Modeling and Relative Permittivity Modulation of Cu/PDMS Capacitive Flexible Sensor for Pressure Sensing
Abstract
:1. Introduction
2. Working Principle of Capacitive Tactile Sensors
2.1. Structure of the Sensor
2.2. Working Principle of Normal Pressure
3. Preparation of the Soft Capacitive Sensor
3.1. Fabrication and Testing of Dielectric Layers
3.2. Optimization of the Component Ratio of the Dielectric Layer Material
3.3. Assembly of Sensors
4. Verification of Sensor Structure Simulation
4.1. Tensile Testing of Materials
4.2. Simulation of Sensor Dielectric Layer Under Pressure
4.3. Simulation of Capacitance Characteristics of the Composite Composed Sensor
5. Performance Test of the Sensor
5.1. Output Performance Test
5.1.1. Distributed Normal Force Test
5.1.2. Concentrated Force Test
5.2. Sensitivity and Fatigue
5.3. Repeatability
6. Conclusions
- A theoretical model for the composite dielectric layer was developed, providing a detailed analysis of the mechanism by which conductive fillers (Cu powder and carbon black particles) enhance the dielectric properties of the composite material. The study reveals that when the mass fraction of conductive particles reaches the percolation threshold, they form continuous conductive paths within the dielectric layer, significantly improving its electrical performance.
- Furthermore, the addition of carbon black particles increases the viscosity of the Cu/PDMS composite, which enhances the dispersion of Cu powder in the PDMS matrix, ultimately optimizing the dielectric properties of the material.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, W.L.; Du, Y.; Chen, Y.Y.; Zhang, C.Y.; Ning, X.W.; Xie, H.; Wu, T.; Hu, J.L.; Qu, J.P. Bioinspired Ultrasensitive Flexible Strain Sensors for Real-Time Wireless Detection of Liquid Leakage. Nano-Micro Lett. 2025, 17, 18. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yao, L.; Jia, X.Y.; Zou, X.; Cao, Y.H.; Liu, S.J.; Zhao, W.W.; Zhao, Q. Recent pro-gress in materials science and engineering towards flexible omnidirectional sensor. Mater. Sci. Eng. R-Rep. 2025, 163, 23. [Google Scholar] [CrossRef]
- Wang, H.B.; Wu, C.Y.; Mao, Y.C.; Zhao, Z.J.; Song, B.; Yu, B.J.; Qian, L.M. Chemical cor-rosion resistance mechanism of fabric-like flexible plasma sensors. Appl. Surf. Sci. 2025, 684, 8. [Google Scholar] [CrossRef]
- Lv, Y.L.; Wei, Q.Y.; Ye, L.D.; Huang, Y.Y.; Zhang, L.L.; Shen, R.B.; Li, Z.W.; Lu, S.R. Liq-uid metal flexible multifunctional sensors with ultra-high conductivity for use as wearable sensors, joule heaters and electromagnetic shielding materials. Compos. Pt. B-Eng. 2025, 291, 11. [Google Scholar] [CrossRef]
- Lin, L.W.; Wu, C.Q.; Cui, Y.F.; Pan, M.H.; Fang, N.; Zhou, M.; Zhang, Y.Z.; Zhang, W.; Li, Z.Y.; Zhou, Z.Y.; et al. Flexible physical sensors based on membranes: From design to application. Int. J. Extrem. Manuf. 2025, 7, 39. [Google Scholar] [CrossRef]
- Dong, Y.; An, W.Z.; Wang, Z.H.; Zhang, D.Z. An Artificial Intelligence-Assisted Flexible and Wearable Mechanoluminescent Strain Sensor System. Nano-Micro Lett. 2025, 17, 15. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.Z.; Zhou, Y.L.; Wu, X.Y.; Yin, M.F.; Yin, L.T.; Qu, S.Y.; Zhang, F.; Li, K.; Huang, Y.A. Flexible Strain Sensors with Ultra-High Sensitivity and Wide Range Enabled by Crack-Modulated Electrical Pathways. Nano-Micro Lett. 2025, 17, 19. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.B.; Liang, R.X.; Zhang, J.; Li, X.L.; Broach, Z.; Yip, J. Posture Monitoring During Breastfeeding: Smart Underwear Integrated with an Accelerometer and Flexible Sensors. Sensors 2024, 24, 16. [Google Scholar] [CrossRef]
- Zheng, S.H.; Ruan, L.Y.; Meng, F.M.; Wu, Z.H.; Qi, Y.Y.; Gao, Y.K.; Yuan, W.Z. Skin-Inspired, Multifunctional, and 3D-Printable Flexible Sensor Based on Triple-Responsive Hy-drogel for Signal Conversion in Skin Interface Electronics Health Management. Small 2024, 15, 2408745. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.H.; Wang, Z.K.; Zhang, S.W.; Wu, L. TPU-Supported Ti3C2Tx/TiO2/Ru elec-trospun mat towards flexible and multi-functional sensors for human motion and NH3 detection. J. Environ. Chem. Eng. 2024, 12, 15. [Google Scholar] [CrossRef]
- Zhao, W.L.; Li, K.; Li, Z.L.; Wang, W.W.; Yu, X.F.; Zhang, T.; Yang, X.N. Flexible Pressure Sensor Arrays with High Sensitivity and High Density Based on Spinous Microstructures for Carved Patterns Recognition. Adv. Funct. Mater. 2024, 12, 2417238. [Google Scholar] [CrossRef]
- Chen, K.F.; Yang, H.; Wang, A.; Tang, L.S.; Zha, X.; Iita, N.S.; Zhang, H.; Li, Z.X.; Wang, X.Y.; Yang, W.; et al. Smart Driving Hardware Augmentation by Flexible Piezo-resistive Sensor Matrices with Grafted-on Anticreep Composites. Adv. Sci. 2024, 13, 2408313. [Google Scholar]
- Liu, K.; Qin, Y.X.; Wu, G.R.; Wang, D.R.; Zhang, H.Y.; Wang, W.D.; Yuan, Y.B.; Gao, L.B. Iontronic capacitance-enhanced LC wireless passive pressure sensor for high-performance flexible sensing. Appl. Phys. Lett. 2023, 123, 7. [Google Scholar] [CrossRef]
- Gong, W.; Lian, J.; Zhu, Y. Capacitive flexible haptic sensor based on micro-cylindrical structure dielectric layer and its decoupling study. Measurement 2023, 223, 113785. [Google Scholar] [CrossRef]
- Won, P.; Valentine, C.S.; Zadan, M.; Pan, C.; Vinciguerra, M.; Patel, D.K.; Ko, S.H.; Walker, L.M.; Majidi, C. 3D printing of liquid metal embedded elastomers for soft thermal and electrical materials. ACS Appl. Mater. Interfaces 2022, 14, 55028–55038. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Zhang, H.; Yue, W.; Gao, S.; Kan, H.; Zhang, C.; Zhang, C.; Pang, J.; Lou, Z.; Wang, L. Micro-nano processing of active layers in flexible tactile sensors via template methods: A review. Small 2021, 17, 2100804. [Google Scholar] [CrossRef] [PubMed]
- Stoian, M.C.; Simionescu, O.G.; Romanitan, C.; Craciun, G.; Pachiu, C.; Radoi, A. Ver-tically Aligned Nanocrystalline Graphite Nanowalls for Flexible Electrodes as Electrochemical Sensors for Anthracene Detection. Sensors 2024, 24, 15. [Google Scholar] [CrossRef]
- Peng, L.; Xu, J.Y.; Yuan, S.; Li, S.Z.; Deng, S.H.; Zhu, H.; Fu, L.; Zhang, T.; Li, T. A Force-Thermal-Magnetic Trimodal Flexible Sensor for Ultrafine Recognition of Metallic Materials. Acs Appl. Mater. Interfaces 2024, 14, 70919–70932. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, D.Q.; He, J.W.; Zou, L.M. High-performance flexible sensor with rapidly adjustable sensitivity for wearable electronics. Chem. Eng. J. 2024, 502, 9. [Google Scholar] [CrossRef]
- Hsieh, G.-W.; Ling, S.-R.; Hung, F.-T.; Kao, P.-H.; Liu, J.-B. Enhanced piezocapacitive response in zinc oxide tetrapod–poly (dimethylsiloxane) composite dielectric layer for flexible and ultrasensitive pressure sensor. Nanoscale 2021, 13, 6076–6086. [Google Scholar] [CrossRef]
- Sharma, S.; Chhetry, A.; Sharifuzzaman, M.; Yoon, H.; Park, J.Y. Wearable capacitive pressure sensor based on MXene composite nanofibrous scaffolds for reliable human physiological signal acquisition. ACS Appl. Mater. Interfaces 2020, 12, 22212–22224. [Google Scholar] [CrossRef]
- Chen, W.; Yan, X. Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: A review. J. Mater. Sci. Technol. 2020, 43, 175–188. [Google Scholar] [CrossRef]
- Liu, L.; Cai, C.N.; Qian, Z.H.; Li, P.; Zhu, F. Application of Laser-Induced Graphene Flexible Sensor in Monitoring Large Deformation of Reinforced Concrete Structure. Sensors 2024, 24, 11. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.-Y.; Hang, C.-Z.; Zhao, X.-F.; Zhu, L.-Y.; Ma, R.-G.; Wang, J.-C.; Lu, H.-L.; Zhang, D.W. Advance on flexible pressure sensors based on metal and carbonaceous nanomaterial. Nano Energy 2021, 87, 106181. [Google Scholar] [CrossRef]
- Li, R.; Zhou, Q.; Bi, Y.; Cao, S.; Xia, X.; Yang, A.; Li, S.; Xiao, X. Research progress of flexible capacitive pressure sensor for sensitivity enhancement approaches. Sens. Actuators A Phys. 2021, 321, 112425. [Google Scholar] [CrossRef]
- Kanoun, O.; Bouhamed, A.; Ramalingame, R.; Bautista-Quijano, J.R.; Rajendran, D.; Al-Hamry, A. Review on conductive polymer/CNTs nanocomposites based flexible and stretchable strain and pressure sensors. Sensors 2021, 21, 341. [Google Scholar] [CrossRef]
- Mannsfeld, S.C.; Tee, B.C.; Stoltenberg, R.M.; Chen, C.V.H.; Barman, S.; Muir, B.V.; Sokolov, A.N.; Reese, C.; Bao, Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Ji, B.; Wei, Y.; Hu, B.; Gao, Y.; Xu, Q.; Zhou, J.; Zhou, B. A bio-inspired cilia array as the dielectric layer for flexible capacitive pressure sensors with high sensitivity and a broad detection range. J. Mater. Chem. A 2019, 7, 27334–27346. [Google Scholar] [CrossRef]
- Kwon, D.; Lee, T.I.; Shim, J.; Ryu, S.; Kim, M.S.; Kim, S.; Kim, T.S.; Park, I. Highly Sensitive, Flexible, and Wearable Pressure Sensor Based on a Giant Piezocapacitive Effect of Three-Dimensional Microporous Elastomeric Dielectric Layer. Acs Appl. Mater. Interfaces 2016, 8, 16922–16931. [Google Scholar] [CrossRef] [PubMed]
- Jia, B.; Liu, Z.Y.; Xiang, D.; Liu, L.B.; Sun, H.M.; Wu, Y.P.; Mu, M.L.; Wang, B.; Zhao, C.X.; Li, H. Flexible strain sensors based on carbon nanotubes/polydimethylsiloxane composites with a segregated structure prepared by sustainable emulsion method. Polym. Eng. Sci. 2024, 13. [Google Scholar] [CrossRef]
- Ejaz, M.U.; Irum, T.; Qamar, M.; Alomainy, A. Flexible Electromagnetic Sensor with Inkjet-Printed Silver Nanoparticles on PET Substrate for Chemical and Biomedical Applications. Sensors 2024, 24, 19. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.Y.; Han, D.X.; Chen, G.; Liu, S.T.; Xu, Y.H.; Yu, Y.F.; Peng, L. Toward Stretcha-ble Flexible Integrated Sensor Systems. Acs Appl. Mater. Interfaces 2024, 18. [Google Scholar]
- Bhattacharyya, M.; Haridas, C.P.A.; Kaushal, M.; Mondal, T. Silylated Carbon Nano-fiber/Polydimethylsiloxane Based Printable Electrorheological and Sensor Inks for Flexible Elec-tronics. Small Methods 2024, e2401741. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Chen, Y.R.; Zhu, L.Y.; Li, Y.; Ma, T.T.; Li, Y.R.; Qin, M.; Wang, W.; Cao, Y.; Xue, B. Bioinspired adaptive lipid-integrated bilayer coating for enhancing dynamic water reten-tion in hydrogel-based flexible sensors. Nat. Commun. 2024, 15, 11. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Zhao, T.T.; Li, T.K.; Zhang, H.; Chen, L.L.; Zhang, J.H. Flexible, anisotropic strain sensor based on interdigital capacitance for multi-direction discrimination. Sens. Actuator A-Phys. 2023, 359, 9. [Google Scholar] [CrossRef]
- Lee, B.M.; Loh, K.J. A 2D percolation-based model for characterizing the piezoresistivity of carbon nanotube-based films. J. Mater. Sci. 2015, 50, 2973–2983. [Google Scholar] [CrossRef]
- Bao, W.S.; Meguid, S.A.; Zhu, Z.H.; Meguid, M.J. Modeling electrical conductivities of nanocomposites with aligned carbon nanotubes. Nanotechnology 2011, 22, 8. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.W.; Gu, Y.; Xiong, Z.P.; Cui, Z.; Zhang, T. Silk-Molded Flexible, Ultrasensitive, and Highly Stable Electronic Skin for Monitoring Human Physiological Signals. Adv. Mater. 2014, 26, 1336–1342. [Google Scholar] [CrossRef]
- Guo, Z.X.; Mo, L.X.; Ding, Y.; Zhang, Q.Q.; Meng, X.Y.; Wu, Z.T.; Chen, Y.J.; Cao, M.J.; Wang, W.; Li, L.H. Printed and Flexible Capacitive Pressure Sensor with Carbon Nanotubes based Composite Dielectric Layer. Micromachines 2019, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- John, D. Electronic and Electrical Servicing; Taylor and Francis: Abingdon, UK; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
Pressure (kPa) | 0~10 | 10~20 | 20~30 | 30~40 | 40~50 |
Relative changes (/) | 0.0829 | 0.0646 | 0.0506 | 0.0336 | 0.0246 |
Sensitivity (kPa−1) | 0.0083 | 0.0065 | 0.0051 | 0.0034 | 0.0025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhang, Y.; Zhang, T.; Fu, G.; Zhu, Y.; Liu, Y. Modeling and Relative Permittivity Modulation of Cu/PDMS Capacitive Flexible Sensor for Pressure Sensing. Sensors 2025, 25, 637. https://doi.org/10.3390/s25030637
Wang X, Zhang Y, Zhang T, Fu G, Zhu Y, Liu Y. Modeling and Relative Permittivity Modulation of Cu/PDMS Capacitive Flexible Sensor for Pressure Sensing. Sensors. 2025; 25(3):637. https://doi.org/10.3390/s25030637
Chicago/Turabian StyleWang, Xu, Yuelong Zhang, Tian Zhang, Guanyu Fu, Yinlong Zhu, and Ying Liu. 2025. "Modeling and Relative Permittivity Modulation of Cu/PDMS Capacitive Flexible Sensor for Pressure Sensing" Sensors 25, no. 3: 637. https://doi.org/10.3390/s25030637
APA StyleWang, X., Zhang, Y., Zhang, T., Fu, G., Zhu, Y., & Liu, Y. (2025). Modeling and Relative Permittivity Modulation of Cu/PDMS Capacitive Flexible Sensor for Pressure Sensing. Sensors, 25(3), 637. https://doi.org/10.3390/s25030637