ATEX-Certified, FPGA-Based Three-Channel Quantum Cascade Laser Sensor for Sulfur Species Detection in Petrochemical Process Streams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design Consideration of the Sensor and Optical Principles
2.2. Laser Characterization and Selection of Spectral Windows
3. Instrumentation
3.1. Optical Layout
3.2. Signal Generation and Data Acquisition
3.3. Laser Driving and Peripheral Components
3.4. ATEX Sensor Architecture and Process Implementation
4. Results and Discussion
4.1. Wavenumber Tracking and Interpolation
4.2. Limit of Detection (LoD)
4.3. Noise-Equivalent Absorption Sensitivity (NEAS)
4.4. Long-Term Stability—Allan–Werle Variance Analysis
4.5. On-Site Process Spectra
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pandey, S.K.; Kim, K.H.; Tang, K.T. A review of sensor-based methods for monitoring hydrogen sulfide. TrAC—Trends Anal. Chem. 2012, 32, 87–99. [Google Scholar] [CrossRef]
- Petruci, J.F.D.S.; Fortes, P.R.; Kokoric, V.; Wilk, A.; Raimundo, I.M.; Cardoso, A.A.; Mizaikoff, B. Monitoring of hydrogen sulfide via substrate-integrated hollow waveguide mid-infrared sensors in real-time. Analyst 2014, 139, 198–203. [Google Scholar] [CrossRef]
- Moser, H.; Lendl, B. Cantilever-enhanced photoacoustic detection of hydrogen sulfide (H2S) using NIR telecom laser sources near 1.6 µm. Appl. Phys. B 2016, 122, 83. [Google Scholar] [CrossRef]
- Farooq, A.; Alquaity, A.B.S.; Raza, M.; Nasir, E.F.; Yao, S.; Ren, W. Laser sensors for energy systems and process industries: Perspectives and directions. Prog. Energy Combust. Sci. 2022, 91, 100997. [Google Scholar] [CrossRef]
- Ibrahim, H.; Serag, A.; Farag, M.A. Emerging analytical tools for the detection of the third gasotransmitter H2S, a comprehensive review. J. Adv. Res. 2021, 27, 137–153. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, N.S.; Davis, J.; Compton, R.G. Analytical strategies for the detection of sulfide: A review. Talanta 2000, 52, 771–784. [Google Scholar] [CrossRef] [PubMed]
- Vargas, A.P.; Gámez, F.; Roales, J.; Lopes-Costa, T.; Pedrosa, J.M. A paper-based ultrasensitive optical sensor for the selective detection of H2 S vapors. Chemosensors 2021, 9, 40. [Google Scholar] [CrossRef]
- Stanislaus, A.; Marafi, A.; Rana, M.S. Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catal. Today 2010, 153, 1–68. [Google Scholar] [CrossRef]
- Faist, J.; Capasso, F.; Sivco, D.; Sirtori, C.; Hutchinson, A.; Cho, A. Quantum Cascade Laser. Science 1994, 264, 553–556. [Google Scholar] [CrossRef]
- Kosterev, A.A.; Wysocki, G.; Bakhirkin, Y.; So, S.; Lewicki, R.; Fraser, M.; Tittel, F.; Curl, R.F. Application of quantum cascade lasers to trace gas analysis. Appl. Phys. B 2007, 90, 165–176. [Google Scholar] [CrossRef]
- Curl, R.F.; Capasso, F.; Gmachl, C.; Kosterev, A.A.; McManus, B.; Lewicki, R.; Pusharsky, M.; Wysocki, G.; Tittel, F.K. Quantum cascade lasers in chemical physics. Chem. Phys. Lett. 2010, 487, 1–18. [Google Scholar] [CrossRef]
- Hancock, G.; Ritchie, G.; van Helden, J.-P.; Walker, R.; Weidmann, D. Applications of midinfrared quantum cascade lasers to spectroscopy. Opt. Eng. 2010, 49, 111121. [Google Scholar] [CrossRef]
- McManus, J.B.; Zahniser, M.S.; Nelson, D.D.; Shorter, J.H.; Herndon, S.; Wood, E.; Wehr, R. Application of quantum cascade lasers to high-precision atmospheric trace gas measurements. Opt. Eng. 2010, 49, 111124. [Google Scholar] [CrossRef]
- Duxbury, G.; Langford, N.; McCulloch, M.T.; Wright, S. Quantum cascade semiconductor infrared and far-infrared lasers: From trace gas sensing to non-linear optics. Chem. Soc. Rev. 2005, 34, 921–934. [Google Scholar] [CrossRef]
- Rao, G.N.; Karpf, A. External cavity tunable quantum cascade lasers and their applications to trace gas monitoring. Appl. Opt. 2011, 50, A100. [Google Scholar] [CrossRef]
- Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2013, 24, 012004. [Google Scholar] [CrossRef]
- Centeno, R.; Marchenko, D.; Mandon, J.; Cristescu, S.M.; Wulterkens, G.; Harren, F.J.M. High power, widely tunable, mode-hop free, continuous wave external cavity quantum cascade laser for multi-species trace gas detection. Appl. Phys. Lett. 2014, 105, 261907. [Google Scholar] [CrossRef]
- van Helden, J.H.; Lang, N.; Macherius, U.; Zimmermann, H.; Röpcke, J. Sensitive trace gas detection with cavity enhanced absorption spectroscopy using a continuous wave external-cavity quantum cascade laser. Appl. Phys. Lett. 2013, 103, 131114. [Google Scholar] [CrossRef]
- Patimisco, P.; Scamarcio, G.; Tittel, F.; Spagnolo, V.; Patimisco, P.; Scamarcio, G.; Tittel, F.; Spagnolo, V. Quartz-Enhanced Photoacoustic Spectroscopy: A Review. Sensors 2014, 14, 6165–6206. [Google Scholar] [CrossRef]
- Reidl-Leuthner, C.; Ofner, J.; Tomischko, W.; Lohninger, H.; Lendl, B. Simultaneous open-path determination of road side mono-nitrogen oxides employing mid-IR laser spectroscopy. Atmos. Environ. 2015, 112, 189–195. [Google Scholar] [CrossRef]
- McManus, J.B.; Nelson, D.D.; Herndon, S.C.; Shorter, J.H.; Zahniser, M.S.; Blaser, S.; Hvozdara, L.; Muller, A.; Giovannini, M.; Faist, J. Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1. Appl. Phys. B 2006, 85, 235–241. [Google Scholar] [CrossRef]
- Tuzson, B.; Mangold, M.; Looser, H.; Manninen, A.; Emmenegger, L. Compact multipass optical cell for laser spectroscopy. Opt. Lett. 2013, 38, 257–259. [Google Scholar] [CrossRef] [PubMed]
- Herriott, D.; Kogelnik, H.; Kompfner, R. Off-axis paths in spherical mirror interferometers. Appl. Opt. 1964, 3, 523–526. [Google Scholar] [CrossRef]
- Bomse, D.S.; Stanton, A.C.; Silver, J.A. Frequency modulation and wavelength modulation spectroscopies: Comparison of experimental methods using a lead-salt diode laser. Appl. Opt. 1992, 31, 718–731. [Google Scholar] [CrossRef] [PubMed]
- Kluczynski, P.; Gustafsson, J.; Lindberg, Å.M.; Axner, O. Wavelength modulation absorption spectrometry—An extensive scrutiny of the generation of signals. Spectrochim. Acta Part B At. Spectrosc. 2001, 56, 1277–1354. [Google Scholar] [CrossRef]
- Lins, B.; Zinn, P.; Engelbrecht, R.; Schmauss, B. Simulation-based comparison of noise effects in wavelength modulation spectroscopy and direct absorption TDLAS. Appl. Phys. B 2010, 100, 367–376. [Google Scholar] [CrossRef]
- Pham, D.D.; Nguyen, T.M.; Ho, T.H.; Le, Q.V.; Nguyen, D.L.T. Advancing hydrodesulfurization in heavy Oil: Recent developments, challenges, and future prospects. Fuel 2024, 372, 132082. [Google Scholar] [CrossRef]
- Büchele, M.; Swoboda, M.; Reichhold, A.; Moser, H. Co-Processing of Atmospheric Residue With Vacuum Gas Oil in a Fluid Catalytic Cracking Pilot Plant—Effects on Product Spectra and Carbonyl Sulfide Formation. Erdoel Erdgas Kohle/EKEP 2019, 135, 151–156. [Google Scholar]
- Moser, H.; Pölz, W.; Waclawek, J.P.; Ofner, J.; Lendl, B. Implementation of a quantum cascade laser-based gas sensor prototype for sub-ppmv H2S measurements in a petrochemical process gas stream. Anal. Bioanal. Chem. 2016, 409, 729–739. [Google Scholar] [CrossRef]
- Moser, H.; Waclawek, J.P.; Genner, A.; Gasser, C.; Lendl, B. A triple quantum cascade laser based sulfur species sensor for H2S, CH3SH and COS in petrochemical process streams. In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 13–18 May 2018; p. AM2M.7. [Google Scholar] [CrossRef]
- Mikhailenko, S.N.; Babikov, Y.L.; Golovko, V.F. Information-calculating system Spectroscopy of Atmospheric Gases. The structure and main functions. Atmos. Ocean. Opt. 2005, 18, 685–695. [Google Scholar]
- Rothman, L.S.; Gordon, I.E.; Babikov, Y.; Barbe, A.; Chris Benner, D.; Bernath, P.F.; Birk, M.; Bizzocchi, L.; Boudon, V.; Brown, L.R.; et al. The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2013, 130, 4–50. [Google Scholar] [CrossRef]
- Moser, H.; Waclawek, J.P.; Pölz, W.; Lendl, B. Simple approach for spectral beam combination of narrowband laser sources for spectroscopic applications. Opt. Express 2023, 31, 31329. [Google Scholar] [CrossRef] [PubMed]
- Karvinen, K.S.; Moheimani, S.O.R. A high-bandwidth amplitude estimation technique for dynamic mode atomic force microscopy A high-bandwidth amplitude estimation technique for dynamic mode atomic force microscopy. Rev. Sci. Instrum. 2014, 85, 023707. [Google Scholar] [CrossRef]
- Hogenauer, E.B. An Economical Class of Digital Filters for Decimation and Interpolation. IEEE Trans. Acoust. 1981, 29, 155–162. [Google Scholar] [CrossRef]
- DIN IEC 60079-2:2014; Explosive Atmospheres—Part 2: Equipment Protection by Pressurized Enclosure “p”. German Institute for Standardization: Berlin, Germany, 2014; German version EN 60079-2:2014.
- Moyer, E.J.; Sayres, D.S.; Engel, G.S.; St. Clair, J.M.; Keutsch, F.N.; Allen, N.T.; Kroll, J.H.; Anderson, J.G. Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy. Appl. Phys. B 2008, 92, 467–474. [Google Scholar] [CrossRef]
- Genner, A.; Martín-mateos, P.; Moser, H.; Lendl, B. A quantum cascade laser-based multi-gas sensor for ambient air monitoring. Sensors 2020, 20, 1850. [Google Scholar] [CrossRef]
- Waclawek, J.P.; Moser, H.; Lendl, B. Balanced-detection interferometric cavity-assisted photothermal spectroscopy employing an all-fiber-coupled probe laser configuration. Opt. Express 2021, 29, 7794. [Google Scholar] [CrossRef]
- Bonilla-Manrique, O.E.; Moreno-Oyervides, A.; Manguez-Martin, R.; Giraud, E.; Waclawek, J.P.; Moser, H.; Lendl, B.; Martin-Mateos, P. Direct High-Frequency Modulation of a Quantum Cascade Laser for High-Sensitivity Molecular Dispersion Spectroscopy at Ambient Pressure. IEEE Trans. Instrum. Meas. 2024, 73, 1–6. [Google Scholar] [CrossRef]
# | Analyte | Manufacturer and SN | Emission Range (cm−1) | Operation Temperature Range (°C) | Operating Current Range (mA) | Modulation Current (mA) | Maximum Power (mW) |
---|---|---|---|---|---|---|---|
1 | H2S | AdTech, Fairfax, VA, USA CM7-12-CI0329 | 1251–1246 | 15–35 | 280–570 | 0.5–10 | 220 |
2 | CH3SH | Thorlabs, Newton, NJ, USA HZ-HHL-0170 | 1334.5–1330.5 | 15–35 | 110–290 | 0.2–5 | 160 |
3 | COS | Alpes, Gisozi, Kigali Rwanda sbcw8283 | 2054.5–2049.5 | 15–35 | 110–150 | 0.1–2 | 30 |
QCL | Analyte | Concentration | Averages | RMS Noise in Selected Region | SNR Peak | NEAS (cm−1 Hz−0.5) |
---|---|---|---|---|---|---|
1 | H2S | 25 ppmv | 1 | 2.82 × 10−4 | 32.7 | 5.93 × 10−9 |
2 | CH3SH | 50 ppmv | 1 | 2.21 × 10−4 | 54.6 | 4.65 × 10−9 |
3 | COS | 1.0 ppmv | 1 | 2.49 × 10−5 | 442.3 | 5.24 × 10−10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moser, H.; Waclawek, J.P.; Pölz, W.; Lendl, B. ATEX-Certified, FPGA-Based Three-Channel Quantum Cascade Laser Sensor for Sulfur Species Detection in Petrochemical Process Streams. Sensors 2025, 25, 635. https://doi.org/10.3390/s25030635
Moser H, Waclawek JP, Pölz W, Lendl B. ATEX-Certified, FPGA-Based Three-Channel Quantum Cascade Laser Sensor for Sulfur Species Detection in Petrochemical Process Streams. Sensors. 2025; 25(3):635. https://doi.org/10.3390/s25030635
Chicago/Turabian StyleMoser, Harald, Johannes Paul Waclawek, Walter Pölz, and Bernhard Lendl. 2025. "ATEX-Certified, FPGA-Based Three-Channel Quantum Cascade Laser Sensor for Sulfur Species Detection in Petrochemical Process Streams" Sensors 25, no. 3: 635. https://doi.org/10.3390/s25030635
APA StyleMoser, H., Waclawek, J. P., Pölz, W., & Lendl, B. (2025). ATEX-Certified, FPGA-Based Three-Channel Quantum Cascade Laser Sensor for Sulfur Species Detection in Petrochemical Process Streams. Sensors, 25(3), 635. https://doi.org/10.3390/s25030635