Efficient Deep Learning-Based Detection Scheme for MIMO Communication Systems
Abstract
:1. Introduction
1.1. Related Work
1.2. Contribution
- We develop two new DL strategies for signal detection in MIMO communication systems. Both strategies perform close to the optimal ML detection scheme.
- We show that the proposed strategies have a tradeoff between BER performance and complexity and could be used under different hardware constraints.
- We show that the activation function at the output layer has an impact on the NN-based detector performance.
2. MIMO System Model
2.1. Optimal ML Detection
2.2. DL-Based MIMO Detection
3. Proposed DL-Based Detection Scheme
Algorithm 1 Proposed DL-based detector. |
Intput: |
Output: |
Symbol reception: |
Generate input data |
Generate labels vector by selecting any label encoding method |
▷ Start of training phase |
for do |
Calculate gradients: |
▷ SGD optimization |
Calculate RMSE loss: |
end for ▷ End of training phase |
▷ Received symbol estimation |
- One-hot (OH) encoding of the combinations in transmission [29].
- Direct symbol encoding (DSE) different encoding labels).
- One-hot encoding per antenna (OHA) for the possible M symbols ( labels).
3.1. Direct Symbol Encoding (DSE)
3.2. One Hot Encoding (OH)
3.3. One Hot Encoding per Antenna (OHA)
4. Results and Discussion
Complexity Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rappaport, T.S. Wireless Communications: Principles and Practice; Cambridge University Press: Cambridge, UK, 2024. [Google Scholar]
- Raschellà, A.; Mackay, M. Moving Towards 6G Wireless Technologies; MDPI: Basel, Switzerland, 2024. [Google Scholar]
- O’shea, T.; Hoydis, J. An introduction to deep learning for the physical layer. IEEE Trans. Cogn. Commun. Netw. 2017, 3, 563–575. [Google Scholar] [CrossRef]
- Zheng, K.; Zhao, L.; Mei, J.; Shao, B.; Xiang, W.; Hanzo, L. Survey of large-scale MIMO systems. IEEE Commun. Surv. Tutor. 2015, 17, 1738–1760. [Google Scholar] [CrossRef]
- Wang, T.; Wen, C.K.; Wang, H.; Gao, F.; Jiang, T.; Jin, S. Deep learning for wireless physical layer: Opportunities and challenges. China Commun. 2017, 14, 92–111. [Google Scholar] [CrossRef]
- He, H.; Jin, S.; Wen, C.K.; Gao, F.; Li, G.Y.; Xu, Z. Model-driven deep learning for physical layer communications. IEEE Wirel. Commun. 2019, 26, 77–83. [Google Scholar] [CrossRef]
- Bakulin, M.; Kreyndelin, V.; Rog, A.; Petrov, D.; Melnik, S. MMSE based K-best algorithm for efficient MIMO detection. In Proceedings of the 2017 9th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Munich, Germany, 6–8 November 2017; pp. 258–263. [Google Scholar]
- Liu, Y.X.; Jihang, S.J.; Ueng, Y.L. An Efficient K-Best MIMO Detector for Large Modulation Constellations. IEEE Open J. Circuits Syst. 2023, 5, 2–16. [Google Scholar] [CrossRef]
- Umamaheshwar, S.; Mahender, K.; Gopal, M. Novel hybrid MIMO detector for spatial multiplexed MIMO system. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 981, p. 032039. [Google Scholar]
- Nakai-Kasai, A.; Wadayama, T. MMSE signal detection for MIMO systems based on ordinary differential equation. In Proceedings of the GLOBECOM 2022—2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 4–8 December 2022; pp. 6176–6181. [Google Scholar]
- Shinde, P.P.; Shah, S. A review of machine learning and deep learning applications. In Proceedings of the 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 16–18 August 2018; pp. 1–6. [Google Scholar]
- Ibarra-Hernández, R.F.; Castillo-Soria, F.R.; Gutiérrez, C.A.; García-Barrientos, A.; Vásquez-Toledo, L.A.; Del-Puerto-Flores, J.A. Machine Learning Strategies for Reconfigurable Intelligent Surface-Assisted Communication Systems—A Review. Future Internet 2024, 16, 173. [Google Scholar] [CrossRef]
- Chataut, R.; Nankya, M.; Akl, R. 6G networks and the AI revolution—Exploring technologies, applications, and emerging challenges. Sensors 2024, 24, 1888. [Google Scholar] [CrossRef]
- West, N.E.; O’shea, T. Deep architectures for modulation recognition. In Proceedings of the 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Baltimore, MD, USA, 6–9 March 2017; pp. 1–6. [Google Scholar]
- Zheng, S.; Chen, S.; Yang, X. DeepReceiver: A deep learning-based intelligent receiver for wireless communications in the physical layer. IEEE Trans. Cogn. Commun. Netw. 2020, 7, 5–20. [Google Scholar] [CrossRef]
- Samuel, N.; Diskin, T.; Wiesel, A. Deep MIMO detection. In Proceedings of the 2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Sapporo, Japan, 3–6 July 2017; pp. 1–5. [Google Scholar]
- Samuel, N.; Diskin, T.; Wiesel, A. Learning to detect. IEEE Trans. Signal Process. 2019, 67, 2554–2564. [Google Scholar] [CrossRef]
- Xue, S.; Ma, Y.; Yi, N.; Dodgson, T.E. A modular neural network based deep learning approach for MIMO signal detection. arXiv 2020, arXiv:2004.00404. [Google Scholar]
- Mohammadkarimi, M.; Mehrabi, M.; Ardakani, M.; Jing, Y. Deep learning-based sphere decoding. IEEE Trans. Wirel. Commun. 2019, 18, 4368–4378. [Google Scholar] [CrossRef]
- Askri, A.; Othman, G.R.B. DNN assisted sphere decoder. In Proceedings of the 2019 IEEE International Symposium on Information Theory (ISIT), Paris, France, 7–12 July 2019; pp. 1172–1176. [Google Scholar]
- Weon, D.; Lee, K. Learning-aided deep path prediction for sphere decoding in large MIMO systems. IEEE Access 2020, 8, 70870–70877. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, F. Convolutional neural network-based polar decoding. In Proceedings of the 2019 2nd World Symposium on Communication Engineering (WSCE), Nagoya, Japan, 20–23 December 2019; pp. 189–194. [Google Scholar]
- Chen, Q.; Ju, H.; Xu, Y.; He, D.; Zhang, W. A novel labeling scheme for neural belief propagation in polar codes. In Proceedings of the 2023 International Wireless Communications and Mobile Computing (IWCMC), Marrakesh, Morocco, 19–23 June 2023; pp. 586–590. [Google Scholar]
- Xia, J.; He, K.; Xu, W.; Zhang, S.; Fan, L.; Karagiannidis, G.K. A MIMO detector with deep learning in the presence of correlated interference. IEEE Trans. Veh. Technol. 2020, 69, 4492–4497. [Google Scholar] [CrossRef]
- He, H.; Wen, C.K.; Jin, S.; Li, G.Y. Model-driven deep learning for MIMO detection. IEEE Trans. Signal Process. 2020, 68, 1702–1715. [Google Scholar] [CrossRef]
- He, K.; Wang, Z.; Li, D.; Zhu, F.; Fan, L. Ultra-reliable MU-MIMO detector based on deep learning for 5G/B5G-enabled IoT. Phys. Commun. 2020, 43, 101181. [Google Scholar] [CrossRef]
- Messabih, H.; Kerrache, C.A.; Cheriguene, Y.; Amadeo, M.; Ahmad, F. Machine learning solutions for mobile internet of things security: A literature review and research agenda. Trans. Emerg. Telecommun. Technol. 2024, 35, e5041. [Google Scholar] [CrossRef]
- Mohammad, A.S.; Reddy, N.; James, F.; Beard, C. Demodulation of faded wireless signals using deep convolutional neural networks. In Proceedings of the 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 8–10 January 2018; pp. 969–975. [Google Scholar]
- Baek, M.S.; Kwak, S.; Jung, J.Y.; Kim, H.M.; Choi, D.J. Implementation methodologies of deep learning-based signal detection for conventional MIMO transmitters. IEEE Trans. Broadcast. 2019, 65, 636–642. [Google Scholar] [CrossRef]
- Kim, M.; Cho, D.H. 4-QAM gray coding for deep neural network based decoder training. In Proceedings of the 2017 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Republic of Korea, 18–20 October 2017; pp. 247–249. [Google Scholar]
- Toledo, R.N.; Akamine, C.; Jerji, F.; Silva, L.A. M-QAM demodulation based on machine learning. In Proceedings of the 2020 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Paris, France, 27–29 October 2020; pp. 1–6. [Google Scholar]
- Matta, M.; Cardarilli, G.C.; Di Nunzio, L.; Fazzolari, R.; Giardino, D.; Nannarelli, A.; Re, M.; Spano, S. A reinforcement learning-based QAM/PSK symbol synchronizer. IEEE Access 2019, 7, 124147–124157. [Google Scholar] [CrossRef]
- Xue, S.; Ma, Y.; Yi, N.; Tafazolli, R. Unsupervised deep learning for MU-SIMO joint transmitter and noncoherent receiver design. IEEE Wirel. Commun. Lett. 2018, 8, 177–180. [Google Scholar] [CrossRef]
- Corlay, V.; Boutros, J.J.; Ciblat, P.; Brunel, L. Multilevel MIMO detection with deep learning. In Proceedings of the 2018 52nd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 28–31 October 2018; pp. 1805–1809. [Google Scholar]
- Wubben, D.; Bohnke, R.; Kuhn, V.; Kammeyer, K.D. Near-maximum-likelihood detection of MIMO systems using MMSE-based lattice-reduction. In Proceedings of the 2004 IEEE International Conference on Communications (IEEE Cat. No. 04CH37577), Paris, France, 20–24 June 2004; Volume 2, pp. 798–802. [Google Scholar]
- Zhu, X.; Murch, R.D. Performance analysis of maximum likelihood detection in a MIMO antenna system. IEEE Trans. Commun. 2002, 50, 187–191. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, S.; Athaiya, A. Activation functions in neural networks. Towards Data Sci. 2017, 6, 310–316. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Pratiwi, H.; Windarto, A.P.; Susliansyah, S.; Aria, R.R.; Susilowati, S.; Rahayu, L.K.; Fitriani, Y.; Merdekawati, A.; Rahadjeng, I.R. Sigmoid activation function in selecting the best model of artificial neural networks. J. Phys. Conf. Ser. 2020, 1471, 012010. [Google Scholar] [CrossRef]
- Rasamoelina, A.D.; Adjailia, F.; Sinčák, P. A review of activation function for artificial neural network. In Proceedings of the 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI), Herlany, Slovakia, 23–25 January 2020; pp. 281–286. [Google Scholar]
- Asadi, B.; Jiang, H. On approximation capabilities of ReLU activation and softmax output layer in neural networks. arXiv 2020, arXiv:2002.04060. [Google Scholar]
- Ye, M.; Zhang, H.; Wang, J.B. Channel estimation for intelligent reflecting surface aided wireless communications using conditional GAN. IEEE Commun. Lett. 2022, 26, 2340–2344. [Google Scholar] [CrossRef]
- Ketkar, N.; Ketkar, N. Stochastic gradient descent. In Deep Learning with Python: A Hands-On Introduction; Springer: Berlin/Heidelberg, Germany, 2017; pp. 113–132. [Google Scholar]
- Yacouby, R.; Axman, D. Probabilistic extension of precision, recall, and f1 score for more thorough evaluation of classification models. In Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems, Online, 20 November 2020; pp. 79–91. [Google Scholar]
Function Name | Computation | Typical Use |
---|---|---|
ReLU | Hidden layers | |
Sigmoid | Output layer | |
Softmax | Output layer |
Symbol Label | Complex Value | Bit Label Mapping |
---|---|---|
1 0 | ||
1 1 | ||
0 0 | ||
0 1 |
Transmitted Symbol | Bit Label Mapping | |
---|---|---|
1 0 1 0 | ||
1 0 1 1 | ||
1 0 0 0 | ||
1 0 0 1 | ||
1 1 1 0 | ||
1 1 1 1 | ||
1 1 0 0 | ||
1 1 0 1 | ||
0 0 1 0 | ||
0 0 1 1 | ||
0 0 0 0 | ||
0 0 0 1 | ||
0 1 1 0 | ||
0 1 1 1 | ||
0 1 0 0 | ||
0 1 0 1 |
Symbol Transmitted | Bit Label Mapping | |
---|---|---|
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ||
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ||
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | ||
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | ||
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 | ||
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 | ||
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 | ||
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 | ||
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 | ||
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 | ||
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | ||
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 | ||
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 | ||
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 | ||
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 | ||
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 |
Symbol Transmitted | Bit Label Mapping | |
---|---|---|
1 0 0 0 1 0 0 0 | ||
1 0 0 0 0 1 0 0 | ||
1 0 0 0 0 0 1 0 | ||
1 0 0 0 0 0 0 1 | ||
0 1 0 0 1 0 0 0 | ||
0 1 0 0 0 1 0 0 | ||
0 1 0 0 0 0 1 0 | ||
0 1 0 0 0 0 0 1 | ||
0 0 1 0 1 0 0 0 | ||
0 0 1 0 0 1 0 0 | ||
0 0 1 0 0 0 1 0 | ||
0 0 1 0 0 0 0 1 | ||
0 0 0 1 1 0 0 0 | ||
0 0 0 1 0 1 0 0 | ||
0 0 0 1 0 0 1 0 | ||
0 0 0 1 0 0 0 1 |
MIMO Configuration | Hidden Layers | Number of Neurons |
---|---|---|
, | 1 | 100 |
, | 2 | 1000 |
MIMO Configuration | Labeling Approach | Precision | Recall | F1-Score |
---|---|---|---|---|
OH | 0.97 | 0.98 | 0.97 | |
OHA | 0.93 | 0.93 | 0.93 | |
DSE | 0.96 | 0.98 | 0.96 | |
OH | 0.96 | 0.94 | 0.95 | |
OHA | 0.89 | 0.89 | 0.91 | |
DSE | 0.91 | 0.92 | 0.93 |
MIMO Configuration | Labeling Approach | Complexity |
---|---|---|
OH | ||
OHA | ||
DSE | ||
OH | ||
OHA | ||
DSE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibarra-Hernández, R.F.; Castillo-Soria, F.R.; Gutiérrez, C.A.; Del-Puerto-Flores, J.A.; Acosta-Elias, J.; Rodriguez-Abdala, V.I.; Palacios-Luengas, L. Efficient Deep Learning-Based Detection Scheme for MIMO Communication Systems. Sensors 2025, 25, 669. https://doi.org/10.3390/s25030669
Ibarra-Hernández RF, Castillo-Soria FR, Gutiérrez CA, Del-Puerto-Flores JA, Acosta-Elias J, Rodriguez-Abdala VI, Palacios-Luengas L. Efficient Deep Learning-Based Detection Scheme for MIMO Communication Systems. Sensors. 2025; 25(3):669. https://doi.org/10.3390/s25030669
Chicago/Turabian StyleIbarra-Hernández, Roilhi F., Francisco R. Castillo-Soria, Carlos A. Gutiérrez, José Alberto Del-Puerto-Flores, Jesus Acosta-Elias, Viktor I. Rodriguez-Abdala, and Leonardo Palacios-Luengas. 2025. "Efficient Deep Learning-Based Detection Scheme for MIMO Communication Systems" Sensors 25, no. 3: 669. https://doi.org/10.3390/s25030669
APA StyleIbarra-Hernández, R. F., Castillo-Soria, F. R., Gutiérrez, C. A., Del-Puerto-Flores, J. A., Acosta-Elias, J., Rodriguez-Abdala, V. I., & Palacios-Luengas, L. (2025). Efficient Deep Learning-Based Detection Scheme for MIMO Communication Systems. Sensors, 25(3), 669. https://doi.org/10.3390/s25030669