Improving Stroke Treatment Using Magnetic Nanoparticle Sensors to Monitor Brain Thrombus Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conceptual System: NP-Coated Thrombus
2.2. Simulation Assumptions
2.3. Magnetic Flux Calculation
2.4. Three Orthogonal Pairs of Drive Coils for Thrombus Triangulation
2.5. Forward and Inverse Problems
2.6. Distance Recovery Method #1: Sum of 3 Orthogonal Fluxes
2.7. Distance Recovery Method #2: Rotation Correction
2.8. Experimental Setup
3. Results
3.1. NP Magnetization
3.2. Simulation: Sum of Fluxes Versus Distance
3.3. Quantifying Error in Distance Estimation from the Simulated Sum of Fluxes
3.4. Simulated Rotation Correction
3.5. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Beaton, A.Z.; Boehme, A.K.; Buxton, A.E. Heart disease and stroke statistics—2023 update: A report from the American Heart Association. Circulation 2023, 147, e93–e621. [Google Scholar] [PubMed]
- Griessenauer, C.J.; Schirmer, C.M. Dawn of an Even Newer Era: Mechanical Thrombectomy for Acute Ischemic Stroke Beyond 6 to 8 Hours. World Neurosurg. 2017, 104, 968–969. [Google Scholar] [CrossRef] [PubMed]
- Alberts, M.J.; Shang, T.; Magadan, A. Endovascular Therapy for Acute Ischemic Stroke: Dawn of a New Era. JAMA Neurol. 2015, 72, 1101–1103. [Google Scholar] [CrossRef]
- Nogueira, R.G.; Jadhav, A.P.; Haussen, D.C.; Bonafe, A.; Budzik, R.F.; Bhuva, P.; Yavagal, D.R.; Ribo, M.; Cognard, C.; Hanel, R.A.; et al. Thrombectomy 6 to 24 Hours after Stroke with a Mismatch between Deficit and Infarct. N. Engl. J. Med. 2017, 378, 11–21. [Google Scholar] [CrossRef]
- Goyal, M.; Menon, B.K.; van Zwam, W.H.; Dippel, D.W.; Mitchell, P.J.; Demchuk, A.M.; Dávalos, A.; Majoie, C.B.; van der Lugt, A.; de Miquel, M.A.; et al. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet 2016, 387, 1723–1731. [Google Scholar] [CrossRef]
- Naylor, A.R. Letter by naylor regarding article, guidelines for the prevention of stroke in patients with stroke or transient ischemic attack: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2011, 42, e385. [Google Scholar] [CrossRef]
- Kim, E.Y.; Heo, J.H.; Lee, S.K.; Kim, D.J.; Suh, S.H.; Kim, J.; Kim, D.I. Prediction of thrombolytic efficacy in acute ischemic stroke using thin-section noncontrast CT. Neurology 2006, 67, 1846–1848. [Google Scholar] [CrossRef]
- Puig, J.; Pedraza, S.; Demchuk, A.; Daunis-I-Estadella, J.; Termes, H.; Blasco, G.; Soria, G.; Boada, I.; Remollo, S.; Baños, J.; et al. Quantification of Thrombus Hounsfield Units on Noncontrast CT Predicts Stroke Subtype and Early Recanalization after Intravenous Recombinant Tissue Plasminogen Activator. Am. J. Neuroradiol. 2012, 33, 90–96. [Google Scholar] [CrossRef]
- Santos, E.M.; Dankbaar, J.W.; Treurniet, K.M.; Horsch, A.D.; Roos, Y.B.; Kappelle, L.J.; Niessen, W.J.; Majoie, C.B.; Velthuis, B.; Marquering, H.A. Permeable Thrombi Are Associated with Higher Intravenous Recombinant Tissue-Type Plasminogen Activator Treatment Success in Patients with Acute Ischemic Stroke. Stroke 2016, 47, 2058–2065. [Google Scholar] [CrossRef]
- Chen, Z.; Shi, F.; Gong, X.; Zhang, R.; Zhong, W.; Zhou, Y.; Lou, M. Thrombus Permeability on Dynamic CTA Predicts Good Outcome after Reperfusion Therapy. Am. J. Neuroradiol. 2018, 39, 1854–1859. [Google Scholar] [CrossRef]
- Boodt, N.; Compagne, K.C.; Dutra, B.G.; Samuels, N.; Tolhuisen, M.L.; Alves, H.C.; Kappelhof, M.; Nijeholt, G.J.L.; Marquering, H.A.; Majoie, C.B.; et al. Stroke Etiology and Thrombus Computed Tomography Characteristics in Patients with Acute Ischemic Stroke. Stroke 2020, 51, 1727–1735. [Google Scholar] [CrossRef] [PubMed]
- Santos, E.M.; Marquering, H.A.; Blanken, M.D.D.; Berkhemer, O.A.; Boers, A.M.; Yoo, A.J.; Beenen, L.F.; Treurniet, K.M.; Wismans, C.; van Noort, K.; et al. Thrombus Permeability Is Associated with Improved Functional Outcome and Recanalization in Patients With Ischemic Stroke. Stroke 2016, 47, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Benson, J.C.; Fitzgerald, S.T.; Kadirvel, R.; Johnson, C.; Dai, D.; Karen, D.; Kallmes, D.F.; Brinjikji, W. Clot permeability and histopathology: Is a clot’s perviousness on CT imaging correlated with its histologic composition? J. Neurointerv. Surg. 2020, 12, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Gunning, G.M.; McArdle, K.; Mirza, M.; Duffy, S.; Gilvarry, M.; Brouwer, P.A. Clot friction variation with fibrin content; implications for resistance to thrombectomy. J. Neurointerv. Surg. 2018, 10, 34–38. [Google Scholar] [CrossRef]
- Jolugbo, P.; Ariëns, R.A.S. Thrombus Composition and Efficacy of Thrombolysis and Thrombectomy in Acute Ischemic Stroke. Stroke 2021, 52, 1131–1142. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Ryu, J.H.; Schellingerhout, D.; Sun, I.C.; Lee, S.K.; Jeon, S.; Kim, J.; Kwon, I.C.; Nahrendorf, M.; Ahn, C.H.; et al. Direct Imaging of Cerebral Thromboemboli Using Computed Tomography and Fibrin-targeted Gold Nanoparticles. Theranostics 2015, 5, 1098–1114. [Google Scholar] [CrossRef]
- Herz, S.; Vogel, P.; Kampf, T.; Dietrich, P.; Veldhoen, S.; Rückert, M.A.; Kickuth, R.; Behr, V.C.; Bley, T.A. Magnetic Particle Imaging–Guided Stenting. J. Endovasc. Ther. 2019, 26, 512–519. [Google Scholar] [CrossRef]
- Knopp, T.; Gdaniec, N.; Möddel, M. Magnetic particle imaging: From proof of principle to preclinical applications. Phys. Med. Biol. 2017, 62, R124–R178. [Google Scholar] [CrossRef]
- Griese, F.; Knopp, T.; Gruettner, C.; Thieben, F.; Müller, K.; Loges, S.; Ludewig, P.; Gdaniec, N. Simultaneous Magnetic Particle Imaging and Navigation of large superparamagnetic nanoparticles in bifurcation flow experiments. J. Magn. Magn. Mater. 2020, 498, 166206. [Google Scholar] [CrossRef]
- Vogel, P.; Ruckert, M.A.; Kampf, T.; Herz, S.; Stang, A.; Wockel, L.; Bley, T.A.; Dutz, S.; Behr, V.C. Superspeed Bolus Visualization for Vascular Magnetic Particle Imaging. IEEE Trans. Med. Imaging 2020, 39, 2133–2139. [Google Scholar] [CrossRef]
- Ludewig, P.; Graeser, M.; Forkert, N.D.; Thieben, F.; Rández-Garbayo, J.; Rieckhoff, J.; Lessmann, K.; Förger, F.; Szwargulski, P.; Magnus, T.; et al. Magnetic particle imaging for assessment of cerebral perfusion and ischemia. WIREs Nanomed. Nanobiotechnol. 2022, 14, e1757. [Google Scholar] [CrossRef] [PubMed]
- Ludewig, P.; Gdaniec, N.; Sedlacik, J.; Forkert, N.D.; Szwargulski, P.; Graeser, M.; Adam, G.; Kaul, M.G.; Krishnan, K.M.; Ferguson, R.M.; et al. Magnetic Particle Imaging for Real-Time Perfusion Imaging in Acute Stroke. ACS Nano 2017, 11, 10480–10488. [Google Scholar] [CrossRef] [PubMed]
- Gordon-Wylie, S.W.; Ness, D.B.; Shi, Y.; Mirza, S.K.; Paulsen, K.D.; Weaver, J.B. Measuring protein biomarker concentrations using antibody tagged magnetic nanoparticles. Biomed. Phys. Eng. Express 2020, 6, 065025. [Google Scholar] [CrossRef]
- Reeves, D.B.; Weaver, J.B. Combined Néel and Brown rotational Langevin dynamics in magnetic particle imaging, sensing, and therapy. Appl. Phys. Lett. 2015, 107, 223106. [Google Scholar] [CrossRef]
- Reeves, D.B.; Weaver, J.B. Approaches for modeling magnetic nanoparticle dynamics. Crit. Rev. Biomed. Eng. 2014, 42, 85–93. [Google Scholar] [CrossRef]
- Reeves, D.B.; Weizenecker, J.; Weaver, J.B. Langevin equation simulation of Brownian magnetic nanoparticles with experimental and model comparisons. In Proceedings of the Medical Imaging 2013: Biomedical Applications in Molecular, Structural, and Functional Imaging, Lake Buena Vista, FL, USA, 9–14 February 2013; Volume 8672. [Google Scholar]
- Ortner, M.; Leitner, P.; Slanovc, F. Numerically Stable and Computationally Efficient Expression for the Magnetic Field of a Current Loop. Magnetism 2022, 3, 11–31. [Google Scholar] [CrossRef]
- Teliban Iulian. Magnetic Field for a Loop. MATLAB Central File Exchange. Available online: https://www.mathworks.com/matlabcentral/fileexchange/8649-magnetic-field-for-a-loop (accessed on 30 April 2023).
- Griffiths, D.J. Introduction to Electrodynamics; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar] [CrossRef]
- Rauwerdink, A.; Weaver, J. Viscous effects on nanoparticle magnetization harmonics. J. Magn. Magn. Mater. 2010, 322, 609–613. [Google Scholar] [CrossRef]
- Jyoti, D.; Gordon-Wylie, S.W.; Reeves, D.B.; Paulsen, K.D.; Weaver, J.B. Distinguishing Nanoparticle Aggregation from Viscosity Changes in MPS/MSB Detection of Biomarkers. Sensors 2022, 22, 6690. [Google Scholar] [CrossRef]
- Montiel Schneider, M.G.; Martín, M.J.; Otarola, J.; Vakarelska, E.; Simeonov, V.; Lassalle, V.; Nedyalkova, M. Biomedical applications of iron oxide nanoparticles: Current insights progress and perspectives. Pharmaceutics 2022, 14, 204. [Google Scholar] [CrossRef]
- Jeon, M.; Halbert, M.V.; Stephen, Z.R.; Zhang, M. Iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging: Fundamentals, challenges, applications, and prospectives. Adv. Mater. 2021, 33, 1906539. [Google Scholar] [CrossRef]
- Billings, C.; Langley, M.; Warrington, G.; Mashali, F.; Johnson, J.A. Magnetic particle imaging: Current and future applications, magnetic nanoparticle synthesis methods and safety measures. Int. J. Mol. Sci. 2021, 22, 7651. [Google Scholar] [CrossRef] [PubMed]
- Janko, C.; Zaloga, J.; Pöttler, M.; Dürr, S.; Eberbeck, D.; Tietze, R.; Lyer, S.; Alexiou, C. Strategies to optimize the biocompatibility of iron oxide nanoparticles–“SPIONs safe by design”. J. Magn. Magn. Mater. 2017, 431, 281–284. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jyoti, D.; Reeves, D.; Gordon-Wylie, S.; Eskey, C.; Weaver, J. Improving Stroke Treatment Using Magnetic Nanoparticle Sensors to Monitor Brain Thrombus Extraction. Sensors 2025, 25, 672. https://doi.org/10.3390/s25030672
Jyoti D, Reeves D, Gordon-Wylie S, Eskey C, Weaver J. Improving Stroke Treatment Using Magnetic Nanoparticle Sensors to Monitor Brain Thrombus Extraction. Sensors. 2025; 25(3):672. https://doi.org/10.3390/s25030672
Chicago/Turabian StyleJyoti, Dhrubo, Daniel Reeves, Scott Gordon-Wylie, Clifford Eskey, and John Weaver. 2025. "Improving Stroke Treatment Using Magnetic Nanoparticle Sensors to Monitor Brain Thrombus Extraction" Sensors 25, no. 3: 672. https://doi.org/10.3390/s25030672
APA StyleJyoti, D., Reeves, D., Gordon-Wylie, S., Eskey, C., & Weaver, J. (2025). Improving Stroke Treatment Using Magnetic Nanoparticle Sensors to Monitor Brain Thrombus Extraction. Sensors, 25(3), 672. https://doi.org/10.3390/s25030672