Infrared Small Target Detection Algorithm Based on Improved Dense Nested U-Net Network
Abstract
:1. Introduction
- Based on the encoder and decoder architecture of U-Net, we proposed an improved densely nested and attention infrared dim small target detection network architecture. By introducing a densely nested interactive network as the backbone network, we integrated a channel attention mechanism to enhance feature representation by adaptively weighting different channels during infrared dim small target feature extraction.
- Through the architectural design of multi-scale heads and bottom-up feature pyramid feature fusion, we can deepen the focus on target features layer by layer. This structural innovation substantially augments the network’s capacity for detecting subtle features and effectively distinguishing infrared targets against cluttered backgrounds.
- A novel and effective scale-sensitive and position-sensitive loss function is adopted, which helps the detector to distinguish objects of different scales and positions, thereby further improving the detection performance.
2. Related Work
3. Methodology
3.1. The Overall Structure
3.2. Feature Extraction Network
3.3. The Feature Fusion Module of Multi-Scale Heads
3.4. Bottom-Up Feature Pyramid Fusion Module (BFPFM)
3.5. SLS Loss Function
4. Experiment
4.1. Experimental Data and Experimental Settings
4.2. Performance Evaluation
4.3. Performance Comparison with Previous Methods
4.4. Ablation Experiments
4.5. Comparison of SLS Loss Function Performance
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Cong, M.; Wang, L. Algorithms for optical weak small targets detection and tracking. In Proceedings of the International Conference on Neural Networks and Signal Processing, Nanjing, China, 14–17 December 2003; IEEE: Piscataway, NJ, USA, 2003; Volume 1, pp. 643–647. [Google Scholar]
- Deshpande, S.D.; Er, M.H.; Venkateswarlu, R.; Chan, P. Max-mean and max-median filters for detection of small targets. In Proceedings of the Signal and Data Processing of Small Targets, Bellingham, WA, USA, 4 October 1999; SPIE: Bellingham, WA, USA, 1999; Volume 3809, pp. 74–83. [Google Scholar]
- Bae, T.W.; Zhang, F.; Kweon, I.S. Edge directional 2D LMS filter for infrared small target detection. Infrared Phys. Technol. 2012, 55, 137–145. [Google Scholar] [CrossRef]
- Chen, C.P.; Li, H.; Wei, Y.; Xia, T.; Tang, Y.Y. A local contrast method for small infrared target detection. IEEE Trans. Geosci. Remote Sens. 2013, 52, 574–581. [Google Scholar] [CrossRef]
- Gao, C.; Meng, D.; Yang, Y.; Wang, Y.; Zhou, X.; Hauptmann, A.G. Infrared patch-image model for small target detection in a single image. IEEE Trans. Image Process. 2013, 22, 4996–5009. [Google Scholar] [CrossRef]
- Dai, Y.; Wu, Y. Reweighted infrared patch-tensor model with both nonlocal and local priors for single-frame small target detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3752–3767. [Google Scholar] [CrossRef]
- Dai, Y.; Wu, Y.; Zhou, F.; Barnard, K. Attentional local contrast networks for infrared small target detection. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9813–9824. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, L.; Wang, L. Miss detection vs. false alarm: Adversarial learning for small object segmentation in infrared images. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; IEEE/CVF: Piscataway, NJ, USA, 2019; pp. 8509–8518. [Google Scholar]
- Li, B.; Xiao, C.; Wang, L.; Wang, Y.; Lin, Z.; Li, M.; An, W.; Guo, Y. Dense nested attention network for infrared small target detection. IEEE Trans. Image Process. 2022, 32, 1745–1758. [Google Scholar] [CrossRef]
- Wu, X.; Hong, D.; Chanussot, J. UIU-Net: U-Net in U-Net for infrared small object detection. IEEE Trans. Image Process. 2022, 32, 364–376. [Google Scholar] [CrossRef]
- Rivest, J.F.; Fortin, R. Detection of dim targets in digital infrared imagery by morphological image processing. Opt. Eng. 1996, 35, 1886–1893. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, Z. Infrared small target detection based on partial sum of the tensor nuclear norm. Remote Sens. 2019, 11, 382. [Google Scholar] [CrossRef]
- Dai, Y.; Wu, Y.; Zhou, F.; Barnard, K. Asymmetric Contextual Modulation for Infrared Small Target Detection. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2021; IEEE/CVF: Piscataway, NJ, USA, 2021; pp. 949–958. [Google Scholar] [CrossRef]
- Zhang, T.; Li, L.; Cao, S.; Pu, T.; Peng, Z. Attention-guided pyramid context networks for detecting infrared small target under complex background. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 4250–4261. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, C.; Fu, Q.; Han, Z. A Novel Pattern for Infrared Small Target Detection With Generative Adversarial Network. IEEE Trans. Geosci. Remote Sens. 2020, 59, 9102–9113. [Google Scholar] [CrossRef]
- Zhou, H.; Tian, C.; Zhang, Z.; Li, C.; Xie, Y.; Li, Z. PixelGame: Infrared small target segmentation as a Nash equilibrium. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 6255–6266. [Google Scholar] [CrossRef]
- He, X.; Ling, Q.; Zhang, Y.; Lin, Z.; Zhou, S. Detecting dim small target in infrared images via subpixel sampling cuneate network. IEEE GEoscience Remote Sens. Lett. 2022, 19, 6513005. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Zunair, H.; Hamza, A.B. Sharp U-Net: Depthwise convolutional network for biomedical image segmentation. Comput. Biol. Med. 2021, 136, 104699. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU loss: Faster and better learning for bounding box regression. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 12993–13000. [Google Scholar]
- Huang, Y.; Tang, Z.; Chen, D.; Su, K.; Chen, C. Batching soft IoU for training semantic segmentation networks. IEEE Signal Process. Lett. 2019, 27, 66–70. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 770–778. [Google Scholar]
- Zhang, Y.; Wang, X.; Li, Y. Shallow U-Net for Efficient Small Object Segmentation in Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2021, 18, 650–654. [Google Scholar]
- Smith, A.; Johnson, B. Optimizing U-Net Architectures for High-Resolution Small Object Detection. Int. J. Comput. Vis. 2022, 130, 350–366. [Google Scholar]
- Lee, H.; Kim, S.; Park, J. Lightweight U-Net Variants for Real-Time Small Object Detection. Pattern Recognit. Lett. 2020, 138, 45–52. [Google Scholar] [CrossRef]
- Duchi, J.C.; Hazan, E.; Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 2011, 12, 2121–2159. [Google Scholar]
- Hui, B.; Song, Z.; Fan, H.; Zhong, P.; Hu, W.; Zhang, X.; Lin, J.; Su, H.; Jin, W.; Zhang, Y.; et al. A dataset for infrared image dim-small aircraft target detection and tracking under ground/air background. Sci. Data Bank 2019, 5, 4. [Google Scholar]
- Zhang, T.; Li, L.; Zhang, Z.; Peng, Z. ISNet: Shape Matters for Infrared Small Target Detection. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9221–9233. [Google Scholar]
- Li, L.; Zhang, T.; Pu, T.; Peng, Z. Ristdnet: Robust infrared small target detection network. IEEE Trans. Geosci. Remote Sens. 2021, 59, 7738–7750. [Google Scholar]
- Han, J.; Moradi, S.; Faramarzi, I.; Liu, C.; Zhang, H.; Zhao, Q. Effective infrared small target detection utilizing a novel local contrast method. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1822–1826. [Google Scholar] [CrossRef]
Model | NUDT-SIRST | ISTD-1k | #Params (M) | Latency (ms) | ||||
---|---|---|---|---|---|---|---|---|
IoU↑ | Pd↑ | Fa↓ | IoU↑ | Pd↑ | Fa↓ | |||
Top-hat | 22.34 | 70.54 | 95.37 | 12.56 | 68.94 | 188.78 | - | - |
IPI | 18.67 | 67.87 | 45.78 | 26.01 | 70.39 | 36.69 | - | - |
MD&FA | 52.84 | 82.34 | 50.55 | 52.88 | 86.9 | 31.32 | 3.13 | 9.66 |
ALCNet | 78.45 | 96.34 | 35.99 | 48.02 | 93.3 | 29.87 | 1.5 | 6.63 |
DNANet | 82.17 | 98.93 | 23.65 | 63.01 | 97.7 | 9.717 | 4.69 | 24.05 |
MSHNet | 81.07 | 98.25 | 25.81 | 64.51 | 97.8 | 12.37 | 4.05 | 9.06 |
Ours | 82.34 | 98.75 | 12.54 | 66.15 | 97.8 | 7.1 | 4.68 | 17.68 |
DNIM | BFPFM | IoU↑ | |||
---|---|---|---|---|---|
× | ✓ | ✓ | 63.50 | 97.70 | 62.78 |
✓ | × | ✓ | 80.84 | 98.02 | 23.48 |
✓ | ✓ | × | 82.27 | 98.01 | 25.87 |
✓ | ✓ | ✓ | 82.34 | 98.75 | 12.54 |
Loss Function | IDNA-UNet | DNANet | MSHNet | ||||||
---|---|---|---|---|---|---|---|---|---|
IoU↑ | IoU↑ | IoU↑ | |||||||
82.27 | 98.01 | 25.87 | 82.17 | 96.93 | 23.65 | 81.03 | 97.80 | 24.66 | |
82.34 | 98.75 | 12.54 | 80.75 | 97.31 | 41.13 | 81.07 | 98.25 | 25.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, X.; Cheng, K.; Zhang, J.; Wang, Y.; Yang, F.; Zhou, W.; Lin, Y. Infrared Small Target Detection Algorithm Based on Improved Dense Nested U-Net Network. Sensors 2025, 25, 814. https://doi.org/10.3390/s25030814
Du X, Cheng K, Zhang J, Wang Y, Yang F, Zhou W, Lin Y. Infrared Small Target Detection Algorithm Based on Improved Dense Nested U-Net Network. Sensors. 2025; 25(3):814. https://doi.org/10.3390/s25030814
Chicago/Turabian StyleDu, Xinyue, Ke Cheng, Jin Zhang, Yuanyu Wang, Fan Yang, Wei Zhou, and Yu Lin. 2025. "Infrared Small Target Detection Algorithm Based on Improved Dense Nested U-Net Network" Sensors 25, no. 3: 814. https://doi.org/10.3390/s25030814
APA StyleDu, X., Cheng, K., Zhang, J., Wang, Y., Yang, F., Zhou, W., & Lin, Y. (2025). Infrared Small Target Detection Algorithm Based on Improved Dense Nested U-Net Network. Sensors, 25(3), 814. https://doi.org/10.3390/s25030814