Investigating the Effect of Vibration Signal Length on Bearing Fault Classification Using Wavelet Scattering Transform
Abstract
:1. Introduction
2. Materials and Methods
2.1. CWRU Bearing Dataset
2.2. Vibration Signal Segmentation
2.3. Wavelet Scattering Feature Extraction
2.4. Bearing Fault Classification and Performance Evaluation
3. Results
3.1. Characteristics of Wavelet Scattering Features
3.2. Performance of the Bearing Fault Classifications
4. Conclusions and Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Janjarasjitt, S.; Ocak, H.; Loparo, K.A. Bearing condition diagnosis and prognosis using applied nonlinear dynamical analysis of machine vibration signal. J. Sound Vib. 2008, 317, 112–126. [Google Scholar] [CrossRef]
- Kannan, V.; Zhang, T.; Li, H. A review of the intelligent condition monitoring of rolling element bearings. Machines 2024, 12, 484. [Google Scholar] [CrossRef]
- Hamadache, M.; Hung, J.H.; Park, J.; You, B.D. A comprehensive review of artificial intelligence-based approaches for rolling element bearing PHM: Shallow and deep learning. JMST Adv. 2019, 1, 125–151. [Google Scholar] [CrossRef]
- Tandon, T.; Choudhury, A. A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings. Tribol. Int. 1999, 32, 469–480. [Google Scholar] [CrossRef]
- McFadden, P.D.; Smith, J.D. Vibration monitoring of rolling element bearings by high frequency resonance technique—A review. Tribol. Int. 1984, 17, 3–10. [Google Scholar] [CrossRef]
- Yoo, Y.; Jo, H.; Ban, S.W. Lite and efficient deep learning model for bearing fault diagnosis using the CWRU dataset. Sensors 2023, 23, 3157. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, J.; Kim, H.J. Development of enhanced Wigner-Ville distribution function. Mech. Syst. Signal Process. 2001, 15, 367–398. [Google Scholar] [CrossRef]
- Peng, Z.; Chu, F.; He, Y. Vibration signal analysis and feature extraction based on reassigned wavelet scalogram. J. Sound Vib. 2002, 253, 1087–1100. [Google Scholar] [CrossRef]
- Qiu, H.; Lee, J.; Linb, J.; Yu, G. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics. J. Sound Vib. 2006, 289, 1066–1090. [Google Scholar] [CrossRef]
- Seker, S.; Ayaz, E. Feature extraction related to bearing damage in electric motors by wavelet analysis. J. Frankl. Inst. 2003, 340, 125–134. [Google Scholar] [CrossRef]
- Li, C.J.; Ma, J. Wavelet decomposition of vibrations for detection of bearing localized defects. NDT E Int. 1997, 30, 143–149. [Google Scholar]
- Castejon, C.; Gomez, M.J.; Garcia-Prada, J.C.; Ordonez, A.J.; Rubio, H. Automatic selection of the WPT decomposition level for condition monitoring of rotor elements based on the sensitivity analysis of the wavelet energy. Int. J. Acoust. Vib. 2015, 20, 95–100. [Google Scholar]
- Aziz, S.; Khan, M.U.; Faraz, M.; Montes, G.A. Intelligent bearing faults diagnosis featuring automated relative energy based empirical mode decomposition and novel cepstral autoregressive features. Measurement 2023, 216, 112871. [Google Scholar] [CrossRef]
- Neupane, D.; Seok, J. Bearing fault detection and diagnosis using Case Western Reserve University dataset with deep learning approaches: A review. IEEE Access 2020, 8, 93155–93178. [Google Scholar] [CrossRef]
- Ocak, H.; Loparo, K.A. An HMM based fault detection and diagnosis scheme for rolling element bearings. J. Vib. Acoust. 2005, 127, 299–306. [Google Scholar] [CrossRef]
- Ocak, H.; Loparo, K.A.; Discenzo, F.M. Online tracking of bearing wear using wavelet packet decomposition and probabilistic modeling: A method for bearing prognostics. J. Sound Vib. 2007, 302, 951–961. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Y.; Zhu, Y. Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension. Mech. Syst. Signal Process. 2007, 21, 2012–2024. [Google Scholar] [CrossRef]
- Wang, Z.; Yao, L.; Cai, Y. Rolling bearing fault diagnosis using generalized refined composite multiscale sample entropy and optimized support vector machine. Measurement 2020, 156, 107574. [Google Scholar] [CrossRef]
- Hwang, D.; Youn, Y.; Sun, J.; Choi, K.; Lee, J.; Kim, Y. Support vector machine based bearing fault diagnosis for induction motors using vibration signals. J. Electr. Eng. Technol. 2015, 10, 30–40. [Google Scholar] [CrossRef]
- Li, Y.; Xu, M.; Wei, Y.; Huang, W. A new rolling bearing fault diagnosis method based on multiscale permutation entropy and improved support vector machine based binary tree. Measurement 2016, 77, 80–94. [Google Scholar] [CrossRef]
- Seera, M.; Wong, M.L.D.; Nandi, A.K. Classification of ball bearing faults using a hybrid intelligent model. Appl. Soft Comput. 2017, 57, 427–435. [Google Scholar] [CrossRef]
- Vakharia, V.; Gupta, V.K.; Kankar, P.K. Efficient fault diagnosis of ball bearing using reliefF and random forest classifier. J. Braz. Soc. Mech. Sci. Eng. 2017, 39, 2969–2982. [Google Scholar] [CrossRef]
- Pandya, D.H.; Upadhyay, S.H.; Harsha, S. Fault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNN. Expert Syst. Appl. 2013, 40, 4137–4145. [Google Scholar] [CrossRef]
- Kumar, H.S.; Upadhyaya, G. Fault diagnosis of rolling element bearing using continuous wavelet transform and K-nearest neighbour. Mater. Today Proc. 2023, 92, 56–60. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Y.; He, X.; Liu, S.; Liu, J. Fault diagnosis of bearing based on KPCA and KNN method. Adv. Mater. Res. 2014, 986–987, 1491–1496. [Google Scholar] [CrossRef]
- Eren, L.; Ince, T.; Kiranyaz, S. A generic intelligent bearing fault diagnosis system using compact adaptive 1D CNN classifier. J. Signal Process. Syst. 2019, 91, 179–189. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, P.; Han, D.; Jia, L. Research on rolling bearing fault diagnosis method based on AMVMD and convolutional neural networks. Measurement 2023, 217, 113028. [Google Scholar] [CrossRef]
- Gao, D.; Zhu, Y.; Ren, Z.; Yan, K.; Kang, W. A novel weak fault diagnosis method for rolling bearings based on LSTM considering quasi-periodicity. Knowl.-Based Syst. 2021, 231, 107413. [Google Scholar] [CrossRef]
- Liang, M.; Zhou, K. Joint loss learning-enabled semi-supervised autoencoder for bearing fault diagnosis under limited labeled vibration signals. J. Vib. Control. 2023, 30, 4537–4550. [Google Scholar] [CrossRef]
- Mallat, S. Understanding deep convolutional networks. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150203. [Google Scholar] [CrossRef]
- Anden, J.; Mallat, S. Deep scattering spectrum. IEEE Trans. Signal Process. 2014, 62, 4114–4128. [Google Scholar] [CrossRef]
- Bruna, J.; Mallat, S. Invariant scattering convolution networks. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1872–1886. [Google Scholar] [CrossRef] [PubMed]
- Mallat, S. Group invariant scattering. Commun. Pure Appl. Math. 2012, 65, 1331–1398. [Google Scholar] [CrossRef]
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.R.; Hubbard, W.; Jackel, L.D. Handwritten Digit Recognition with a Back-Propagation Network. In Advances in Neural Information Processing Systems (NIPS 1989); Touretzky, D., Ed.; Morgan Kaufmann: Denver, CO, USA, 1990; pp. 396–404. [Google Scholar]
- Ding, C.; Peng, H. Minimum redundancy feature selection from microarray gene expression data. J. Bioinform. Comput. Biol. 2005, 3, 185–205. [Google Scholar] [CrossRef]
- Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT ’92, New York, NY, USA, 27–29 July 1992; pp. 144–152. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 2013. [Google Scholar]
- Cristianini, N.; Ricci, E. Support Vector Machines. In Encyclopedia of Algorithms; Kao, M.Y., Ed.; Springer: Boston, MA, USA, 2008; pp. 928–932. [Google Scholar]
- Schölkopf, B.; Smola, A.J. Support Vector Machines; The MIT Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Vu, M.H.; Nguyen, V.Q.; Tran, T.T.; Pham, V.T.; Lo, M.T. Few-shot bearing fault diagnosis via ensembling transformer-based model with Mahalanobis distance metric learning from multiscale features. IEEE Trans. Instrum. Meas. 2024, 73, 2513618. [Google Scholar] [CrossRef]
- Lee, C.Y.; Maceren, E.D.C. Induction motor bearing fault classification using deep neural network with particle swarm optimization-extreme gradient boosting. IET Electr. Power Appl. 2024, 18, 297–311. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, B.; Gao, D. Bearing fault diagnosis based on multi-scale CNN and LSTM model. J. Intell. Manuf. 2021, 32, 971–987. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, M.; Xu, X.; Zhang, N. Fault diagnosis of rolling bearings with noise signal based on modified kernel principal component analysis and DC-ResNet. CAAI Trans. Intell. Technol. 2023, 8, 1014–1028. [Google Scholar] [CrossRef]
- Raj, K.K.; Kumar, S.; Kumar, R.R.; Andriollo, M. Enhanced fault detection in bearings using machine learning and raw accelerometer data: A case study using the Case Western Reserve University dataset. Information 2024, 15, 259. [Google Scholar] [CrossRef]
- Xie, W.; Li, Z.; Xu, Y.; Gardoni, P.; Li, W. Evaluation of different bearing fault classifiers in utilizing CNN feature extraction ability. Sensors 2022, 22, 3314. [Google Scholar] [CrossRef]
- Zhang, A.; Li, S.; Cui, Y.; Yang, W.; Dong, R.; Hu, J. Limited data rolling bearing fault diagnosis with few-shot learning. IEEE Access 2019, 7, 110895–110904. [Google Scholar] [CrossRef]
Bearing Fault | Fault Location | Fault Diameter (inch) | Class |
---|---|---|---|
Normal | – | 0 | NORM |
Ball Fault | Drive End | 0.007 | BA07D |
0.014 | BA14D | ||
0.021 | BA21D | ||
0.028 | BA28D | ||
Fan End | 0.007 | BA07F | |
0.014 | BA14F | ||
0.021 | BA21F | ||
Inner Race Fault | Drive End | 0.007 | IR07D |
0.014 | IR14D | ||
0.021 | IR21D | ||
0.028 | IR28D | ||
Fan End | 0.007 | IR07F | |
0.014 | IR14F | ||
0.021 | IR21F |
Class | Epoch Length (Sample) | |||||||
---|---|---|---|---|---|---|---|---|
600 | 900 | 1200 | 3000 | 6000 | 9000 | 12,000 | 15,000 | |
NORM | 1410 | 937 | 702 | 276 | 136 | 87 | 66 | 52 |
BA07D | 1618 | 1077 | 806 | 319 | 156 | 103 | 76 | 60 |
BA14D | 1622 | 1079 | 808 | 320 | 156 | 104 | 76 | 60 |
BA21D | 1621 | 1079 | 807 | 320 | 156 | 104 | 76 | 60 |
BA28D | 1608 | 1069 | 801 | 316 | 156 | 100 | 76 | 60 |
BA07F | 1609 | 1072 | 801 | 317 | 156 | 101 | 76 | 60 |
BA14F | 1617 | 1077 | 805 | 319 | 156 | 103 | 76 | 60 |
BA21F | 1611 | 1072 | 803 | 317 | 156 | 101 | 76 | 60 |
IR07D | 1622 | 1080 | 808 | 319 | 156 | 103 | 76 | 60 |
IR14D | 1619 | 1076 | 807 | 320 | 156 | 104 | 76 | 60 |
IR21D | 1620 | 1078 | 807 | 320 | 156 | 104 | 76 | 60 |
IR28D | 1611 | 1072 | 803 | 317 | 156 | 101 | 76 | 60 |
IR07F | 1614 | 1074 | 804 | 318 | 156 | 102 | 76 | 60 |
IR14F | 1611 | 1072 | 803 | 316 | 156 | 100 | 76 | 60 |
IR21F | 1608 | 1071 | 800 | 316 | 156 | 100 | 76 | 60 |
Total | 24,021 | 15,985 | 11,965 | 4730 | 2320 | 1517 | 1130 | 892 |
Length of Vibration Signal Epochs | Number of Scattering Paths | Number of Scattering Coefficients | Number of Wavelet Scattering Coefficients |
---|---|---|---|
600 | 65 | 10 | 650 |
900 | 97 | 8 | 776 |
1200 | 101 | 10 | 1010 |
3000 | 179 | 12 | 2148 |
6000 | 255 | 12 | 3060 |
9000 | 303 | 9 | 2727 |
12,000 | 347 | 12 | 4164 |
15,000 | 401 | 8 | 3208 |
Parameter | Attribute |
---|---|
Kernel function | Polynomial kernel function |
Polynomial order | 2 |
Kernel scale | Automatically determine |
Box constraint | 1 |
Standardization | True |
Solver | Sequential minimal optimization (SMO) algorithm |
Nu | 0.5 |
Coding design | one-versus-one |
Ranking | Epoch Length (Sample) | |||||||
---|---|---|---|---|---|---|---|---|
600 | 900 | 1200 | 3000 | 6000 | 9000 | 12,000 | 15,000 | |
1 | ||||||||
2 | ||||||||
3 | ||||||||
4 | ||||||||
5 | ||||||||
6 | ||||||||
7 | ||||||||
8 | ||||||||
9 | ||||||||
10 | ||||||||
11 | ||||||||
12 | ||||||||
13 | ||||||||
14 | ||||||||
15 | ||||||||
16 | ||||||||
17 | ||||||||
18 | ||||||||
19 | ||||||||
20 | ||||||||
21 | ||||||||
22 | ||||||||
23 | ||||||||
24 |
Class | Epoch Length (Sample) | |||||||
---|---|---|---|---|---|---|---|---|
600 | 900 | 1200 | 3000 | 6000 | 9000 | 12,000 | 15,000 | |
NORM | 99.9996 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.001 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
BA07D | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
BA14D | 99.9914 | 100.0000 | 99.9997 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.004 | ±0.0 | ±0.002 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
BA21D | 99.9931 | 100.0000 | 99.9997 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.005 | ±0.0 | ±0.002 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
BA28D | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
BA07F | 99.9726 | 99.9937 | 99.9965 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.005 | ±0.0 | ±0.005 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
BA14F | 99.9911 | 99.9866 | 99.9963 | 99.9789 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.003 | ±0.002 | ±0.006 | ±0.000 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
BA21F | 99.9954 | 99.9929 | 99.9991 | 99.9789 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.001 | ±0.002 | ±0.003 | ±0.000 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
IR07D | 99.9997 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.001 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
IR14D | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
IR21D | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
IR28D | 99.9961 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.001 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
IR07F | 99.9933 | 100.0000 | 99.9994 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.003 | ±0.0 | ±0.002 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
IR14F | 99.9994 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.001 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
IR21F | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 |
Class | Epoch Length (Sample) | |||||||
---|---|---|---|---|---|---|---|---|
600 | 900 | 1200 | 3000 | 6000 | 9000 | 12,000 | 15,000 | |
NORM | 99.9927 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.022 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
BA07D | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
BA14D | 99.9108 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.045 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
BA21D | 99.9235 | 100.0000 | 99.9957 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.051 | ±0.0 | ±0.023 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
BA28D | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
BA07F | 99.9742 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.043 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
BA14F | 99.8680 | 99.8019 | 99.9444 | 99.6875 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.049 | ±0.032 | ±0.091 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
BA21F | 99.9936 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.019 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
IR07D | 99.9958 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.016 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
IR14D | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
IR21D | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
IR28D | 99.9422 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.016 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
IR07F | 99.8997 | 100.0000 | 99.9914 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.045 | ±0.0 | ±0.032 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
IR14F | 99.9914 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.022 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
IR21F | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 |
Class | Epoch Length (Sample) | |||||||
---|---|---|---|---|---|---|---|---|
600 | 900 | 1200 | 3000 | 6000 | 9000 | 12,000 | 15,000 | |
NORM | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
BA07D | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
BA14D | 99.9617 | 100.0000 | 99.9957 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.030 | ±0.0 | ±0.023 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
BA21D | 99.9745 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.042 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
BA28D | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
BA07F | 99.6164 | 99.9067 | 99.9483 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.073 | ±0.000 | ±0.071 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
BA14F | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
BA21F | 99.9379 | 99.8938 | 99.9871 | 99.6845 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.000 | ±0.033 | ±0.039 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
IR07D | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
IR14D | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
IR21D | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
IR28D | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
IR07F | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
IR14F | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | |
IR21F | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 | ±0.0 |
Reference | Computational Method | Bearing Fault Condition | Performance |
---|---|---|---|
[41] | Processing: the multiscale large kernel feature extraction (MLKFE); Classification: few-shot learning model via an ensembling transformer-based model with Mahalanobis distance metric | Normal, 0.007-inch ball fault, 0.014-inch ball fault, 0.021-inch ball fault, 0.007-inch inner race fault, 0.014-inch inner race fault, 0.021-inch inner race fault, 0.007-inch outer race fault, 0.014-inch outer race fault, 0.021-inch outer race fault | Accurcy: 99.89 (best) |
[6] | Processing: short-time Fourier transform; Classification: lite convolutional neural network (CNN) model with fixed feature map dimensions | Normal, 0.007-inch ball fault, 0.014-inch ball fault, 0.021-inch ball fault, 0.028-inch ball fault, 0.007-inch inner race fault, 0.014-inch inner race fault, 0.021-inch inner race fault, 0.028-inch inner race fault, 0.007-inch outer race fault, 0.014-inch outer race fault, 0.021-inch outer race fault | Accuracy: 99.93 (mean); 100.00 (max); 99.85 (min) |
[13] | Processing: empirical mode decomposition (EMD) and cepstral autoregressive feature extraction; Classification: support vector machine | Normal, inner race fault, outer race fault | Accuracy: 98.70 |
[42] | Processing: feature extraction including maximum, minimum, mean, standard deviation, root mean square, skewness, kurtosis, crest factor, form factor; Classification: deep neural network with extreme gradient boosting optimization using particle swarm optimization (PSO) | Normal, 0.007-inch ball fault, 0.014-inch ball fault, 0.021-inch ball fault, 0.007-inch inner race fault, 0.014-inch inner race fault, 0.021-inch inner race fault, 0.007-inch outer race fault, 0.014-inch outer race fault, 0.021-inch outer race fault | Accuracy: 99.10 |
[43] | Classification: multi-scale convolutional neural network (CNN) and long short term memory (LSTM) model | Normal, 0.007-inch ball fault, 0.014-inch ball fault, 0.021-inch ball fault, 0.007-inch inner race fault, 0.014-inch inner race fault, 0.021-inch inner race fault, 0.007-inch 6 o’clock outer race fault, 0.014-inch 6 o’clock outer race fault, 0.021-inch 6 o’clock outer race fault | Accuracy: 98.46 |
[44] | Classification: Residual network with deformable convolution (DC-ResNet) | Normal, 0.007-inch ball fault, 0.014-inch ball fault, 0.021-inch ball fault, 0.007-inch inner race fault | Accuracy: 100.00 (achievable) |
[45] | Classification: convolutional neural network (CNN) and recurrent neural network (RNN) | Normal, 0.007-inch ball fault, 0.014-inch ball fault, 0.021-inch ball fault, 0.007-inch inner race fault, 0.014-inch inner race fault, 0.021-inch inner race fault, 0.007-inch 6 o’clock outer race fault, 0.014-inch 6 o’clock outer race fault, 0.021-inch 6 o’clock outer race fault, 0.007-inch 3 o’clock outer race fault, 0.021-inch 3 o’clock outer race fault, 0.007-inch 12 o’clock outer race fault, 0.021-inch 12 o’clock outer race fault | Accuracy: 99.32 (0-HP motor load); 91.87 (1-HP motor load); 94.97 (2-HP motor load) |
[46] | Classification: hybrid models based on convolutional neural network (CNN) and various classifiers, including random forest, gcForest, support vector machine, long short term memory | Normal, 0.007-inch ball fault, 0.014-inch ball fault, 0.021-inch ball fault, 0.007-inch inner race fault, 0.014-inch inner race fault, 0.021-inch inner race fault, 0.007-inch outer race fault, 0.014-inch outer race fault, 0.021-inch outer race fault | Accuracy: 98.90 (CNN-RF); 99.10 (CNN-gcForest); 99.00 (CNN-SVM); 98.67 (CNN-LSTM) |
[47] | Classification: Siamese neural network-based deep convolutional neural networks with wide first-layer kernel (WDCNN) | Normal, 0.007-inch ball fault, 0.014-inch ball fault, 0.021-inch ball fault, 0.007-inch inner race fault, 0.014-inch inner race fault, 0.021-inch inner race fault, 0.007-inch outer race fault, 0.014-inch outer race fault, 0.021-inch outer race fault | Accuracy: 99.65 (WDCNN); 99.77 (five-shot); 99.79 (one-shot) |
This study | Processing: wavelet scattering transform Classification: support vector machine (SVM) with the second-order polynomial kernel function | Normal; Drive end: 0.007-inch, 0.014-inch, 0.021-inch, 0.028-inch ball faults, 0.007-inch, 0.014-inch, 0.021-inch, 0.028-inch inner race faults; Fan end: 0.007-inch, 0.014-inch, 0.021-inch ball faults, 0.007-inch, 0.014-inch, 0.021-inch inner race faults | Accuracy: 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janjarasjitt, S. Investigating the Effect of Vibration Signal Length on Bearing Fault Classification Using Wavelet Scattering Transform. Sensors 2025, 25, 699. https://doi.org/10.3390/s25030699
Janjarasjitt S. Investigating the Effect of Vibration Signal Length on Bearing Fault Classification Using Wavelet Scattering Transform. Sensors. 2025; 25(3):699. https://doi.org/10.3390/s25030699
Chicago/Turabian StyleJanjarasjitt, Suparerk. 2025. "Investigating the Effect of Vibration Signal Length on Bearing Fault Classification Using Wavelet Scattering Transform" Sensors 25, no. 3: 699. https://doi.org/10.3390/s25030699
APA StyleJanjarasjitt, S. (2025). Investigating the Effect of Vibration Signal Length on Bearing Fault Classification Using Wavelet Scattering Transform. Sensors, 25(3), 699. https://doi.org/10.3390/s25030699