; Schepkin, V.D.; Sherry, A.D.; et al. Toward 20 T magnetic resonance for human brain studies: Opportunities for discovery and neuroscience rationale. Magn. Reson. Mater. Phys. Biol. Med. 2016, 29, 617–639. [Google Scholar] [CrossRef] [PubMed]
- Winter, L.; Niendorf, T. Electrodynamics and radiofrequency antenna concepts for human magnetic resonance at 23.5 T (1 GHz) and beyond. Magn. Reson. Mater. Phy. 2016, 29, 641–656. [Google Scholar] [CrossRef] [PubMed]
- Winter, L.; Oezerdem, C.; Hoffmann, W.; van de Lindt, T.; Periquito, J.; Ji, Y.; Ghadjar, P.; Budach, V.; Wust, P.; Niendorf, T. Thermal magnetic resonance: Physics considerations and electromagnetic field simulations up to 23.5 Tesla (1 GHz). Radiat. Oncol. 2015, 10, 201. [Google Scholar] [CrossRef]
- Niendorf, T.; Paul, K.; Oezerdem, C.; Graessl, A.; Klix, S.; Huelnhagen, T.; Hezel, F.; Rieger, J.; Waiczies, H.; Frahm, J.; et al. W(h)ither human cardiac and body magnetic resonance at ultrahigh fields? technical advances, practical considerations, applications, and clinical opportunities. NMR Biomed. 2016, 29, 1173–1197. [Google Scholar] [CrossRef] [PubMed]
- Ugurbil, K.; Van de Moortele, P.F.; Grant, A.; Auerbach, E.J.; Erturk, A.; Lagore, R.; Ellermann, J.M.; He, X.; Adriany, G.; Metzger, G.J. Progress in Imaging the Human Torso at the Ultrahigh Fields of 7 and 10.5 T. Magn. Reson. Imaging Clin. N. Am. 2021, 29, e1–e19. [Google Scholar] [CrossRef]
- Niendorf, T.; Schulz-Menger, J.; Paul, K.; Huelnhagen, T.; Ferrari, V.A.; Hodge, R. High Field Cardiac Magnetic Resonance Imaging: A Case for Ultrahigh Field Cardiac Magnetic Resonance. Circ. Cardiovasc. Imaging 2017, 10, e005460. [Google Scholar] [CrossRef] [PubMed]
- Clarke, W.T.; Hingerl, L.; Strasser, B.; Bogner, W.; Valkovic, L.; Rodgers, C.T. Three-dimensional, 2.5-minute, 7T phosphorus magnetic resonance spectroscopic imaging of the human heart using concentric rings. NMR Biomed. 2023, 36, e4813. [Google Scholar] [CrossRef] [PubMed]
- Niendorf, T.; Sodickson, D.K.; Krombach, G.A.; Schulz-Menger, J. Toward cardiovascular MRI at 7 T: Clinical needs, technical solutions and research promises. Eur. Radiol. 2010, 20, 2806–2816. [Google Scholar] [CrossRef] [PubMed]
- Niendorf, T.; Graessl, A.; Thalhammer, C.; Dieringer, M.A.; Kraus, O.; Santoro, D.; Fuchs, K.; Hezel, F.; Waiczies, S.; Ittermann, B.; et al. Progress and promises of human cardiac magnetic resonance at ultrahigh fields: A physics perspective. J. Magn. Reson. 2013, 229, 208–222. [Google Scholar] [CrossRef] [PubMed]
- Webb, A.; Shchelokova, A.; Slobozhanyuk, A.; Zivkovic, I.; Schmidt, R. Novel materials in magnetic resonance imaging: High permittivity ceramics, metamaterials, metasurfaces and artificial dielectrics. Magn. Reson. Mater. Phys. Biol. Med. 2022, 35, 875–894. [Google Scholar] [CrossRef] [PubMed]
- Webb, A.G. Dielectric materials in magnetic resonance. Concepts Magn. Reson. Part A 2011, 38A, 148–184. [Google Scholar] [CrossRef]
- Garcia, M.M.; Chaim, K.T.; Otaduy, M.C.G.; Rennings, A.; Erni, D.; Vatanchi, M.; Zylka, W. Investigating the influence of dielectric pads in 7T magnetic resonance imaging—Simulated and experimental assessment. Curr. Dir. Biomed. Eng. 2020, 6, 24–27. [Google Scholar] [CrossRef]
- Jacobs, P.S.; Brink, W.; Reddy, R. A review of recent developments and applications of high-permittivity dielectric shimming in magnetic resonance. NMR Biomed. 2024, 37, e5094. [Google Scholar] [CrossRef] [PubMed]
- Teeuwisse, W.M.; Brink, W.M.; Webb, A.G. Quantitative assessment of the effects of high-permittivity pads in 7 Tesla MRI of the brain. Magn. Reson. Med. 2012, 67, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.X.; Mao, W.; Wang, J.; Smith, M.B.; Lei, H.; Zhang, X.; Ugurbil, K.; Chen, W. Manipulation of image intensity distribution at 7.0 T: Passive RF shimming and focusing with dielectric materials. J. Magn. Reson. Imaging 2006, 24, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Jaffer, F.A.; Denison, T.J.; Duewell, S.; Chesnick, A.S.; Balaban, R.S. The evaluation of dielectric resonators containing H20 or D20 as RF Coils for High Field MR Imaging and Spectroscopy. J. Magn. Reson. B 1996, 110, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Mitra, A.; Aissa, B. Metamaterials and Metasurfaces: A Review from the Perspectives of Materials, Mechanisms and Advanced Metadevices. Nanomaterials 2022, 12, 1027. [Google Scholar] [CrossRef]
- Puchnin, V.; Ivanov, V.; Gulyaev, M.; Pirogov, Y.; Zubkov, M. Imaging Capabilities of the ¹H-X-Nucleus Metamaterial-Inspired Multinuclear RF-Coil. IEEE Trans. Med. Imaging 2022, 41, 1587–1595. [Google Scholar] [CrossRef]
- Duan, G.; Zhao, X.; Anderson, S.W.; Zhang, X. Boosting magnetic resonance imaging signal-to-noise ratio using magnetic metamaterials. Commun. Phys. 2019, 2, 35. [Google Scholar] [CrossRef] [PubMed]
- Rotundo, S.; Brizi, D.; Flori, A.; Giovannetti, G.; Menichetti, L.; Monorchio, A. Shaping and Focusing Magnetic Field in the Human Body: State-of-the Art and Promising Technologies. Sensors 2022, 22, 5132. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.; Webb, A. Metamaterial Combining Electric- and Magnetic-Dipole-Based Configurations for Unique Dual-Band Signal Enhancement in Ultrahigh-Field Magnetic Resonance Imaging. ACS Appl. Mater. Interfaces 2017, 9, 34618–34624. [Google Scholar] [CrossRef] [PubMed]
- Slobozhanyuk, A.P.; Poddubny, A.N.; Raaijmakers, A.J.; van den Berg, C.A.; Kozachenko, A.V.; Dubrovina, I.A.; Melchakova, I.V.; Kivshar, Y.S.; Belov, P.A. Enhancement of Magnetic Resonance Imaging with Metasurfaces. Adv. Mater. 2016, 28, 1832–1838. [Google Scholar] [CrossRef] [PubMed]
- Wiltshire, M.C.K. Radio frequency (RF) metamaterials. Phys. Status Solidi (B) 2007, 244, 1227–1236. [Google Scholar] [CrossRef]
- Jelinek, L.; Marqués, R.; Freire, M.J. Accurate modeling of split ring metamaterial lenses for magnetic resonance imaging applications. J. Appl. Phys. 2009, 105, 024907. [Google Scholar] [CrossRef]
- Algarin, J.M.; Freire, M.J.; Breuer, F.; Behr, V.C. Metamaterial magnetoinductive lens performance as a function of field strength. J. Magn. Reson. 2014, 247, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Shchelokova, A.V.; Slobozhanyuk, A.P.; Melchakova, I.V.; Glybovski, S.B.; Webb, A.G.; Kivshar, Y.S.; Belov, P.A. Locally Enhanced Image Quality with Tunable Hybrid Metasurfaces. Phys. Rev. Appl. 2018, 9, 014020. [Google Scholar] [CrossRef]
- Vorobyev, V.; Shchelokova, A.; Zivkovic, I.; Slobozhanyuk, A.; Baena, J.D.; Del Risco, J.P.; Abdeddaim, R.; Webb, A.; Glybovski, S. An artificial dielectric slab for ultra high-field MRI: Proof of concept. J. Magn. Reson. 2020, 320, 106835. [Google Scholar] [CrossRef] [PubMed]
- Stoja, E.; Konstandin, S.; Philipp, D.; Wilke, R.N.; Betancourt, D.; Bertuch, T.; Jenne, J.; Umathum, R.; Gunther, M. Improving magnetic resonance imaging with smart and thin metasurfaces. Sci. Rep. 2021, 11, 16179. [Google Scholar] [CrossRef] [PubMed]
- Kowal, R.; Knull, L.; Vogt, I.; Hubmann, M.J.; Düx, D.; Hensen, B.; Wacker, F.; Speck, O.; Maune, H. Impact of Unit Cell Density on Grid and Stripe Metasurfaces for MRI Receive Enhancement. IEEE J. Electromagn. RF Microw. Med. Biol. 2024, 1–8. [Google Scholar] [CrossRef]
- Wu, K.; Zhao, X.; Bifano, T.G.; Anderson, S.W.; Zhang, X. Auxetics-Inspired Tunable Metamaterials for Magnetic Resonance Imaging. Adv. Mater. 2022, 34, e2109032. [Google Scholar] [CrossRef]
- Kretov, E.I.; Shchelokova, A.V.; Slobozhanyuk, A.P. Impact of wire metasurface eigenmode on the sensitivity enhancement of MRI system. Appl. Phys. Lett. 2018, 112, 033501. [Google Scholar] [CrossRef]
- Schmidt, R.; Slobozhanyuk, A.; Belov, P.; Webb, A. Flexible and compact hybrid metasurfaces for enhanced ultra high field in vivo magnetic resonance imaging. Sci. Rep. 2017, 7, 1678. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Guo, L.; Li, M.; Destruel, A.; Liu, C.; Weber, E.; Liu, F.; Crozier, S. Metamaterial-Inspired Radiofrequency (RF) Shield With Reduced Specific Absorption Rate (SAR) and Improved Transmit Efficiency for UHF MRI. IEEE Trans. Biomed. Eng. 2021, 68, 1178–1189. [Google Scholar] [CrossRef] [PubMed]
- Hardy, W.N.; Whitehead, L.A. Split-ring resonator for use in magnetic resonance from 200–2000 MHz. Rev. Sci. Instrum. 1981, 52, 213–216. [Google Scholar] [CrossRef]
- Sydoruk, O.; Tatartschuk, E.; Shamonina, E.; Solymar, L. Analytical formulation for the resonant frequency of split rings. J. Appl. Phys. 2009, 105, 014903. [Google Scholar] [CrossRef]
- Gay-Balmaz, P.; Martin, O.J.F. Electromagnetic Resonance in Individual and coupled Split Ring Resonators. J. Appl. Phys. 2002, 92, 2929–2936. [Google Scholar] [CrossRef]
- Lahiri, B.; McMeekin, S.G.; Khokhar, A.Z.; Rue, R.M.D.L.; Johnson, N.P. Magnetic response of split ring resonators (SRRs) at visible frequencies. Opt. Express 2010, 18, 3210–3218. [Google Scholar] [CrossRef]
- Serria, E.A.; Hussein, M.I. Implications of Metamaterial on Ultra-Wide Band Microstrip Antenna Performance. Crystals 2020, 10, 677. [Google Scholar] [CrossRef]
- Thompson, M.T. Inductance Calculation Techniques; Worcester Polytechnic Institute: Worcester, MA, USA, 1999. [Google Scholar]
- Rectangle Loop Inductance. Available online: https://www.datasheets.com/tools/rectangle-loop-inductance (accessed on 31 July 2024).
- Bilotti, F.; Toscano, A.; Vegni, L. Design of Spiral and Multiple Split-Ring Resonators for the Realization of Miniaturized Metamaterial Samples. IEEE Trans. Antennas Propag. 2007, 55, 2258–2267. [Google Scholar] [CrossRef]
- Eigentler, T.W.; Kuehne, A.; Boehmert, L.; Dietrich, S.; Els, A.; Waiczies, H.; Niendorf, T. 32-Channel self-grounded bow-tie transceiver array for cardiac MR at 7.0 T. Magn. Reson. Med. 2021, 86, 2862–2879. [Google Scholar] [CrossRef] [PubMed]
- Christ, A.; Kainz, W.; Hahn, E.G.; Honegger, K.; Zefferer, M.; Neufeld, E.; Rascher, W.; Janka, R.; Bautz, W.; Chen, J.; et al. The Virtual Family--development of surface-based anatomical models of two adults and two children for dosimetric simulations. Phys. Med. Biol. 2010, 55, N23. [Google Scholar] [CrossRef]
- IT’IS Foundation. Tissue Properties Database V4.0; IT’IS Foundation: Zürich, Switzerland, 2018. [Google Scholar]
- Georgakis, I.P.; Polimeridis, A.G.; Lattanzi, R. A formalism to investigate the optimal transmit efficiency in radiofrequency shimming. NMR Biomed. 2020, 33, e4383. [Google Scholar] [CrossRef]
- Padormo, F.; Beqiri, A.; Hajnal, J.V.; Malik, S.J. Parallel transmission for ultrahigh-field imaging. NMR Biomed. 2016, 29, 1145–1161. [Google Scholar] [CrossRef] [PubMed]
- Aigner, C.S.; Dietrich, S.; Schmitter, S. Three-dimensional static and dynamic parallel transmission of the human heart at 7 T. NMR Biomed. 2021, 34, e4450. [Google Scholar] [CrossRef] [PubMed]
- Grissom, W.A.; Khalighi, M.-M.; Sacolick, L.I.; Rutt, B.K.; Vogel, M.W. Small-tip-angle spokes pulse design using interleaved greedy and local optimization methods. Magn. Reson. Med. 2012, 68, 1553–1562. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Yan, X.; Grissom, W.A. Array-compressed parallel transmit pulse design. Magn. Reson. Med. 2016, 76, 1158–1169. [Google Scholar] [CrossRef]
- IEC60601-2-33; Medical Electrical Equipment: Particular Requirements for the Safety of Magnetic Resonance Equipment for Medical Diagnosis. International Electrotechnical Commission (IEC): Geneva, Switzerland, 2010.
- Gach, H.M. Technical Note: T(1) and T(2) and complex permittivities of mineral oil, silicone oil, and glycerol at 0.35, 1.5, and 3 T. Med. Phys. 2019, 46, 1785–1792. [Google Scholar] [CrossRef] [PubMed]
- Brink, W.M.; Webb, A.G. High permittivity pads reduce specific absorption rate, improve B1 homogeneity, and increase contrast-to-noise ratio for functional cardiac MRI at 3 T. Magn. Reson. Med. 2014, 71, 1632–1640. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.R.; Padilla, W.J.; Vier, D.C.; Nemat-Nasser, S.C.; Schultz, S. Composite Medium with Simultaneously Negative Permeability and Permittivity. Phys. Rev. Lett. 2000, 84, 4184. [Google Scholar] [CrossRef]
- Hakim, M.L.; Islam, M.T.; Alam, T.; Abdul Rahim, S.K.; Bais, B.; Islam, M.S.; Soliman, M.S. Triple-Band Square Split-Ring Resonator Metamaterial Absorber Design with High Effective Medium Ratio for 5G Sub-6 GHz Applications. Nanomaterials 2023, 13, 222. [Google Scholar] [CrossRef]
- Hossain, M.B.; Faruque, M.R.I.; Islam, S.S.; Islam, M.T. Modified double dumbbell-shaped split-ring resonator-based negative permittivity metamaterial for satellite communications with high effective medium ratio. Sci. Rep. 2021, 11, 19331. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Islam, M.T.; Islam, M.R.; Misran, N.; Samsuzzaman, M. Coupled ring split ring resonator (CR-SRR) based epsilon negative metamaterial for multiband wireless communications with high effective medium ratio. Results Phys. 2020, 18, 103248. [Google Scholar] [CrossRef]
- Almutairi, A.F.; Islam, M.S.; Samsuzzaman, M.; Islam, M.T.; Misran, N.; Islam, M.T. A complementary split ring resonator based metamaterial with effective medium ratio for C-band microwave applications. Results Phys. 2019, 15, 102675. [Google Scholar] [CrossRef]
- Hurshkainen, A.; Mollaei, M.S.M.; Dubois, M.; Kurdjumov, S.; Abdeddaim, R.; Enoch, S.; Glybovski, S.; Simovski, C. Decoupling of Closely Spaced Dipole Antennas for Ultrahigh Field MRI With Metasurfaces. IEEE Trans. Antennas Propag. 2021, 69, 1094–1106. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef] [PubMed]
- Khouser, G.H.; Choukiker, Y.K. Design of negative refractive index 3D metamaterial split ring resonator for IoT applications. Microw. Opt. Technol. Lett. 2022, 66, e33443. [Google Scholar] [CrossRef]
- Husna Khouser, G.; Choukiker, Y.K. Unique 3D metamaterial split ring resonator for wireless communication with high negative refractive index and for medium ratio. Waves Random Complex Media 2022, 1–14. [Google Scholar] [CrossRef]
- Chowdhury, M.Z.B.; Islam, M.T.; Hoque, A.; Alshammari, A.S.; Alzamil, A.; Alsaif, H.; Alshammari, B.M.; Hossain, I.; Samsuzzaman, M. Design and Parametric Analysis of a Wide-Angle and Polarization Insensitive Ultra-Broadband Metamaterial Absorber for Visible Optical Wavelength Applications. Nanomaterials 2022, 12, 4253. [Google Scholar] [CrossRef] [PubMed]
- Okatani, T.; Sunada, Y.; Hane, K.; Kanamori, Y. Terahertz 3D bulk metamaterials with randomly dispersed split-ring resonators. Nanophotonics 2022, 11, 2065–2074. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Wang, G. Conformal hyperthermia of superficial tumor with left-handed metamaterial lens applicator. IEEE Trans. Biomed. Eng. 2012, 59, 3525–3530. [Google Scholar] [CrossRef]
- Velázquez-Ahumada, M.C.; Freire, M.J.; Marqués, R. Metamaterial focusing device for microwave hyperthermia. Microw. Opt. Technol. Lett. 2011, 53, 2868–2872. [Google Scholar] [CrossRef]
- Saha, N.; Kuehne, A.; Millward, J.M.; Eigentler, T.W.; Starke, L.; Waiczies, S.; Niendorf, T. Advanced Radio Frequency Applicators for Thermal Magnetic Resonance Theranostics of Brain Tumors. Cancers 2023, 15, 2303. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-T.; Padilla, W.J.; Cich, M.J.; Azad, A.K.; Averitt, R.D.; Taylor, A.J. A metamaterial solid-state terahertz phase modulator. Nat. Photonics 2009, 3, 148–151. [Google Scholar] [CrossRef]
- Fan, Y.; Qiao, T.; Zhang, F.; Fu, Q.; Dong, J.; Kong, B.; Li, H. An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency. Sci. Rep. 2017, 7, 40441. [Google Scholar] [CrossRef]
- van Heeswijk, R.B.; Bonanno, G.; Coppo, S.; Coristine, A.; Kober, T.; Stuber, M. Motion compensation strategies in magnetic resonance imaging. Crit. Rev. Biomed. Eng. 2012, 40, 99–119. [Google Scholar] [CrossRef] [PubMed]
- Alarcón, M.F.S.; Dietrich, S.; Bassenge, J.P.; Schulz-Menger, J.; Schmitter, S.; Aigner, a.C.S. Reproducibility of tailored and universal non-selective excitation pulses at 7T for human cardiac body imaging: A 3-year and an inter-day study. In Proceedings of the International Society for Magnetic Resonance in Medicine: ISMRM 2024, Singapore, 4–9 May 2024; Volume 32, p. 0521. [Google Scholar]
RF Array | Body [%] | Coupling [%] | Tu&Ma [%] | Radiation [%] | Material [%] | Imbalance [%] | |
---|---|---|---|---|---|---|---|
32-channel RF array | (i) Water | 51.0 | 0.5 | 2.0 | 0.2 | 44.3 | 2.0 |
(ii) Glycerol | 96.1 | 1.0 | 2.1 | 0.6 | 0.0 | 0.2 | |
(iii) 3 × 5 MM | 96.1 | 1.1 | 2.0 | 0.5 | 0.1 | 0.2 | |
(iv) 4 × 6 MM | 96.1 | 1.5 | 1.9 | 0.4 | 0.0 | 0.1 | |
80-channel RF array | (i) Water | 44.8 | 0.7 | 2.1 | 0.2 | 50.8 | 1.4 |
(ii) Glycerol | 94.0 | 3.3 | 2.0 | 0.5 | 0.0 | 0.2 | |
(iii) 3 × 5 MM | 93.0 | 5.8 | 0.6 | 0.4 | 0.0 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nurzed, B.; Saha, N.; Millward, J.M.; Niendorf, T. 3D Metamaterials Facilitate Human Cardiac MRI at 21.0 Tesla: A Proof-of-Concept Study. Sensors 2025, 25, 620. https://doi.org/10.3390/s25030620
Nurzed B, Saha N, Millward JM, Niendorf T. 3D Metamaterials Facilitate Human Cardiac MRI at 21.0 Tesla: A Proof-of-Concept Study. Sensors. 2025; 25(3):620. https://doi.org/10.3390/s25030620
Chicago/Turabian StyleNurzed, Bilguun, Nandita Saha, Jason M. Millward, and Thoralf Niendorf. 2025. "3D Metamaterials Facilitate Human Cardiac MRI at 21.0 Tesla: A Proof-of-Concept Study" Sensors 25, no. 3: 620. https://doi.org/10.3390/s25030620
APA StyleNurzed, B., Saha, N., Millward, J. M., & Niendorf, T. (2025). 3D Metamaterials Facilitate Human Cardiac MRI at 21.0 Tesla: A Proof-of-Concept Study. Sensors, 25(3), 620. https://doi.org/10.3390/s25030620