A Hybrid Deep Transfer Learning Framework for Delamination Identification in Composite Laminates
Abstract
:1. Introduction
2. Proposed Methodology and Theoretical Background
2.1. The Proposed Methodology
2.2. Theoretical Background of the Applied Algorithms
2.2.1. ResNet50V2 Model
2.2.2. EfficientNet Model
2.2.3. The Hybrid Efficient–ResNet Model
3. Validation of the Proposed Methodology
3.1. Data Acquisition
3.2. CWT Analysis
3.3. HTL Model Development and Performance Evaluation
3.4. Performance Assessment Metrics
4. Results and Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Azad, M.M.; Cheon, Y.; Raouf, I.; Khalid, S.; Kim, H.S. Intelligent Computational Methods for Damage Detection of Laminated Composite Structures for Mobility Applications: A Comprehensive Review. Arch. Comput. Methods Eng. 2024, 32, 441–469. [Google Scholar] [CrossRef]
- Chang, H.-S.; Huang, J.-H.; Tsai, J.-L. Predicting mechanical properties of unidirectional composites using machine learning. Multiscale Sci. Eng. 2022, 4, 202–210. [Google Scholar]
- Khalid, S.; Lee, J.; Kim, H.S. Series Solution-Based Approach for the Interlaminar Stress Analysis of Smart Composites under Thermo-Electro-Mechanical Loading. Mathematics 2022, 10, 268. [Google Scholar] [CrossRef]
- Tie, Y.; Zhang, Q.; Hou, Y.; Li, C. Impact damage assessment in orthotropic CFRP laminates using nonlinear Lamb wave: Experimental and numerical investigations. Compos. Struct. 2020, 236, 111869. [Google Scholar] [CrossRef]
- Khalid, S.; Kim, H.S. Recent Studies on Stress Function-Based Approaches for the Free Edge Stress Analysis of Smart Composite Laminates: A Brief Review. Multiscale Sci. Eng. 2022, 4, 73–78. [Google Scholar] [CrossRef]
- Chen, R.; Li, S.; Zhou, Y.; Qiu, X.; Li, P.; Zhang, H.; Wang, Z. Damage formation and evolution mechanisms in drilling CFRP with prefabricated delamination defects: Simulation and experimentation. J. Mater. Res. Technol. 2023, 26, 6994–7011. [Google Scholar] [CrossRef]
- Russo, A.; Palumbo, C.; Riccio, A. The role of intralaminar damages on the delamination evolution in laminated composite structures. Heliyon 2023, 9, e15060. [Google Scholar] [CrossRef]
- Abdullah, S.I.B.S.; Bokti, S.K.; Wong, K.J.; Johar, M.; Chong, W.W.F.; Dong, Y. Mode II and mode III delamination of carbon fiber/epoxy composite laminates subjected to a four-point bending mechanism. Compos. Part B Eng. 2024, 270, 111110. [Google Scholar] [CrossRef]
- Azimi, M.; Eslamlou, A.; Pekcan, G. Data-Driven Structural Health Monitoring and Damage Detection through Deep Learning: State-of-the-Art Review. Sensors 2020, 20, 2778. [Google Scholar] [CrossRef]
- Dang, H.V.; Tran-Ngoc, H.; Nguyen, T.V.; Bui-Tien, T.; De Roeck, G.; Nguyen, H.X. Data-Driven Structural Health Monitoring Using Feature Fusion and Hybrid Deep Learning. IEEE Trans. Autom. Sci. Eng. 2021, 18, 2087–2103. [Google Scholar] [CrossRef]
- Staszewski, W.J.; Mahzan, S.; Traynor, R. Health monitoring of aerospace composite structures—Active and passive approach. Compos. Sci. Technol. 2009, 69, 1678–1685. [Google Scholar] [CrossRef]
- Li, D.; Zhou, J.; Ou, J. Damage, nondestructive evaluation and rehabilitation of FRP composite-RC structure: A review. Constr. Build. Mater. 2021, 271, 121551. [Google Scholar] [CrossRef]
- Toh, G.; Park, J. Review of Vibration-Based Structural Health Monitoring Using Deep Learning. Appl. Sci. 2020, 10, 1680. [Google Scholar] [CrossRef]
- Zhang, C.; Mousavi, A.A.; Masri, S.F.; Gholipour, G.; Yan, K.; Li, X. Vibration feature extraction using signal processing techniques for structural health monitoring: A review. Mech. Syst. Signal Process. 2022, 177, 109175. [Google Scholar] [CrossRef]
- Zou, C.; Ibrahim, Z.; Hashim, H.; Jamadin, A.; Ayough, P. Nonlinear analysis of reinforced concrete slabs under high-cyclic fatigue loading. J. Mater. Res. Technol. 2022, 21, 992–1012. [Google Scholar] [CrossRef]
- Viotti, I.D.; Gomes, G.F. Delamination identification in sandwich composite structures using machine learning techniques. Comput. Struct. 2023, 280, 106990. [Google Scholar] [CrossRef]
- Ijjeh, A.A.; Ullah, S.; Kudela, P. Full wavefield processing by using FCN for delamination detection. Mech. Syst. Signal Process. 2021, 153, 107537. [Google Scholar] [CrossRef]
- Hernández-García, A.; König, P. Further Advantages of Data Augmentation on Convolutional Neural Networks. In Proceedings of the Artificial Neural Networks and Machine Learning—ICANN 2018, Rhodes, Greece, 4–7 October 2018; pp. 95–103. [Google Scholar] [CrossRef]
- Tang, S.; Yuan, S.; Zhu, Y. Data Preprocessing Techniques in Convolutional Neural Network Based on Fault Diagnosis Towards Rotating Machinery. IEEE Access 2020, 8, 149487–149496. [Google Scholar] [CrossRef]
- Cha, Y.-J.; Ali, R.; Lewis, J.; Büyük, O. Deep learning-based structural health monitoring. Autom. Constr. 2024, 161, 105328. [Google Scholar] [CrossRef]
- Tan, X.; Sun, X.; Chen, W.; Du, B.; Ye, J.; Sun, L. Investigation on the data augmentation using machine learning algorithms in structural health monitoring information. Struct. Health Monit. 2021, 20, 2054–2068. [Google Scholar] [CrossRef]
- Mumuni, A.; Mumuni, F. Data augmentation: A comprehensive survey of modern approaches. Array 2022, 16, 100258. [Google Scholar] [CrossRef]
- Özdemir, Ö.; Sönmez, E.B. Attention mechanism and mixup data augmentation for classification of COVID-19 Computed Tomography images. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 6199–6207. [Google Scholar] [CrossRef] [PubMed]
- Deng, A.; Li, X.; Hu, D.; Wang, T.; Xiong, H.; Xu, C.-Z. Towards Inadequately Pre-trained Models in Transfer Learning. In Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 1–6 October 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 19340–19351. [Google Scholar] [CrossRef]
- Ebrahim, M.; Al-Ayyoub, M.; Alsmirat, M.A. Will Transfer Learning Enhance ImageNet Classification Accuracy Using ImageNet-Pretrained Models? In Proceedings of the 2019 10th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 11–13 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 211–216. [Google Scholar] [CrossRef]
- Fotouhi, S.; Pashmforoush, F.; Bodaghi, M.; Fotouhi, M. Autonomous damage recognition in visual inspection of laminated composite structures using deep learning. Compos. Struct. 2021, 268, 113960. [Google Scholar] [CrossRef]
- Zhao, J.; Xie, W.; Yu, D.; Yang, Q.; Meng, S.; Lyu, Q. Deep Transfer Learning Approach for Localization of Damage Area in Composite Laminates Using Acoustic Emission Signal. Polymers 2023, 15, 1520. [Google Scholar] [CrossRef] [PubMed]
- Rai, A.; Mitra, M. A transfer learning approach for damage diagnosis in composite laminated plate using Lamb waves. Smart Mater. Struct. 2022, 31, 065002. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, Q.; Xie, H.; Li, Q.; Sun, G. Digital image correlation (DIC) based damage detection for CFRP laminates by using machine learning based image semantic segmentation. Int. J. Mech. Sci. 2022, 230, 107529. [Google Scholar] [CrossRef]
- Azad, M.M.; Shah, A.U.R.; Prabhakar, M.N.; Kim, H.S. Deep Learning-based Fracture Mode Determination in Composite Laminates. J. Comput. Struct. Eng. Inst. Korea 2024, 37, 225–232. [Google Scholar] [CrossRef]
- Saeed, N.; King, N.; Said, Z.; Omar, M.A. Automatic defects detection in CFRP thermograms, using convolutional neural networks and transfer learning. Infrared Phys. Technol. 2019, 102, 103048. [Google Scholar] [CrossRef]
- Azad, M.M.; Kumar, P.; Kim, H.S. Delamination detection in CFRP laminates using deep transfer learning with limited experimental data. J. Mater. Res. Technol. 2024, 29, 3024–3035. [Google Scholar] [CrossRef]
- Azad, M.M.; Raouf, I.; Sohail, M.; Kim, H.S. Structural Health Monitoring of Laminated Composites Using Lightweight Transfer Learning. Machines 2024, 12, 589. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep Residual Networks. In Proceedings of the Computer Vision-ECCV 2016—14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; pp. 630–645. [Google Scholar] [CrossRef]
- Zhang, C.; Benz, P.; Argaw, D.M.; Lee, S.; Kim, J.; Rameau, F.; Bazin, J.C.; Kweon, I.S. ResNet or DenseNet? Introducing Dense Shortcuts to ResNet. In Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 3549–3558. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Atila, Ü.; Uçar, M.; Akyol, K.; Uçar, E. Plant leaf disease classification using EfficientNet deep learning model. Ecol. Inform. 2021, 61, 101182. [Google Scholar] [CrossRef]
- Aslan, M. CNN based efficient approach for emotion recognition. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 7335–7346. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Zhang, W. Crack detection of fibre reinforced composite beams based on continuous wavelet transform. Nondestruct. Test. Eval. 2010, 25, 25–44. [Google Scholar] [CrossRef]
Health State | HTL Model | Precision (%) | Recall (%) | F1-Score (%) |
---|---|---|---|---|
D1 | EfficientNet | 93.91 | 92.50 | 93.20 |
ResNet | 96.55 | 98.00 | 97.27 | |
Proposed HTL | 97.95 | 95.50 | 96.71 | |
D2 | EfficientNet | 92.00 | 92.00 | 92.00 |
ResNet | 99.46 | 92.00 | 95.58 | |
Proposed HTL | 95.15 | 98.00 | 96.55 | |
H | EfficientNet | 97.54 | 99.00 | 98.26 |
ResNet | 94.34 | 100.00 | 97.09 | |
Proposed HTL | 99.50 | 99.00 | 99.25 | |
Average Performance | EfficientNet | 94.48 | 94.50 | 94.49 |
ResNet | 96.78 | 96.67 | 96.65 | |
Proposed HTL | 97.53 | 97.50 | 97.50 |
HTL Model | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) |
---|---|---|---|---|
CNN model [32] | 40.33 | 40.66 | 40.33 | 40.33 |
Xception [32] | 84.67 | 85.00 | 84.33 | 84.67 |
VGG-16 [32] | 93.67 | 93.67 | 93.67 | 93.67 |
VGG-19 [33] | 91.33 | 91.33 | 91.33 | 91.33 |
NASNetMobile [33] | 83.67 | 82.44 | 84.50 | 83.46 |
MobileNet [33] | 92.50 | 90.38 | 94.00 | 92.16 |
ResNet | 96.67 | 96.78 | 96.67 | 96.65 |
EfficientNet | 94.50 | 94.48 | 94.50 | 94.49 |
Proposed HTL | 97.50 | 97.53 | 97.50 | 97.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yazdani, M.H.; Azad, M.M.; Khalid, S.; Kim, H.S. A Hybrid Deep Transfer Learning Framework for Delamination Identification in Composite Laminates. Sensors 2025, 25, 826. https://doi.org/10.3390/s25030826
Yazdani MH, Azad MM, Khalid S, Kim HS. A Hybrid Deep Transfer Learning Framework for Delamination Identification in Composite Laminates. Sensors. 2025; 25(3):826. https://doi.org/10.3390/s25030826
Chicago/Turabian StyleYazdani, Muhammad Haris, Muhammad Muzammil Azad, Salman Khalid, and Heung Soo Kim. 2025. "A Hybrid Deep Transfer Learning Framework for Delamination Identification in Composite Laminates" Sensors 25, no. 3: 826. https://doi.org/10.3390/s25030826
APA StyleYazdani, M. H., Azad, M. M., Khalid, S., & Kim, H. S. (2025). A Hybrid Deep Transfer Learning Framework for Delamination Identification in Composite Laminates. Sensors, 25(3), 826. https://doi.org/10.3390/s25030826