A Method for Assessing the Potential of Multifunctional Retrofitting of Rural Roofs Based on GF-2 Remote Sensing Imagery
Abstract
:1. Introduction
2. Study Area and Data
3. Methods
3.1. Extraction of Different Types of Rural Roofs
3.1.1. Classification and Extraction of Roof Types
3.1.2. Evaluation Metrics
3.2. Roof Retrofit Methods and Calculation of Available Area
3.2.1. Definition of Roof Retrofit Methods
3.2.2. Calculation of Available Area for Different Roof Retrofit Methods
3.3. Assessment of Roof Retrofit Potential
3.3.1. Calculation of Power Generation Potential and Carbon Reduction Based on PV System
3.3.2. Calculation of Carbon Dioxide Absorption and Plant Biomass Based on Green Roofs
4. Results
4.1. Extraction Results for Different Types of Roofs
4.2. Roof Area Assessment of Different Roof Retrofit Types
4.3. Power Generation and Carbon Benefits of Different Roof Retrofit Types
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zou, C.; Ma, F.; Pan, S.; Zhao, Q.; Fu, G.; Zhang, G.; Yang, Y.; Yu, H.; Liang, Y.; Lin, M.; et al. Global energy transition revolution and the connotation and pathway of the green and intelligent energy system. Pet. Explor. Dev. 2023, 50, 722–740. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, X.; Dong, K. Pathway to prosperity? The impact of low-carbon energy transition on China’s common prosperity. Energy Econ. 2023, 124, 106819. [Google Scholar] [CrossRef]
- Wang, S.; Shen, Y.; Song, S.; Liu, L.; Gu, L.; Wei, J. Change of coal energy status and green and low-carbon development undernthe “dual carbon” goal. J. China Coal Soc. 2023, 48, 2599–2612. [Google Scholar] [CrossRef]
- Zhang, X.; Barrington-Leigh, C.P.; Robinson, B.E. Rural household energy transition in China: Trends and challenges. J. Clean. Prod. 2024, 450, 141871. [Google Scholar] [CrossRef]
- Shi, Q.; Li, Z.; Xu, Y.; Yan, T.; Chen, M. Dynamic Scenario Simulations of Sustainable Rural and Towns Development in China: The Case of Wujiang District. Sustainability 2023, 15, 8200. [Google Scholar] [CrossRef]
- Dou, C.; Zuo, C.; Jia, Y.; Jiang, L.; Zheng, L. Analysis on Development Potential of Rooftop Distributed PV Power Generation of Rural Residential Dwellings in China. Sol. Energy 2023, 5–16. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Q.; Lin, Z.; Shi, H.; Wen, S.; Wu, Q.; Zhang, J.; Peng, C. A novel approach for assessing rooftop-and-facade solar photovoltaic potential in rural areas using three-dimensional (3D) building models constructed with GIS. Energy 2023, 282, 128920. [Google Scholar] [CrossRef]
- Yang, Y.; Si, Z.; Jia, L.; Wang, P.; Huang, L.; Zhang, Y.; Ji, C. Whether rural rooftop photovoltaics can effectively fight the power consumption conflicts at the regional scale—A case study of Jiangsu Province. Energy Build. 2024, 306, 113921. [Google Scholar] [CrossRef]
- Chen, N.; Deng, Q.; Chen, Q.; Wang, Z. Green roof heat transfer coefficient measurement and impact of plant species and moisture. Energy Build. 2024, 303, 113805. [Google Scholar] [CrossRef]
- Huang, J.; Kong, F.; Yin, H.; Middel, A.; Liu, H.; Meadows, M.E. Green roof effects on urban building surface processes and energy budgets. Energy Convers. Manag. 2023, 287, 117100. [Google Scholar] [CrossRef]
- Sailor, D.J.; Anand, J.; King, R.R. Photovoltaics in the built environment: A critical review. Energy Build. 2021, 253, 111479. [Google Scholar] [CrossRef]
- Ladenburg, J.; Kim, J.; Zuch, M.; Soytas, U. Taking the carbon capture and storage, wind power, PV or other renewable technology path to fight climate change? Exploring the acceptance of climate change mitigation technologies—A Danish national representative study. Renew. Energy 2024, 220, 119582. [Google Scholar] [CrossRef]
- Scharf, B.; Kraus, F. Green Roofs and Greenpass. Buildings 2019, 9, 205. [Google Scholar] [CrossRef]
- Wang, X.; Li, D. Solar Rooftop Segmentation in Rual Areas Based on Improved Deeplabv3+. Comput. Appl. Softw. 2022, 39, 174–180. [Google Scholar]
- Shi, X.; Huang, H.; Pu, C.; Yang, Y.; Xue, J. CSA-UNet: Channel-Spatial Attention-Based Encoder-Decoder Network for Rural Blue-Roofed Building Extraction from UAV Imagery. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6514405. [Google Scholar] [CrossRef]
- Sun, L.; Tang, Y.; Zhang, L. Rural Building Detection in High-Resolution Imagery Based on a Two-Stage CNN Model. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1998–2002. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Y.; Nie, G.; Cheng, H.; Yang, X.; Chen, X.; Gross, L. Building Extraction and Floor Area Estimation at the Village Level in Rural China Via a Comprehensive Method Integrating UAV Photogrammetry and the Novel EDSANet. Remote Sens. 2022, 14, 5175. [Google Scholar] [CrossRef]
- Yu, H. Building Roof Extraction and Solar Energy Potential Assessment Based on High Resolution Remote Sensing Image. Master’s Thesis, Wuhan University, Wuhan, China, 2019. [Google Scholar]
- Wang, Y.; Li, S.; Teng, F.; Lin, Y.; Wang, M.; Cai, H. Improved Mask R-CNN for Rural Building Roof Type Recognition from UAV High-Resolution Images: A Case Study in Hunan Province, China. Remote Sens. 2022, 14, 265. [Google Scholar] [CrossRef]
- Sun, T.; Shan, M.; Rong, X.; Yang, X. Estimating the spatial distribution of solar photovoltaic power generation potential on different types of rural rooftops using a deep learning network applied to satellite images. Appl. Energy 2022, 315, 119025. [Google Scholar] [CrossRef]
- Liu, D.; Chang, S.; Deng, Y.; He, Z.; Wang, F.; Zhang, Z.; Han, C.; Yu, C. A Novel Spaceborne SAR Constellation Scheduling Algorithm for Sea Surface Moving Target Search Tasks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 3715–3726. [Google Scholar] [CrossRef]
- Chang, S.; Deng, Y.; Zhang, Y.; Wang, R.; Qiu, J.; Wang, W.; Zhao, Q.; Liu, D. An Advanced Echo Separation Scheme for Space-Time Waveform-Encoding SAR Based on Digital Beamforming and Blind Source Separation. Remote Sens. 2022, 14, 3585. [Google Scholar] [CrossRef]
- Chang, S.; Deng, Y.; Zhang, Y.; Zhao, Q.; Wang, R.; Zhang, K. An Advanced Scheme for Range Ambiguity Suppression of Spaceborne SAR Based on Blind Source Separation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5230112. [Google Scholar] [CrossRef]
- Liu, Z.; Tang, H.; Feng, L.; Lyu, S. China Building Rooftop Area: The first multi-annual (2016–2021) and high-resolution (2.5 m) building rooftop area dataset in China derived with super-resolutionsegmentation from Sentinel-2 imagery. Earth Syst. Sci. Data 2023, 15, 3547–3572. [Google Scholar] [CrossRef]
- Yuliani, S.; Hardiman, G.; Setyowati, E. Green-Roof: The Role of Community in the Substitution of Green-Space toward Sustainable Development. Sustainability 2020, 12, 1429. [Google Scholar] [CrossRef]
- Liu, W.; Qian, Y.; Yao, L.; Feng, Q.; Engel, B.A.; Chen, W.; Yu, T. Identifying city-scale potential and priority areas for retrofitting green roofs and assessing their runoff reduction effectiveness in urban functional zones. J. Clean. Prod. 2022, 332, 130064. [Google Scholar] [CrossRef]
- Hamid, H.N.A.; Romali, N.S.; Rahman, R.A. Key Barriers and Feasibility of Implementing Green Roofs on Buildings in Malaysia. Buildings 2023, 13, 2233. [Google Scholar] [CrossRef]
- Baek, K.Y.; Kim, H.G. Analyzing the Efficiency of Increasing Suitable Habitat Area for Paridae by Roof Greening Method Based on Building Type: Case Study of Suwon City, Republic of Korea. Sens. Mater. 2022, 34, 4855–4877. [Google Scholar] [CrossRef]
- Hong, W.; Guo, R.; Tang, H. Potential assessment and implementation strategy for roof greening in highly urbanized areas: A case study in Shenzhen, China. Cities 2019, 95, 102468. [Google Scholar] [CrossRef]
- Aleksejeva, J.; Voulgaris, G.; Gasparatos, A. Assessing the potential of strategic green roof implementation for green infrastructure: Insights from Sumida ward, Tokyo. Urban For. Urban Green. 2022, 74, 127632. [Google Scholar] [CrossRef]
- Izquierdo, S.; Rodrigues, M.; Fueyo, N. A method for estimating the geographical distribution of the available roof surface area for large-scale photovoltaic energy-potential evaluations. Sol. Energy 2008, 82, 929–939. [Google Scholar] [CrossRef]
- Ghaleb, B.; Asif, M. Assessment of solar PV potential in commercial buildings. Renew. Energy 2022, 187, 618–630. [Google Scholar] [CrossRef]
- Tian, R.; Meng, E.; Shu, Y.; Li, J.; Zhou, B.; Zhao, H. Experimental study of the thermal performance of a new type of PV roof. Int. Commun. Heat Mass Transf. 2024, 157, 107768. [Google Scholar] [CrossRef]
- Arenandan, V.; Wong, J.K.; Ahmed, A.N.; Chow, M.F. Efficiency enhancement in energy production of photovoltaic modules through green roof installation under tropical climates. Ain Shams Eng. J. 2022, 13, 101741. [Google Scholar] [CrossRef]
- Pan, Z.; Wang, C.; Yu, B.; Chen, Z.; Yuan, Y.; Li, G.; Zhang, J.; Xiao, T. Assessing multifunctional retrofit potential of urban roof areas and evaluating the power and carbon benefits under efficient retrofit scenarios. J. Clean. Prod. 2024, 444, 141270. [Google Scholar] [CrossRef]
- de Vries, T.N.C.; Bronkhorst, J.; Vermeer, M.; Donker, J.C.B.; Briels, S.A.; Ziar, H.; Zeman, M.; Isabella, O. A quick-scan method to assess photovoltaic rooftop potential based on aerial imagery and LiDAR. Sol. Energy 2020, 209, 96–107. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the 15th European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Huang, Z.; Mendis, T.; Xu, S. Urban solar utilization potential mapping via deep learning technology: A case study of Wuhan, China. Appl. Energy 2019, 250, 283–291. [Google Scholar] [CrossRef]
- Aslani, M.; Seipel, S. Automatic identification of utilizable rooftop areas in digital surface models for photovoltaics potential assessment. Appl. Energy 2022, 306, 118033. [Google Scholar] [CrossRef]
- Xu, S.; Li, Z.; Zhang, C.; Huang, Z.; Tian, J.; Luo, Y.; Du, H. A method of calculating urban-scale solar potential by evaluating and quantifying the relationship between urban block typology and occlusion coefficient: A case study of Wuhan in Central China. Sustain. Cities Soc. 2021, 64, 102451. [Google Scholar] [CrossRef]
- Osma, G.; Ordonez, G.; Hernandez, E.; Quintero, L.; Torres, M. The impact of height installation on the performance of PV panels integrated into a green roof in tropical conditions. In Proceedings of the 2nd International Conference on Energy Production and Management in the 21st Century—The Quest for Sustainable Energy (EQ), Ancona, Italy, 6–8 September 2016; pp. 147–156. [Google Scholar]
- Chemisana, D.; Lamnatou, C. Photovoltaic-green roofs: An experimental evaluation of system performance. Appl. Energy 2014, 119, 246–256. [Google Scholar] [CrossRef]
- Lamnatou, C.; Chemisana, D. A critical analysis of factors affecting photovoltaic-green roof performance. Renew. Sustain. Energy Rev. 2015, 43, 264–280. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Z.; Wu, B.; Chen, L.; Mao, W.; Zhao, F.; Wu, J.; Wu, J.; Yu, B. Estimating Roof Solar Energy Potential in the Downtown Area Using a GPU-Accelerated Solar Radiation Model and Airborne LiDAR Data. Remote Sens. 2015, 7, 17212–17233. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Li, Y.; Wu, Q.; Wu, B.; Huang, Y.; Wu, S.; Yu, S.; Mao, W.; Zhao, F.; et al. Assessing the potential and utilization of solar energy at the building-scale in Shanghai. Sustain. Cities Soc. 2022, 82, 103917. [Google Scholar] [CrossRef]
- Cascone, S.; Catania, F.; Gagliano, A.; Sciuto, G. A comprehensive study on green roof performance for retrofitting existing buildings. Build. Environ. 2018, 136, 227–239. [Google Scholar] [CrossRef]
- Kim, H.C.; Fthenakis, V.; Choi, J.-K.; Turney, D.E. Life Cycle Greenhouse Gas Emissions of Thin-film Photovoltaic Electricity Generation. J. Ind. Ecol. 2012, 16, S110–S121. [Google Scholar] [CrossRef]
- Jing, R.; Liu, J.; Zhang, H.; Zhong, F.; Liu, Y.; Lin, J. Unlock the hidden potential of urban rooftop agrivoltaics energy-food-nexus. Energy 2022, 256, 124626. [Google Scholar] [CrossRef]
- Corbane, C.; Syrris, V.; Sabo, F.; Politis, P.; Melchiorri, M.; Pesaresi, M.; Soille, P.; Kemper, T. Convolutional neural networks for global human settlements mapping from Sentinel-2 satellite imagery. Neural Comput. Appl. 2021, 33, 6697–6720. [Google Scholar] [CrossRef]
- Xia, Z.; Li, Y.; Zhang, W.; Guo, S.; Zheng, L.; Jia, N.; Chen, R.; Guo, X.; Du, P. Quantitatively distinguishing the impact of solar photovoltaics programs on vegetation in dryland using satellite imagery. Land Degrad. Dev. 2023, 34, 4373–4385. [Google Scholar] [CrossRef]
- Choi, C.S.; Macknick, J.; McCall, J.; Bertel, R.; Ravi, S. Multi-year analysis of physical interactions between solar PV arrays and underlying soil-plant complex in vegetated utility-scale systems. Appl. Energy 2024, 365, 123227. [Google Scholar] [CrossRef]
- Dwijendra, N.K.A.; Muda, I.; Milanes, C.B.; Kumar, N.B.; Abosinnee, A.S.; Akhmadeev, R. How do green roofs affect per capita energy consumption in residential buildings under various climate conditions? Sustain. Energy Technol. Assess. 2023, 56, 103127. [Google Scholar] [CrossRef]
Roof Type | PI (kWh/(m2ꞏYear)) | OTI (kWh/(m2ꞏYear)) |
---|---|---|
Flat roof | 1375.3 | 1597.2 |
E-W pitched roof | 1313.6 | 1597.2 |
N-S pitched roof | 1576.7 | 1597.2 |
Crop Type | Land-Use | Top Soil Properties | Max. Biomass Production (kg C/ha/yr) | Annual N Demand (kg N/ha) | Thermal Degree Days for Maturity | Water Demand (g Water/g DM) | N Fixation Index (Crop N/N from Soil) | Optimum Temperature (°C) |
---|---|---|---|---|---|---|---|---|
Herbaceous vegetation | Moist grassland | Sandy clay loam | 11(Grain)/275 (Leaf)/ 275 (Stem)/539 (Root) | 40.7 | 1200 | 300 | 1 | 15 |
Flowers | Moist grassland | Loam | 913.5 (Grain)/182.7 (Leaf)/182.7 (Stem)/ 548.1 (Root) | 71.5575 | 1400 | 800 | 1 | 25 |
Shrubs | Moist grassland | Loam | 24 (Grain)/600 (Leaf)/ 600 (Stem)/1176 (Root) | 16.64 | 2000 | 250 | 1 | 15 |
m-IoU/% | m-F1/% | Recall/% | |
---|---|---|---|
Deeplab V3 | 33.86 ± 0.23 | 40.99 ± 0.34 | 47.92 ± 0.48 |
PSPNet | 40.22 ± 1.15 | 51.07 ± 1.54 | 48.98 ± 1.95 |
U-Net | 52.33 ± 0.38 | 64.94 ± 0.39 | 75.86 ± 1.22 |
U-Net + CA | 52.08 ± 1.17 | 64.62 ± 1.24 | 72.05 ± 1.88 |
U-Net + SE | 51.75 ± 1.22 | 64.27 ± 1.33 | 72.64 ± 0.1 |
U-Net + CBAM | 55.88 ± 0.55 | 68.56 ± 0.65 | 77.36 ± 2.26 |
Ours | 72.95 ± 0.45 | 83.51 ± 0.32 | 88.53 ± 1.11 |
Retrofit Type | Rooftop Type | Projection Area (m2) | PV Panel Installation Area (m2) | |
---|---|---|---|---|
PI | OTI | |||
PV roofs | Flat roofs | 2.27 × 105 | 1.82 × 105 | 9.19 × 104 |
N-S pitched roofs | 1.99 × 106 | 8.39 × 105 | 7.40 × 105 | |
E-W pitched roofs | 5.83 × 105 | 4.79 × 105 | - | |
PV-Green roofs | Flat roofs | 2.27 × 105 | 1.82 × 105 | - |
Retrofit Type | Plant Type | Projection Area (m2) | Available Area (m2) |
---|---|---|---|
Green roofs | extensive | 4.92 × 104 | 4.43 × 104 |
semi-intensive | 1.80 × 105 | 1.62 × 105 | |
PV-Green roofs | extensive | 2.27 × 105 | 2.04 × 105 |
Retrofit Type | Rooftop Type | Electricity Output/ (GWh/yr) | Reduction in Carbon Emissions/ (×106 kg/yr) | ||
---|---|---|---|---|---|
PI | OTI | PI | OTI | ||
PV roofs | Flat roofs | 34.11 | 19.965 | 33.291 | 19.486 |
N-S pitched roofs | 179.903 | 160.847 | 175.585 | 156.987 | |
E-W pitched roofs | 85.683 | - | 83.626 | - | |
PV-Green roofs | Flat roofs | 34.11 | - | 33.291 | - |
Herbaceous Vegetation | Flowers | Shrubs | |
---|---|---|---|
Plant photosynthesis (kg CO2/ha/yr) | 2213.744 | 7245.681 | 8576.056 |
Plant biomass production kg C/ha/yr | 473.41 | 1464.8 | 1785.6 |
Retrofit Type | Plant Type | Absorption of Carbon Emissions/ (×104 kg CO2/yr) | Plant Biomass Production/ (×104 kg C/yr) |
---|---|---|---|
Green roofs | extensive | 3.21 | 0.65 |
semi-intensive | 13.2 | 2.72 | |
PV-Green roofs | extensive | 4.53 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Cheng, L.; Zheng, Y.; Cui, H.; Zhu, M. A Method for Assessing the Potential of Multifunctional Retrofitting of Rural Roofs Based on GF-2 Remote Sensing Imagery. Sensors 2025, 25, 770. https://doi.org/10.3390/s25030770
Wang J, Cheng L, Zheng Y, Cui H, Zhu M. A Method for Assessing the Potential of Multifunctional Retrofitting of Rural Roofs Based on GF-2 Remote Sensing Imagery. Sensors. 2025; 25(3):770. https://doi.org/10.3390/s25030770
Chicago/Turabian StyleWang, Junqi, Linlin Cheng, Yang Zheng, Huizhen Cui, and Mengyao Zhu. 2025. "A Method for Assessing the Potential of Multifunctional Retrofitting of Rural Roofs Based on GF-2 Remote Sensing Imagery" Sensors 25, no. 3: 770. https://doi.org/10.3390/s25030770
APA StyleWang, J., Cheng, L., Zheng, Y., Cui, H., & Zhu, M. (2025). A Method for Assessing the Potential of Multifunctional Retrofitting of Rural Roofs Based on GF-2 Remote Sensing Imagery. Sensors, 25(3), 770. https://doi.org/10.3390/s25030770