Optimized Design of a Triangular Shear Piezoelectric Sensor Using Non-Dominated Sorting Genetic Algorithm-II(NSGA-II)
Abstract
:1. Introduction
2. Sensor Working Principle and Structure
2.1. Working Principle
2.2. Structure of the Sensor
2.3. Material Selection
3. Simulation and Experimental Analysis of Sensors
3.1. Modal Analysis
3.2. Harmonic Response Analysis
3.3. Piezoelectric Analysis
3.4. Experimental Analysis
3.4.1. Single-Factor Experiments
3.4.2. Orthogonal Test
3.4.3. Analysis of Orthogonal Test Results
4. Optimization of Sensor Structure Parameters
4.1. Data Fitting
4.2. NSGA-II Genetic Algorithms
4.2.1. Multi-Objective Decision Making
- (1)
- The Pareto optimal solution set comprises all possible solutions. Two objective functions are utilized as evaluation criteria to construct an index matrix.
- (2)
- Each element of the index matrix is standardized for range.
- (3)
- Each solution is evaluated and sequenced using the minimization difference method.
4.2.2. Optimization Results
4.2.3. Results of Decision Making
5. Results and Discussion
5.1. Sensor Calibration Experiment
5.2. Calibration Experiment Result
5.3. Microseismic Signal Testing
6. Conclusions
- (1)
- Based on the single-factor experiments and orthogonal test method, ANSYS 17.0 software was used to simulate the combination of parameters, which effectively reduced the number of experiments. On this basis, range analysis was performed. The study results indicate that the resonant frequency is primarily influenced by the height of the central column, followed by the height and thickness of the piezoelectric sheet and the height of the mass block. Conversely, the voltage is most affected by the thickness of the piezoelectric plate, then the height of the piezoelectric plate and the height of the mass block, and finally, the height of the central column.
- (2)
- Using a combination of the data-fitting software 1stOpt and the NSGA-II genetic algorithm, the predicted values obtained were compared with the finite element simulation values, and the target value errors were found to be about 1.43% and 0.14%, respectively, which confirms the effectiveness of the method.
- (3)
- The optimal solution of the Pareto front was selected by the minimizing difference method for the first time. Finally, when the height of mass block was 10.6 mm, the thickness of the piezoelectric plate was 3.29 mm, the height of the piezoelectric plate was 8.1 mm and the height of the center column was 19 mm, the optimized resonance frequency and voltage increased by 4.14% and 9.11%, respectively.
- (4)
- Through calibration experiments and microseismic signal tests, the designed sensor meets the requirements of the deformation monitoring of geotechnical bodies in mining hollow areas.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dou, L.M.; Tian, X.Y.; Cao, A.Y.; Gong, S.Y.; He, H.; He, J.; Cai, W.; Li, X.W. Present situation and problems of coal mine rock burst prevention and control in China. J. China Coal Soc. 2022, 47, 152–171. [Google Scholar]
- Zhang, Y.; Yang, W.; Han, D.S.; Kim, Y. An Integrated Environment Monitoring System for Underground Coal Mines-Wireless Sensor Network Subsystem with Multi-Parameter Monitoring. Sensors 2014, 14, 13149–13170. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.X.; Jiang, S.D.; Wang, C.; Ni, J.S.; Zhao, Q.C. Broadband and High Sensitivity FBG Accelerometer Based on Double Diaphragms and H-Shaped Hinges. IEEE Sens. J. 2021, 21, 353–359. [Google Scholar] [CrossRef]
- Zhang, J.H.; Qiao, X.G.; Hu, M.L.; Feng, Z.Y.; Gao, H.; Yang, Y.; Zhou, R. Flextensional Fiber Bragg Grating-Based Accelerometer for Low Frequency Vibration Measurement. Chin. Opt. Lett. 2011, 9, 090607. [Google Scholar] [CrossRef]
- Wang, S.; Wei, X.; Zhao, Y.; Jiang, Z.; Shen, Y. A MEMS Resonant Accelerometer for Low-Frequency Vibration Detection. Sens. Actuators A Phys. 2018, 283, 151–158. [Google Scholar] [CrossRef]
- Shi, Y.; Jiang, S.; Liu, Y.; Wang, Y.; Qi, P. Design and Optimization of a Triangular Shear Piezoelectric Acceleration Sensor for Microseismic Monitoring. Geofluids 2022, 2022, 3964502. [Google Scholar] [CrossRef]
- Lei, Y.J.; Li, R.J.; Chen, R.X.; Zhang, L.S.; Hu, P.H.; Huang, Q.X.; Fan, K.C. A high-precision two-dimensional micro-accelerometer for low-frequency and micro-vibrations. Precis. Eng.-J. Int. Soc. Precis. Eng. Nanotechnol. 2021, 67, 419–427. [Google Scholar] [CrossRef]
- Ahmad, A.; Ibrahim, A.; Alhomoudi, F.N.; Mourad, N.E. In-Plane High-Sensitivity Capacitive Accelerometer in a 3-D CMOS-Compatible Surface Micromachining Process. J. Microelectromech. Syst. 2019, 28, 14–24. [Google Scholar]
- Wang, G.Z.; Li, Y.J.; Cui, H.Y.; Yang, X.; Yang, C.; Chen, N.J. Acceleration self-compensation mechanism and experimental research on shock wave piezoelectric pressure sensor. Mech. Syst. Signal Process. 2021, 150, 107303. [Google Scholar] [CrossRef]
- Kavitha, S.; Joseph Daniel, R.; Sumangala, K. High performance MEMS accelerometers for concrete SHM applications and comparison with COTS accelerometers. Mech. Syst. Signal Process. 2016, 66, 410–424. [Google Scholar] [CrossRef]
- Liu, X.; Wang, S.D.; Jiang, Z.D.; Wei, X.Y. Programmable Synchronization Enhanced MEMS Resonant Accelerometer. Microsyst. Nanoeng. 2020, 6, 63. [Google Scholar]
- Ai, C.P.; Zhao, X.F.; Li, S.; Li, Y.; Bai, Y.N.; Wen, D.Z. Fabrication and Characteristic of a Double Piezoelectric Layer Acceleration Sensor Based on Li-Doped ZnO Thin Film. Micromachines 2019, 10, 331. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.L.; Huang, K.; Yang, J.P.; Cao, L.Q.; Cheng, L.; Wang, Q.; Tian, H.B.; Wang, Y.P.H.; Heng, L. A Proposal to Enhance High-Frequency Optical MEMS Accelerometer Sensitivity Based on a One-Dimensional Photonic Crystal Wavelength Modulation System. IEEE Sens. J. 2020, 20, 14639–14645. [Google Scholar] [CrossRef]
- Ma, D.; Liu, X.K.; Zhang, M.; Zhang, N.; Chen, L.; Liu, X.D. Wide-Band Vertical Superconducting Accelerometer for Simultaneous Observations of Temporal Gravity and Ambient Seismic Noise. Phys. Rev. Appl. 2019, 12, 044050. [Google Scholar] [CrossRef]
- Xiong, X.Y.; Zou, X.D.; Wang, Z.; Wang, K.F.; Li, Z.T.; Yang, W.H. Sensitivity enhancement of mems resonant accelerometers by using electrostatic spring. In Proceedings of the 2020 IEEE International Symposium on Inertial Sensors and Systems, Hiroshima, Japan, 23–26 March 2020. [Google Scholar]
- Wei, H.; Geng, W.; Bi, K.; Li, T.; Li, X.; Qiao, X.; Shi, Y.; Zhang, H.; Zhao, C.; Xue, G. High-Performance Piezoelectric-Type MEMS Vibration Sensor Based on LiNbO3 Single-Crystal Cantilever Beams. Micromachines 2022, 13, 329. [Google Scholar] [CrossRef]
- Mohd, A.M.Y.; Mohd, T.M.K.; Sallehuddin, I. Narrow Band Vibration Measurement System with Electrodynamic Transducer Seismograph and Modeling Verification. IEEE Sens. J. 2020, 20, 4768–4777. [Google Scholar]
- Lee, M.K.; Han, S.H.; Park, K.H.; Park, J.J.; Kim, W.W.; Hwang, W.W.; Lee, G.J. Design Optimization of Bulk Piezoelectric Acceleration Sensor for Enhanced Performance. Sensors 2019, 19, 3360. [Google Scholar] [CrossRef]
- Dong, Z.P.; Yang, M. Optimal design of a double-vibrator ultrasonic motor using combination method of finite element method, sensitivity analysis and adaptive genetic algorithm. Sens. Actuators A Phys. 2017, 266, 1–8. [Google Scholar] [CrossRef]
- Liu, C.; Fang, Z.D. Response Surface Method for Complex Mechanical Assembly. J. Xi’an Jiaotong Univ. 2018, 52, 28–36. [Google Scholar]
- Jia, B.X.; Zheng, K.N.; Zhou, L.L. Energy attenuation patterns of microseismic signals in the “three zones” of goaf based on variational mode decomposition. Rock Soil Mech. 2024, 45, 991–1002. [Google Scholar] [CrossRef]
- Ertürk, A.; Inman, D.J. Issues in Mathematical Modeling of Piezoelectric Energy Harvesters. Smart Mater. Struct. 2008, 17, 065016. [Google Scholar] [CrossRef]
- Zhu, D.B.; Wang, N.; Huang, M. The Analysis of the Frequency Response Characteristics of the Piezoelectricity Acceleration Geophone Applied to Seismic Exploration. J. Railw. Sci. Eng. 2011, 8, 113–118. [Google Scholar]
- Chen, Y.; Wang, X.S.; Li, Y.X.; Yao, X. The low frequency relaxor properties of ferroelectric PZT-4 studied by DMA. J. Mater. Sci. Mater. Electron. 2019, 30, 7695–7703. [Google Scholar] [CrossRef]
- Noh, M.S.; Kim, S.; Hwang, D.K.; Kang, C.Y. Self-powered flexible touch sensors based on PZT thin films using laser lift-off. Sens. Actuators A Phys. 2017, 261, 288–294. [Google Scholar] [CrossRef]
- Arash, S.; Kambiz, A.; Kian, J. A Proposal for an Optical MEMS Accelerometer Relied on Wavelength Modulation with One Dimensional Photonic Crystal. J. Light. Technol. 2016, 34, 5244–5249. [Google Scholar]
- Kollias, A.T.; Avaritsiotis, J.N. A study on the performance of bending mode piezoelectric accelerometers. Sens. Actuators A Phys. 2005, 121, 434–442. [Google Scholar] [CrossRef]
- Pan, L.; Chen, W.; Zhou, Y.; Cui, R. Parameter Optimization of Laser-Induced Breakdown Spectroscopy Experimental Device Based on Response Surface Methodology. J. Zhongguo Jiguang/Chin. J. Lasers 2020, 47. [Google Scholar]
- Wei, J.; Ren, J.; Zhou, Z.; Xie, Y. Research on Structural Parameter Optimization and Springback Compensation Methods of a Steel Bar Hoop Bending Machine. Appl. Sci. 2023, 13, 9721. [Google Scholar] [CrossRef]
- Bian, K.; Zhao, Y.; Zheng, X. Optimization Design of Foundation Pit Engineering Above Subway Tunnel Based on NSGA2 Genetic Algorithm. J. Railw. Sci. Eng. 2021, 18, 459–467. [Google Scholar]
Dimension Name | Design Parameter | Initial Value (mm) | Size Range (mm) |
---|---|---|---|
Outside diameter of base inner cut circle | P1 | 31 | 30–32 |
Height of shell | P2 | 15 | 14–15 |
Height of mass block | P3 | 11 | 10.5–11.5 |
Thickness of insulating plate | P4 | 1.5 | 1.4–4.6 |
Thickness of piezoelectric plate | P5 | 2.9 | 2.5–3.3 |
Height of piezoelectric plate | P6 | 8 | 7–9 |
Thickness of conductive plate | P7 | 0.3 | 0.2–0.4 |
Height of conductive plate | P8 | 9 | 8–9 |
Height of foundation | P9 | 9 | 8–10 |
Height of the central column | P10 | 20 | 19–21 |
Performance Parameter | Material | ||||
---|---|---|---|---|---|
Quartz | BaTiO3 | PZT-4 | PZT-5H | PZT-8 | |
Piezoelectric constant (pC/N) | = 2.31 | = 260 | = 410 | = 741 | = 410 |
Relative dielectric constant | 4.52 | 1200 | 1050 | 1700 | 1000 |
Density (kg/m3) | 2650 | 5500 | 7450 | 7500 | 7600 |
Modulus of elasticity (GPa) | 80 | 110 | 83 | 117 | 123 |
Curie point (°C) | 550 | 80 | 328 | 193 | 300 |
Component | Materials | Young’s Modulus (Pa) | Density (kg/m3) | Poisson’s Ratio |
---|---|---|---|---|
Base | stainless steel | 2 × 1011 | 7860 | 0.3 |
Shell | stainless steel | 2 × 1011 | 7860 | 0.3 |
Conductive plate | copper alloy | 1.1 × 1011 | 8300 | 0.34 |
Insulating plate | alumina ceramic | 3 × 1011 | 3600 | 0.23 |
Mass block | tungsten alloy | 3.4 × 1011 | 17,500 | 0.27 |
Fastener | stainless steel | 2 × 1011 | 7860 | 0.3 |
Socket core | polyethylene | 1.1 × 109 | 950 | 0.42 |
Level Factors | P3 (mm) | P5 (mm) | P6 (mm) | P10 (mm) |
---|---|---|---|---|
1 | 10.5 | 2.5 | 7 | 19 |
2 | 11 | 2.9 | 8 | 20 |
3 | 11.5 | 3.3 | 9 | 21 |
Serial Number | P3 (mm) | P5 (mm) | P6 (mm) | P10 (mm) | Resonant Frequency (Hz) | Voltage (mv) |
---|---|---|---|---|---|---|
1 | 10.5 | 2.5 | 7 | 19 | 6606.1 | 148.22 |
2 | 10.5 | 2.9 | 8 | 20 | 6341.5 | 152.48 |
3 | 10.5 | 2.9 | 9 | 21 | 6080.5 | 136.45 |
4 | 10.5 | 3.3 | 8 | 20 | 6144.7 | 174.81 |
5 | 10.5 | 3.3 | 9 | 21 | 5957.9 | 156.57 |
6 | 11 | 2.5 | 8 | 21 | 5976.8 | 136.29 |
7 | 11 | 2.5 | 9 | 20 | 6464.1 | 121.83 |
8 | 11 | 2.9 | 8 | 19 | 6522.9 | 159.23 |
9 | 11 | 2.9 | 9 | 19 | 6538 | 142.46 |
10 | 11 | 3.3 | 7 | 20 | 5643 | 207.04 |
11 | 11 | 3.3 | 7 | 21 | 5369.2 | 207.04 |
12 | 11.5 | 2.5 | 8 | 21 | 5849.8 | 142.11 |
13 | 11.5 | 2.5 | 9 | 20 | 6252.9 | 127.01 |
14 | 11.5 | 2.9 | 7 | 20 | 5789.9 | 188.52 |
15 | 11.5 | 2.9 | 7 | 21 | 5487.7 | 188.52 |
16 | 11.5 | 3.3 | 8 | 19 | 6184.7 | 190.19 |
17 | 11.5 | 3.3 | 9 | 19 | 6206.5 | 170.24 |
Projects | Level | P3 | P5 | P6 | P10 | ||||
---|---|---|---|---|---|---|---|---|---|
Resonant Frequency (Hz) | Voltage (mv) | Resonant Frequency (Hz) | Voltage (mv) | Resonant Frequency (Hz) | Voltage (mv) | Resonant Frequency (Hz) | Voltage (mv) | ||
K | 1 | 31,130.7 | 768.53 | 31,149.7 | 675.46 | 28,895.9 | 939.34 | 32,058.2 | 810.34 |
2 | 36,514 | 973.89 | 36,760.5 | 967.66 | 37,020.4 | 955.11 | 36,636.1 | 971.69 | |
3 | 35,771.5 | 1006.59 | 35,506 | 1105.89 | 37,499.9 | 854.56 | 34,721.9 | 966.98 | |
K avg | 1 | 6226.14 | 153.71 | 6229.94 | 135.09 | 5779.18 | 187.87 | 6411.64 | 162.07 |
2 | 6085.67 | 162.31 | 6126.75 | 161.28 | 6170.07 | 159.18 | 6106.02 | 161.95 | |
3 | 5961.92 | 167.76 | 5917.67 | 184.31 | 6249.98 | 142.43 | 5786.98 | 161.16 | |
R | 264.22 | 14.06 | 312.27 | 49.22 | 470.8 | 45.44 | 624.66 | 0.9 | |
Number of levels | 3 | 3 | 3 | 3 | |||||
Number of repeats | 5 | 5 | 5 | 5 |
Ordinal Number | Optimization Variables | Objectives | Target Difference | ||||
---|---|---|---|---|---|---|---|
P3 (mm) | P5 (mm) | P6 (mm) | P10 (mm) | Resonant Frequency (Hz) | Voltage (mv) | ||
1 | 10.6 | 3.29 | 8.1 | 19 | 6369.5 | 173.49 | 0.005173 |
2 | 10.5 | 3.29 | 8 | 19 | 6366.89 | 173.91 | 0.016887 |
3 | 10.5 | 3.28 | 8 | 19 | 6374.52 | 173.36 | 0.023479 |
4 | 10.6 | 3.3 | 8.1 | 19 | 6362.27 | 174.05 | 0.033467 |
5 | 10.6 | 3.28 | 8.1 | 19 | 6376.73 | 172.94 | 0.044978 |
6 | 10.5 | 3.3 | 8 | 19 | 6359.27 | 174.48 | 0.0572554 |
7 | 10.5 | 3.27 | 8 | 19 | 6382.18 | 172.8 | 0.065572 |
8 | 10.5 | 3.23 | 7.9 | 19 | 6382.2 | 172.65 | 0.070623 |
9 | 10.7 | 3.28 | 8.1 | 19 | 6352.8 | 174.56 | 0.079058 |
10 | 10.5 | 3.3 | 8.1 | 19 | 6386.9 | 172.39 | 0.09398 |
Program Category | P3 (mm) | P5 (mm) | P6 (mm) | P10 (mm) | Resonant Frequency (Hz) | Voltage (mv) |
---|---|---|---|---|---|---|
Initial program | 11 | 2.9 | 8 | 20 | 6203.4 | 159.23 |
Optimal program | 10.6 | 3.29 | 8.1 | 19 | 6460.3 | 173.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Dai, J. Optimized Design of a Triangular Shear Piezoelectric Sensor Using Non-Dominated Sorting Genetic Algorithm-II(NSGA-II). Sensors 2025, 25, 803. https://doi.org/10.3390/s25030803
Shi Y, Dai J. Optimized Design of a Triangular Shear Piezoelectric Sensor Using Non-Dominated Sorting Genetic Algorithm-II(NSGA-II). Sensors. 2025; 25(3):803. https://doi.org/10.3390/s25030803
Chicago/Turabian StyleShi, Yannan, and Jikun Dai. 2025. "Optimized Design of a Triangular Shear Piezoelectric Sensor Using Non-Dominated Sorting Genetic Algorithm-II(NSGA-II)" Sensors 25, no. 3: 803. https://doi.org/10.3390/s25030803
APA StyleShi, Y., & Dai, J. (2025). Optimized Design of a Triangular Shear Piezoelectric Sensor Using Non-Dominated Sorting Genetic Algorithm-II(NSGA-II). Sensors, 25(3), 803. https://doi.org/10.3390/s25030803