EEG Signal Processing Techniques and Applications—2nd Edition
1. Introduction
- Brain–computer interfaces (Papers 1, 7, 11, and 16)
- Brain and neurological disorder detection and diagnosis (Papers 2, 3, 9, 12, 14, and 17)
- Cognitive and psychology studies (Papers 4, 10 and 15)
- Healthcare including mental health, pain identification, and depression diagnosis (Papers 5, 8, and 13)
- Brain functional connectivity (Paper 6)
- EEG artifact reduction and removal (Paper 18)
2. Overview of Contributions
2.1. EEG-Based Brain–Computer Interface
2.2. Brain and Neurological Disorder Detection and Diagnosis
2.3. EEG for Cognitive and Psychology Studies
2.4. Healthcare—Mental Health, Pain Identification, and Depression Diagnosis
2.5. Brain Functional Connectivity
2.6. EEG Artifact Reduction and Removal
Author Contributions
Conflicts of Interest
List of Contributions
- Mwata-Velu, T.; Niyonsaba-Sebigunda, E.; Avina-Cervantes, J.G.; Ruiz-Pinales, J.; Velu-A-Gulenga, N.; Alonso-Ramírez, A.A. Motor imagery multi-tasks classification for BCIs using the NVIDIA Jetson TX2 Board and the EEGNet network. Sensors 2023, 23, 4164. https://doi.org/10.3390/s23084164.
- Jurdana, V.; Vrankic, M.; Lopac, N.; Jadav, G.M. Method for automatic estimation of instantaneous frequency and group delay in time–frequency distributions with application in EEG seizure signals analysis. Sensors 2023, 23, 4680. https://doi.org/10.3390/s23104680.
- Vitório, R.; Lirani-Silva, E.; Orcioli-Silva, D.; Beretta, V.S.; Oliveira, A.S.; Gobbi, L.T.B. Electrocortical dynamics of usual walking and the planning to step over obstacles in Parkinson’s Disease. Sensors 2023, 23, 4866. https://doi.org/10.3390/s23104866.
- Wang, Q.; Smythe, D.; Cao, J.; Hu, Z.; Proctor, K.J.; Owens, A.P.; Zhao, Y. Characterisation of cognitive load using machine earning classifiers of electroencephalogram data. Sensors 2023, 23, 8528. https://doi.org/10.3390/s23208528.
- Xu, Y.; Zhong, H.; Ying, S.; Liu, W.; Chen, G.; Luo, X.; Li, G. Depressive disorder recognition based on frontal EEG signals and deep learning. Sensors 2023, 23, 8639. https://doi.org/10.3390/s23208639.
- Siviero, I.; Bonfanti, D.; Menegaz, G.; Savazzi, S.; Mazzi, C.; Storti, S.F. Graph analysis of TMS–EEG connectivity reveals hemispheric differences following occipital stimulation. Sensors 2023, 23, 8833. https://doi.org/10.3390/s23218833.
- Farabbi, A.; Mainardi, L. Domain-specific processing stage for estimating single-trail Evoked potential improves CNN performance in detecting error potential. Sensors 2023, 23, 9049. https://doi.org/10.3390/s23229049.
- Alreshidi, I.; Bisandu, D.; Moulitsas, I. Illuminating the neural landscape of pilot mental states: a convolutional neural network approach with Shapley additive explanations interpretability. Sensors 2023, 23, 9052. https://doi.org/10.3390/s23229052.
- Vieira, J.C.; Guedes, L.A.; Santos, M.R.; Sanchez-Gendriz, I. Using explainable artificial intelligence to obtain efficient seizure-detection models based on electroencephalography signals. Sensors 2023, 23, 9871. https://doi.org/10.3390/s23249871.
- Phukhachee, T.; Maneewongvatana, S.; Chaiyanan, C.; Iramina, K.; Kaewkamnerdpong, B. Identifying the effect of cognitive motivation with the method based on temporal association rule mining concept. Sensors 2024, 24, 2857. https://doi.org/10.3390/s24092857.
- Khabti, J.; AlAhmadi, S.; Soudani, A. Optimal channel selection of multiclass motor imagery classification based on fusion convolutional neural network with attention blocks. Sensors 2024, 24, 3168. https://doi.org/10.3390/s24103168.
- Wang, B; Xu, Y.; Peng, S.; Wang, H.; Li, F. Detection method of epileptic seizures using a neural network model based on multimodal dual-stream networks. Sensors 2024, 24, 3360. https://doi.org/10.3390/s24113360.
- Segning, C.M.; da Silva, R.A.; Ngomo, S. An innovative EEG-based pain identification and quantification: A pilot study. Sensors 2024, 24, 3873. https://doi.org/10.3390/s24123873.
- Zhou, S.; Zhang, P.; Chen, H. Latent prototype-based clustering: a novel exploratory electroencephalography analysis approach. Sensors 2024, 24, 4920. https://doi.org/10.3390/s24154920.
- Ji, L.; Yi, L.; Li, H.; Han, W.; Zhang, N. Detection of pilots’ psychological workload during turning phases using EEG characteristics. Sensors 2024, 24, 5176. https://doi.org/10.3390/s24165176.
- Dillen, A.; Omidi, M.; Ghaffari, F.; Romain, O.; Vanderborght, B.; Roelands, B.; Nowé, A.; De Pauw, K. User evaluation of a shared robot control system combining BCI and eye tracking in a portable augmented reality user interface. Sensors 2024, 24, 5253. https://doi.org/10.3390/s24165253.
- Aziz, S.; Khan, M.U.; Iqtidar, K.; Fernandez-Rojas, R. Diagnosis of Schizophrenia using EEG sensor data: a novel approach with automated log energy-based empirical wavelet reconstruction and cepstral features. Sensors 2024, 24, 6508. https://doi.org/10.3390/s24206508.
- Hazarika, D.; Vishnu, K.N.; Ransing, R.; Gupta, C.N. Dynamical embedding of single-channel electroencephalogram for artifact subspace reconstruction. Sensors 2024, 24, 6734. https://doi.org/10.3390/s24206734.
References
- Sanei, S.; Chambers, J.A. EEG Signal Processing and Machine Learning; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Hosseini, M.P.; Hosseini, A.; Ahi, K. A Review on machine learning for EEG signal processing in bioengineering. IEEE Rev. Biomed. Eng. 2020, 14, 204–218. [Google Scholar] [CrossRef]
- Gu, Y.; Yang, Y.; Dewald, J.P.A.; van der Helm, F.C.T.; Schouten, A.C.; Wei, H.-L. Nonlinear modeling of cortical responses to mechanical wrist perturbations using the NARMAX method. IEEE Trans. Biomed. Eng. 2021, 68, 948–958. [Google Scholar] [CrossRef]
- Cao, J.; Zhao, Y.; Shan, X.; Wei, H.; Guo, Y.; Chen, L.; Erkoyuncu, J.A.; Sarrigiannis, P.G. Brain functional and effective connectivity based on electroencephalography recordings: A review. Hum. Brain Mapp. 2022, 43, 860–879. [Google Scholar] [CrossRef] [PubMed]
- Ienca, M.; Ignatiadis, K. Artificial Intelligence in Clinical Neuroscience: Methodological and Ethical Challenges. Neuroscience 2020, 11, 77–87. [Google Scholar] [CrossRef]
- Tveit, J.; Aurlien, H.; Plis, S.; Calhoun, V.D.; Tatum, W.O.; Schomer, D.L.; Arntsen, V.; Cox, F.; Fahoum, F.; Gallentine, W.B.; et al. Automated Interpretation of Clinical Electroencephalograms Using Artificial Intelligence. JAMA Neurol. 2023, 80, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hersche, M.; Magno, M.; Benini, L. Mi-bminet: An efficient convolutional neural network for motor imagery brain–machine interfaces with eeg channel selection. IEEE Sens. J. 2024, 24, 8835–8847. [Google Scholar] [CrossRef]
- Gong, X.; Li, X. Human–robot interactive communication and cognitive psychology intelligent decision system based on artificial intelligence—Case study. Int. J. Humanoid Robot. 2023, 20, 2240005. [Google Scholar] [CrossRef]
- Chignell, M.; Wang, L.; Zare, A.; Li, J. The evolution of HCI and human factors: Integrating human and artificial intelligence. ACM Trans. Comput.-Hum. Interact. 2023, 30, 1–30. [Google Scholar] [CrossRef]
- Bolotta, S.; Dumas, G. Social neuro AI: Social interaction as the “dark matter” of AI. Front. Comput. Sci. 2022, 4, 846440. [Google Scholar] [CrossRef]
- Ein Shoka, A.A.; Dessouky, M.M.; El-Sayed, A.; Hemdan, E.E.D. EEG seizure detection: Concepts, techniques, challenges, and future trends. Multimed. Tools Appl. 2023, 82, 42021–42051. [Google Scholar] [CrossRef]
- Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A.; Yger, F. A review of classification algorithms for EEG-based brain–computer interfaces: A 10 year update. J. Neural Eng. 2018, 15, 031005. [Google Scholar] [CrossRef]
- Acharya, U.R.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adeli, H. Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput. Biol. Med. 2018, 100, 270–278. [Google Scholar] [CrossRef]
- Allen, J.J.B.; Keune, P.M.; Schönenberg, M.; Nusslock, R. Frontal EEG alpha asymmetry and emotion: From neural underpinnings and methodological considerations to psychopathology and social cognition. Psychophysiology 2018, 55, e13028. [Google Scholar] [CrossRef] [PubMed]
- Babayan, A.; Erbey, M.; Kumral, D.; Reinelt, J.D.; Reiter, A.M.; Röbbig, J.; Schaare, H.L.; Uhlig, M.; Anwander, A.; Bazin, P.L.; et al. A mind-brain-body dataset of MRI, EEG, cognition, emotion, and peripheral physiology in young and old adults. Sci. Data 2019, 6, 180308. [Google Scholar] [CrossRef] [PubMed]
- Markovska-Simoska, S.; Pop-Jordanova, N. Quantitative EEG in Children and Adults with Attention Deficit Hyperactivity Disorder: Comparison of Absolute and Relative Power Spectra and Theta/Beta Ratio. Clin. EEG Neurosci. 2017, 48, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Garcés, P.; Pereda, E.; Hernández-Tamames, J.A.; Del-Pozo, F.; Maestú, F.; Pineda-Pardo, J. Ángel Multimodal description of whole brain connectivity: A comparison of resting state MEG, fMRI, and DWI. Hum. Brain Mapp. 2015, 37, 20–34. [Google Scholar] [CrossRef]
- Badrakalimuthu, V.R.; Swamiraju, R.; de Waa, H. Is EEG a useful test in adult psychiatry? Adv. Psychiatr. Treat. 2011, 17, 114–121. [Google Scholar] [CrossRef]
- Sand, T.; Bjørk, M.H.; Vaaler, A.E. Is EEG a useful test in adult psychiatry? Tidsskr. Nor. Legeforen. 2013, 133, 1200–1204. [Google Scholar] [CrossRef]
- Prichep, L.S.; Shah, J.; Merkin, H.; Hiesiger, E.M. Exploration of the pathophysiology of chronic pain using quantitative EEG source localization. Clin. EEG Neurosci. 2018, 49, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Wen, Z.; Ok, D.; Doan, L.; Wang, J.; Chen, Z. Detecting acute pain signals from human EEG. J. Neurosci. Methods 2021, 347, 108964. [Google Scholar] [CrossRef] [PubMed]
- Steiger, A.; Kimura, M. Wake and sleep EEG provide biomarkers in depression. J. Psychiatry Res. 2010, 44, 242–252. [Google Scholar] [CrossRef]
- Khosla, A.; Khandnor, P.; Chand, T. Automated diagnosis of depression from EEG signals using traditional and deep-learning approaches: A comparative analysis. Biocybern. Biomed. Eng. 2022, 42, 108–142. [Google Scholar] [CrossRef]
- Lang, E.W.; Tomé, A.M.; Keck, I.R.; Górriz-Sáez, J.M.; Puntonet, C.G. Brain connectivity analysis: A short survey. Comput. Intell. Neurosci. 2012, 2012, 12512. [Google Scholar] [CrossRef] [PubMed]
- Urigüen, J.A.; Garciazapirain, B. EEG artifact removal—State-of-the-art and guidelines. J. Neural Eng. 2015, 12, 031001. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.K.; Rastegarnia, A.; Yang, Z. Methods for Artifact Detection and Removal from Scalp EEG: A Review. Clin. Neurophysiol. 2016, 46, 287–385. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, H.-L.; Guo, Y.; He, F.; Zhao, Y. EEG Signal Processing Techniques and Applications—2nd Edition. Sensors 2025, 25, 805. https://doi.org/10.3390/s25030805
Wei H-L, Guo Y, He F, Zhao Y. EEG Signal Processing Techniques and Applications—2nd Edition. Sensors. 2025; 25(3):805. https://doi.org/10.3390/s25030805
Chicago/Turabian StyleWei, Hua-Liang, Yuzhu Guo, Fei He, and Yifan Zhao. 2025. "EEG Signal Processing Techniques and Applications—2nd Edition" Sensors 25, no. 3: 805. https://doi.org/10.3390/s25030805
APA StyleWei, H.-L., Guo, Y., He, F., & Zhao, Y. (2025). EEG Signal Processing Techniques and Applications—2nd Edition. Sensors, 25(3), 805. https://doi.org/10.3390/s25030805