Spatio-Temporal Agnostic Sampling for Imbalanced Multivariate Seasonal Time Series Data: A Study on Forest Fires †
Abstract
:1. Introduction
- 1.
- A mathematical description of multivariate time series event and non-event data is provided along with a description of the STAS framework;
- 2.
- The computation speed gained by STAS over two other common sampling algorithms (NearMiss and SMOTE) for real-time applications in natural forest fire disasters is presented through a time complexity analysis;
- 3.
- Algorithms for K-Nearest Sensor Data Aggregation and Spatio-Temporal Agnostic Sampling in the STAS framework have been modified for better understandability and readability;
- 4.
- Validation of the robustness of the parameters proposed in the STAS framework [8] was conducted through an extensive set of possible parameter values;
- 5.
- An additional set of experiments based on a temporal split of fire and non-fire event data were conducted demonstrating that the binary classification and regression models used in STAS are not impacted by current or future events during training.
2. Literature Review and Background
2.1. Terminology
- Time Series: Data points recorded over a period of time, in successive order with regular time intervals.
- Multivariate: A dataset with more than one independent variable for any given data point.
- Seasonality: Time series data points having regular and periodic changes that occur at near-constant time intervals.
2.2. Sampling Techniques
2.2.1. Random Sampling
2.2.2. NearMiss
2.2.3. Synthetic Minority Over-Sampling TEchnique
2.2.4. Spatio-Temporal Agnostic Sampling
2.3. Fire Weather Index
2.4. Forest Fire Prediction Models
2.5. Metrics
3. Datasets
3.1. Canadian National Fire Database
3.2. Canadian Weather Energy and Engineering Datasets
4. Methodology
4.1. Fire and Non-Fire Events
4.2. Framework
Algorithm 1 -Nearest Sensor Data Aggregation |
All the symbols and notations are described in Table 4. Input: , S, W, F Output: D |
Algorithm 2 Event Points Extraction |
All the symbols and notations are described in Table 4. Input: , F, D Output:
|
Algorithm 3 Non-Event Point Extraction |
All the symbols and notations are described in Table 4. Input: , , F, D Output:
|
Algorithm 4 Spatio-Temporal Agnostic Sampling |
All the symbols and notations are described in Table 4. Input: , Output: ,
|
4.3. Time Complexity Analysis
4.3.1. STAS
4.3.2.
4.3.3. SMOTE
4.3.4. Comparison
4.4. Modeling
5. Experiments and Results
6. Discussion
6.1. STAS Parameters
6.2. Sampling
6.3. Metrics and Validation
6.4. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BCE | Binary Cross-Entropy |
BUI | BuildUp Index |
CNFDB | Canadian National Fire Database |
CWEEDS | Canadian Weather Energy and Engineering Datasets |
CWFIS | Canadian Wildland Fire Information System |
DC | Drought Code |
DMC | Duff Moisture Code |
FFMC | Fine Fuel Moisture Code |
FWI | Fire Weather Index |
ISI | Initial Spread Index |
MoE | Mixture of Experts |
MSE | Mean Square Error |
NFDB | National Fire Data Base |
RF | Random Forest |
SGD | Stochastic Gradient Descent |
SMOTE | Synthetic Minority Over-sampling TEchnique |
STAS | Spatio-Temporal Agnostic Sampling |
SVM | Support Vector Machine |
References
- Hefeeda, M.; Bagheri, M. Wireless Sensor Networks for Early Detection of Forest Fires. In Proceedings of the IEEE International Conference on Mobile Adhoc and Sensor Systems, Pisa, Italy, 8–11 October 2007; pp. 1–6. [Google Scholar]
- Al-turjman, F.M.; Hassanein, H.S.; Oteafy, S.M.A.; Alsalih, W. Towards Augmenting Federated Wireless Sensor Networks in Forestry Applications. Pers. Ubiquitous Comput. 2013, 17, 1025–1034. [Google Scholar] [CrossRef]
- Wu, Y.; Geng, X.; Liu, Z.; Shi, Z. Tropical Cyclone Forecast Using Multitask Deep Learning Framework. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Amezquita-Sanchez, J.; Valtierra-Rodriguez, M.; Adeli, H. Current Efforts for Prediction and Assessment of Natural Disasters: Earthquakes, Tsunamis, Volcanic Eruptions, Hurricanes, Tornados, and Floods. Sci. Iran. 2017, 24, 2645–2664. [Google Scholar] [CrossRef]
- Consoli, S.; Reforgiato Recupero, D.; Zavarella, V. A Survey on Tidal Analysis and Forecasting Methods for Tsunami Detection. Sci. Tsunami Hazards 2014, 33, 1–56. [Google Scholar]
- Pickell, P.D.; Chavardès, R.D.; Li, S.; Daniels, L.D. FuelNet: An Artificial Neural Network for Learning and Updating Fuel Types for Fire Research. IEEE Trans. Geosci. Remote Sens. 2021, 59, 7338–7352. [Google Scholar] [CrossRef]
- Jaiswal, R.K.; Mukherjee, S.; Raju, K.D.; Saxena, R. Forest Fire Risk Zone Mapping from Satellite Imagery and GIS. Int’l J. Appl. Earth Obs. Geoinf. 2002, 4, 1–10. [Google Scholar] [CrossRef]
- Mutakabbir, A.; Lung, C.H.; Ajila, S.A.; Zaman, M.; Naik, K.; Purcell, R.; Sampalli, S. Spatio-Temporal Agnostic Deep Learning Modeling of Forest Fire Prediction Using Weather Data. In Proceedings of the IEEE 47th Computers, Software, and Applications Conference, Torino, Italy, 26–30 June 2023; pp. 346–351. [Google Scholar] [CrossRef]
- Mutakabbir, A.; Lung, C.H.; Ajila, S.A.; Zaman, M.; Naik, K.; Purcell, R.; Sampalli, S. Forest Fire Prediction Using Multi-Source Deep Learning. In Big Data Technologies and Applications; Springer Nature: Cham, Switzerland, 2023; pp. 135–146. [Google Scholar] [CrossRef]
- Mutakabbir, A.; Lung, C.H.; Ajila, S.A.; Naik, K.; Zaman, M.; Purcell, R.; Sampalli, S.; Ravichandran, T. A Federated Learning Framework based on Spatio-Temporal Agnostic Subsampling (STAS) for Forest Fire Prediction. In Proceedings of the IEEE 48th Computers, Software, and Applications Conference, Osaka, Japan, 2–4 July 2024; pp. 350–359. [Google Scholar] [CrossRef]
- Purcell, R.; Naik, K.; Lung, C.H.; Zaman, M.; Sampalli, S.; Mutakabbir, A. A Framework Using Federated Learning for IoT-Based Forest Fire Prediction. In Proceedings of the International Conference on Internet of Things and Intelligence Systems, Bali, Indonesia, 28–30 November 2023; pp. 133–139. [Google Scholar] [CrossRef]
- Tavakoli, F.; Naik, K.; Zaman, M.; Purcell, R.; Sampalli, S.; Mutakabbir, A.; Lung, C.H.; Ravichandran, T. Big Data Synthesis and Class Imbalance Rectification for Enhanced Forest Fire Classification Modeling. In Proceedings of the 16th International Conference on Agents and Artificial Intelligence, Rome, Italy, 24–26 February 2024; Volume 2, pp. 264–275. [Google Scholar] [CrossRef]
- Kaur, P.; Naik, K.; Purcell, R.; Sampalli, S.; Lung, C.H.; Zaman, M.; Mutakabbir, A. A Data Integration Framework with Multi-Source Big Data for Enhanced Forest Fire Prediction. In Proceedings of the 2023 IEEE International Conference on Big Data (BigData), Sorrento, Italy, 15–18 December 2023; pp. 344–351. [Google Scholar] [CrossRef]
- Purcell, R.; Naik, K.; Zaman, M.; Lung, C.H.; Sampalli, S.; Mutakabbir, A.; Dhindsa, M.S.; Das, U. IoT Sensor Deployment in the Wildland-Urban Interface: Leveraging Fire Risk Analysis. In Proceedings of the IEEE 10th World Forum on Internet of Things, Ottawa, ON, Canada, 10–13 November 2024; pp. 864–869. [Google Scholar]
- Johnson, E.; Miyanishi, K. Forest Fires: Behavior and Ecological Effects; Academic Press, Inc.: San Diego, CA, USA, 2001. [Google Scholar]
- Coogan, S.C.P.; Daniels, L.D.; Boychuk, D.; Burton, P.J.; Flannigan, M.D.; Gauthier, S.; Kafka, V.; Park, J.S.; Wotton, B.M. Fifty years of Wildland Fire Science in Canada. Can. J. For. Res. 2021, 51, 283–302. [Google Scholar] [CrossRef]
- Castro, A.C.M.; Nunes, A.; Sousa, A.; Lourenço, L. Mapping the Causes of Forest Fires in Portugal by Clustering Analysis. Geosciences 2020, 10, 53. [Google Scholar] [CrossRef]
- Moris, J.V.; Álvarez Álvarez, P.; Conedera, M.; Dorph, A.; Hessilt, T.D.; Hunt, H.G.P.; Libonati, R.; Menezes, L.S.; Müller, M.M.; Pérez-Invernón, F.J.; et al. A Global Database on Holdover Time of Lightning-Ignited Wildfires. Earth Syst. Sci. Data 2023, 15, 1151–1163. [Google Scholar] [CrossRef]
- Canadian Geographic. Mapping 100 years of Forest Fires in Canada; 2023. Available online: https://canadiangeographic.ca/articles/mapping-100-years-of-forest-fires-in-canada/ (accessed on 1 December 2023).
- Earth Observatory. Relentless Wildfires in Canada. 2023. Available online: https://earthobservatory.nasa.gov/images/151696/relentless-wildfires-in-canada (accessed on 1 December 2023).
- Taylor, S.W.; Alexander, M.E. Science, Technology, and Human Factors in Fire Danger Rating: The Canadian Experience. Int. J. Wildland Fire 2006, 15, 121–135. [Google Scholar] [CrossRef]
- Lee, J.; Choi, W.; Kim, J. A Cost-Effective CNN-LSTM-Based Solution for Predicting Faulty Remote Water Meter Reading Devices in AMI Systems. Sensors 2021, 21, 6229. [Google Scholar] [CrossRef] [PubMed]
- Ai, M.; Yu, J.; Zhang, H.; Wang, H. Optimal Subsampling Algorithms for Big Data Regressions. Stat. Sin. 2021, 31, 749–772. [Google Scholar] [CrossRef]
- Wang, H.; Yang, M.; Stufken, J. Information-Based Optimal Subdata Selection for Big Data Linear Regression. J. Am. Stat. Assoc. 2019, 114, 393–405. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, H. A Review of Optimal Subsampling Methods for Massive Datasets. J. Data Sci. 2021, 19, 151–172. [Google Scholar] [CrossRef]
- Bao, L.; Juan, C.; Li, J.; Zhang, Y. Boosted Near-Miss Under-Sampling on SVM Ensembles for Concept Detection in Large-Scale Imbalanced Datasets. Neurocomputing 2016, 172, 198–206. [Google Scholar] [CrossRef]
- Yen, S.J.; Lee, Y.S. Under-Sampling Approaches for Improving Prediction of the Minority Class in an Imbalanced Dataset. In Proceedings of the International Conference on Intelligent Computing, Kunming, China, 16–19 August 2006; pp. 731–740. [Google Scholar]
- Tanimoto, A.; Yamada, S.; Takenouchi, T.; Sugiyama, M.; Kashima, H. Improving Imbalanced Classification Using Near-Miss Instances. Expert Syst. Appl. 2022, 201, 117130. [Google Scholar] [CrossRef]
- Mandal, A.; Nykiel, G.; Strzyżewski, T.; Kochanski, A.K.; Wrońska, W.; Gruszczyńska, M.; Figurski, M. High-Resolution Fire Danger Forecast for Poland based on the Weather Research and Forecasting Model. Int. J. Wildland Fire 2021, 31, 149–162. [Google Scholar] [CrossRef]
- Silva, P.; Carmo, M.; Rio, J.; Novo, I. Changes in the Seasonality of Fire Activity and Fire Weather in Portugal: Is the Wildfire Season Really Longer? Meteorology 2023, 2, 74–86. [Google Scholar] [CrossRef]
- Giovanni, L.; Jahjah, M.; Fabrizio, F.; Fabrizio, B. The Development of a Fire Vulnerability Index for the Mediterranean Region. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011. [Google Scholar] [CrossRef]
- Stocks, B.J.; Alexander, M.E.; Van, C.E. The Canadian Forest Fire Danger Rating System: An Overview. For. Chron. 1989, 65, 258–265. [Google Scholar] [CrossRef]
- Wang, X.; Oliver, J.; Swystun, T.; Hanes, C.C.; Erni, S.; Flannigan, M.D. Critical Fire Weather Conditions during Active Fire Spread Days in Canada. Sci. Total Environ. 2023, 869, 161831. [Google Scholar] [CrossRef]
- Lawson, B.D.; Armitage, O.B. Weather Guide for the Canadian Forest Fire Danger Rating System; Canadian Forest Service, Northern Forestry Centre: Edmonton, AB, USA, 2008. [Google Scholar]
- de Groot, W.J.; Hanes, C.C.; Wang, Y. Crown Fuel Consumption in Canadian Boreal Forest Fires. Int. J. Wildland Fire 2022, 31, 255–276. [Google Scholar] [CrossRef]
- Zhang, P.; Qi, M. Neural Network Forecasting for Seasonal and Trend Time Series. Eur. J. Oper. Res. 2005, 160, 501–514. [Google Scholar] [CrossRef]
- Lin, T.Z. Suppressing Forest Fires in Global Climate Change Through Artificial Intelligence: A Case Study on British Columbia. In Proceedings of the 2022 International Conference on Big Data, Information and Computer Network (BDICN), Sanya, China, 20–22 January 2022; pp. 432–438. [Google Scholar] [CrossRef]
- Sakr, G.E.; Elhajj, I.H.; Mitri, G.; Wejinya, U.C. Artificial Intelligence for Forest Fire Prediction. In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Montreal, QC, Canada, 6–9 July 2010; pp. 1311–1316. [Google Scholar] [CrossRef]
- Latifah, A.L.; Shabrina, A.; Wahyuni, I.N.; Sadikin, R. Evaluation of Random Forest Model for Forest Fire Prediction Based on Climatology over Borneo. In Proceedings of the IEEE International Conference on Computer, Control, Informatics and Its Applications, Tangerang, Indonesia, 23–24 October 2019; pp. 4–8. [Google Scholar]
- Cortez, P.; Morais, A. A Data Mining Approach to Predict Forest Fires using Meteorological Data. In Proceedings of the 13th EPIA–Portuguese Conference on Artificial Intelligence, Guimarães, Portugal, 3–7 December 2007; pp. 512–523. [Google Scholar]
- Zhang, G.; Wang, M.; Liu, K. Forest Fire Susceptibility Modeling Using a Convolutional Neural Network for Yunnan Province of China. Int. J. Disaster Risk Sci. 2019, 10, 386–403. [Google Scholar] [CrossRef]
- Singh, K.R.; Neethu, K.P.; Madhurekaa, K.; Harita, A.; Mohan, P. Parallel SVM Model for Forest Fire Prediction. Soft Comput. Lett. 2021, 3, 100014. [Google Scholar] [CrossRef]
- Thomas, G.; Rosalie, V.; Olivier, C.; de Maria, G.A.; Antonio, L.P. Modelling Forest Fire and Firebreak Scenarios in a Mediterranean Mountainous Catchment: Impact on Sediments. J. Environ. Manag. 2021, 289, 112497. [Google Scholar] [CrossRef]
- Wotton, B.M.; Martell, D.L. A Lightning Fire Occurrence Model for Ontario. Can. J. For. Res. 2005, 35, 1389–1401. [Google Scholar] [CrossRef]
- Green, A.A.; Dean, C.B.; Martell, D.L.; Woolford, D.G. A Methodology for Investigating Trends in Changes in the Timing of the Fire Season with Applications to Lightning-Caused Forest Fires in Alberta and Ontario, Canada. Can. J. For. Res. 2012, 43, 39–45. [Google Scholar] [CrossRef]
- Wierzchowski, J.; Heathcott, M.; Flannigan, M.D. Lightning and Lightning Fire, Central Cordillera, Canada. Int. J. Wildland Fire 2002, 11, 41–51. [Google Scholar] [CrossRef]
- Natural Resources Canada. National Fire Database Fire Polygons. Available online: https://cwfis.cfs.nrcan.gc.ca/datamart/download/nfdbpoly (accessed on 5 May 2023).
- Morris, R. Final Report–Updating CWEEDS Weather Files. Environment and Climate Change Canada 2016. Available online: https://collaboration.cmc.ec.gc.ca/cmc/climate/Engineer_Climate/CWEEDS_FMCEG/docs/ (accessed on 5 May 2023).
Feature | Description |
---|---|
REP_DATE | Date associated with the start of forest fire () |
OUT_DATE | Reported date of fire extinguished |
CALC_HA | Fire size in hectares with higher precision |
CAUSE | Specifies the cause of fire |
GEOMETRY | 2-dimensional final burnt polygonal region () |
Metadata | Description |
---|---|
Climate ID | Weather station ID |
Location | Weather station’s latitude and longitude () |
First Year | Year weather station started recording data |
Last Year | Year weather station stopped recording data |
S.No. | Feature | Preprocessing | Final Units |
---|---|---|---|
1 | Extraterrestrial irradiance | -NA- | |
2 | Global irradiance | -NA- | |
3 | Direct irradiance | -NA- | |
4 | Diffuse irradiance | -NA- | |
5 | Global illuminance | 100 lux → lux | lux |
6 | Direct illuminance | 100 lux → lux | lux |
7 | Diffuse illuminance | 100 lux → lux | lux |
8 | Zenith luminance | 100 → | |
9 | Minutes of sunshine | -NA- | min |
10 | Ceiling height | 10 m → m | m |
11 | Four digit | Digit code | |
12 | Sky layers | sky condition | Digit code |
13 | codes → | Digit code | |
14 | Digit codes | Digit code | |
15 | Visibility | 100 m → km | km |
16 | Thunderstorm (Weather) | Digit code | |
17 | Rain (Weather) | Digit code | |
18 | Drizzle (Weather) | Eight digit | Digit code |
19 | Snow 1 (Weather) | weather code | Digit code |
20 | Snow 2 (Weather) | → | Digit code |
21 | Ice (Weather) | Digit codes | Digit code |
22 | Visibility 1 (Weather) | Digit code | |
23 | Visibility 2 (Weather) | Digit code | |
24 | Station pressure | 10 Pa → Pa | Pa |
25 | Dry bulb temperature | 0.1 °C → °C | °C |
26 | Dew point temperature | 0.1 °C → °C | °C |
27 | Wind direction | -NA- | degree |
28 | Wind speed | 0.1 | |
29 | Total sky cover | -NA- | Oktas |
30 | Opaque sky cover | -NA- | Oktas |
31 | Snow cover | -NA- | Boolean |
Variable | Description |
---|---|
Set of natural numbers | |
Set of real numbers | |
∅ | Empty set or empty list |
Number of past days | |
Number of past months | |
Number of nearest sensors | |
F | Set of forest fire incidents |
f | A single fire event |
Start date of a forest fire | |
2-dimensional polygonal geometry of a forest fire | |
Center location of a polygonal region of a forest fire | |
s | A single sensor (weather station) |
Location of a single sensor (weather station) | |
S | Set of all sensors (weather stations) |
Set of selected sensors (weather stations) from S | |
w | A single sensor (weather) data matrix |
A single sensor (weather) data matrix at index i in | |
W | Set of sensor (weather) data matrix |
A list of sensor (weather) data matrix | |
Average of sensor (weather) data matrix | |
p | The number of features |
Mapping from set S to set W | |
A list of all events (fire events) | |
A single event (fire event) | |
A list of all non-events (non-fire events) | |
A single non-event (non-fire event) | |
D | Intermediate dataset |
Training dataset without spatio-temporal information | |
Testing dataset without spatio-temporal information | |
Latest time record in days | |
Start date to consider for a time series | |
End date to consider for a time series | |
A | A dataset |
A subset of A with majority class values | |
A subset of A with minority class values | |
, , | Set of data |
a | A value in set A |
x | Number of times to up-sample in SMOTE |
Time complexity of distance calculation | |
Time complexity of sorting | |
Time complexity for event extraction | |
Time complexity for interpolation |
1 | 1 | 0.821 | 0.406 | 0.874 | 0.546 | 0.925 | 0.646 | 0.986 | 0.828 | 0.855 | 0.535 | 0.965 | 0.879 |
1 | 2 | 0.903 | 0.663 | 0.922 | 0.689 | 0.928 | 0.728 | 0.948 | 0.672 | 0.944 | 0.745 | 0.962 | 0.812 |
1 | 3 | 0.957 | 0.832 | 0.964 | 0.853 | 0.974 | 0.877 | 0.981 | 0.907 | 0.983 | 0.913 | 0.986 | 0.924 |
1 | 4 | 0.986 | 0.925 | 0.988 | 0.931 | 0.991 | 0.944 | 0.993 | 0.944 | 0.995 | 0.970 | 0.996 | 0.972 |
1 | 5 | 0.990 | 0.952 | 0.994 | 0.955 | 0.994 | 0.959 | 0.994 | 0.964 | 0.996 | 0.976 | 0.997 | 0.933 |
1 | 6 | 0.993 | 0.971 | 0.997 | 0.966 | 0.995 | 0.976 | 0.998 | 0.975 | 0.995 | 0.980 | 0.997 | 0.977 |
1 | 7 | 0.994 | 0.958 | 0.994 | 0.967 | 0.994 | 0.968 | 0.994 | 0.964 | 0.994 | 0.967 | 0.998 | 0.985 |
1 | 8 | 0.990 | 0.948 | 0.989 | 0.947 | 0.991 | 0.953 | 0.987 | 0.944 | 0.996 | 0.968 | 0.997 | 0.963 |
1 | 9 | 0.976 | 0.876 | 0.976 | 0.889 | 0.978 | 0.908 | 0.988 | 0.936 | 0.988 | 0.930 | 0.989 | 0.941 |
1 | 10 | 0.905 | 0.692 | 0.920 | 0.729 | 0.934 | 0.731 | 0.937 | 0.683 | 0.947 | 0.784 | 0.959 | 0.837 |
1 | 11 | 0.817 | 0.455 | 0.868 | 0.558 | 0.923 | 0.664 | 0.977 | 0.824 | 0.864 | 0.853 | 0.971 | 0.875 |
1 | 12 | 0.716 | 0.159 | 0.754 | 0.186 | 0.766 | 0.227 | 0.787 | 0.264 | 0.798 | 0.349 | 0.843 | 0.385 |
3 | 1 | 0.821 | 0.436 | 0.880 | 0.547 | 0.923 | 0.688 | 0.984 | 0.768 | 0.869 | 0.549 | 0.974 | 0.900 |
3 | 2 | 0.912 | 0.694 | 0.934 | 0.715 | 0.941 | 0.737 | 0.946 | 0.681 | 0.953 | 0.777 | 0.962 | 0.819 |
3 | 3 | 0.952 | 0.838 | 0.969 | 0.865 | 0.977 | 0.888 | 0.985 | 0.902 | 0.987 | 0.905 | 0.986 | 0.936 |
3 | 4 | 0.987 | 0.923 | 0.987 | 0.943 | 0.994 | 0.951 | 0.995 | 0.944 | 0.994 | 0.972 | 0.998 | 0.974 |
3 | 5 | 0.991 | 0.952 | 0.993 | 0.951 | 0.992 | 0.955 | 0.995 | 0.960 | 0.995 | 0.965 | 0.995 | 0.982 |
3 | 6 | 0.994 | 0.967 | 0.996 | 0.969 | 0.997 | 0.976 | 0.996 | 0.979 | 0.994 | 0.973 | 0.999 | 0.975 |
3 | 7 | 0.994 | 0.961 | 0.997 | 0.965 | 0.995 | 0.967 | 0.995 | 0.967 | 0.997 | 0.969 | 0.999 | 0.979 |
3 | 8 | 0.990 | 0.937 | 0.994 | 0.953 | 0.994 | 0.953 | 0.997 | 0.945 | 0.997 | 0.963 | 0.997 | 0.965 |
3 | 9 | 0.975 | 0.883 | 0.979 | 0.900 | 0.985 | 0.951 | 0.989 | 0.931 | 0.987 | 0.935 | 0.987 | 0.940 |
3 | 10 | 0.915 | 0.709 | 0.933 | 0.746 | 0.940 | 0.736 | 0.944 | 0.721 | 0.950 | 0.786 | 0.958 | 0.836 |
3 | 11 | 0.831 | 0.472 | 0.888 | 0.581 | 0.929 | 0.700 | 0.981 | 0.791 | 0.880 | 0.569 | 0.973 | 0.906 |
3 | 12 | 0.723 | 0.188 | 0.789 | 0.253 | 0.805 | 0.289 | 0.803 | 0.347 | 0.832 | 0.412 | 0.829 | 0.452 |
5 | 1 | 0.824 | 0.451 | 0.890 | 0.590 | 0.929 | 0.703 | 0.988 | 0.701 | 0.890 | 0.589 | 0.971 | 0.922 |
5 | 2 | 0.907 | 0.659 | 0.945 | 0.738 | 0.943 | 0.735 | 0.949 | 0.655 | 0.956 | 0.780 | 0.961 | 0.837 |
5 | 3 | 0.962 | 0.841 | 0.975 | 0.856 | 0.978 | 0.900 | 0.986 | 0.919 | 0.984 | 0.913 | 0.988 | 0.928 |
5 | 4 | 0.992 | 0.931 | 0.992 | 0.951 | 0.992 | 0.957 | 0.996 | 0.947 | 0.996 | 0.969 | 0.997 | 0.981 |
5 | 5 | 0.991 | 0.951 | 0.993 | 0.963 | 0.995 | 0.963 | 0.993 | 0.964 | 0.997 | 0.969 | 0.997 | 0.976 |
5 | 6 | 0.995 | 0.977 | 0.996 | 0.972 | 0.997 | 0.974 | 0.998 | 0.958 | 0.997 | 0.974 | 0.998 | 0.980 |
5 | 7 | 0.992 | 0.967 | 0.995 | 0.965 | 0.996 | 0.971 | 0.997 | 0.973 | 0.997 | 0.973 | 0.998 | 0.982 |
5 | 8 | 0.991 | 0.902 | 0.994 | 0.950 | 0.996 | 0.953 | 0.997 | 0.953 | 0.995 | 0.976 | 0.997 | 0.968 |
5 | 9 | 0.970 | 0.899 | 0.983 | 0.914 | 0.986 | 0.951 | 0.991 | 0.931 | 0.987 | 0.925 | 0.992 | 0.945 |
5 | 10 | 0.941 | 0.705 | 0.945 | 0.753 | 0.943 | 0.768 | 0.948 | 0.699 | 0.949 | 0.785 | 0.955 | 0.844 |
5 | 11 | 0.833 | 0.467 | 0.899 | 0.582 | 0.939 | 0.708 | 0.981 | 0.813 | 0.886 | 0.603 | 0.975 | 0.895 |
5 | 12 | 0.760 | 0.191 | 0.802 | 0.255 | 0.808 | 0.323 | 0.813 | 0.342 | 0.839 | 0.468 | 0.836 | 0.497 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutakabbir, A.; Lung, C.-H.; Naik, K.; Zaman, M.; Ajila, S.A.; Ravichandran, T.; Purcell, R.; Sampalli, S. Spatio-Temporal Agnostic Sampling for Imbalanced Multivariate Seasonal Time Series Data: A Study on Forest Fires. Sensors 2025, 25, 792. https://doi.org/10.3390/s25030792
Mutakabbir A, Lung C-H, Naik K, Zaman M, Ajila SA, Ravichandran T, Purcell R, Sampalli S. Spatio-Temporal Agnostic Sampling for Imbalanced Multivariate Seasonal Time Series Data: A Study on Forest Fires. Sensors. 2025; 25(3):792. https://doi.org/10.3390/s25030792
Chicago/Turabian StyleMutakabbir, Abdul, Chung-Horng Lung, Kshirasagar Naik, Marzia Zaman, Samuel A. Ajila, Thambirajah Ravichandran, Richard Purcell, and Srinivas Sampalli. 2025. "Spatio-Temporal Agnostic Sampling for Imbalanced Multivariate Seasonal Time Series Data: A Study on Forest Fires" Sensors 25, no. 3: 792. https://doi.org/10.3390/s25030792
APA StyleMutakabbir, A., Lung, C.-H., Naik, K., Zaman, M., Ajila, S. A., Ravichandran, T., Purcell, R., & Sampalli, S. (2025). Spatio-Temporal Agnostic Sampling for Imbalanced Multivariate Seasonal Time Series Data: A Study on Forest Fires. Sensors, 25(3), 792. https://doi.org/10.3390/s25030792