Design of Bilayer Crescent Chiral Metasurfaces for Enhanced Chiroptical Response
Abstract
:1. Introduction
2. Methodology
2.1. Geometric Design and Theoretical Basis
Geometric Design
2.2. Theoretical Basis of the Crescent Chiral Metasurface
2.2.1. Jones Matrix and Circular Dichroism
2.2.2. Expected Outcomes and Theoretical Predictions
3. Results
3.1. Transmission Spectra
3.2. Circular Dichroism (CD)
3.2.1. Description and Significance of CD
3.2.2. CD Analysis
3.3. Electric Field Distribution
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, X.; Pu, M.; Li, X.; Guo, Y.; Gao, P.; Luo, X. Meta-Chirality: Fundamentals, Construction and Applications. Nanomaterials 2017, 7, 116. [Google Scholar] [CrossRef] [PubMed]
- Asefa, S.A.; Shim, S.; Seong, M.; Lee, D. Chiral Metasurfaces: A Review of the Fundamentals and Research Advances. Appl. Sci. 2023, 13, 10590. [Google Scholar] [CrossRef]
- Solomon, M.L.; Saleh, A.A.; Poulikakos, L.V.; Abendroth, J.M.; Tadesse, L.F.; Dionne, J.A. Nanophotonic platforms for chiral sensing and separation. Acc. Chem. Res. 2020, 53, 588–598. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Guirado, J.; Svedendahl, M.; Puigdollers, J.; Quidant, R. Enhanced Chiral Sensing with Dielectric Nanoresonators. Nano Lett. 2019, 20, 585–591. [Google Scholar] [CrossRef]
- Hu, J.; Lawrence, M.; Dionne, J.A. High Quality Factor Dielectric Metasurfaces for Ultraviolet Circular Dichroism Spectroscopy. ACS Photonics 2019, 7, 36–42. [Google Scholar] [CrossRef]
- Zhang, S.; Wong, C.L.; Zeng, S.; Bi, R.; Tai, K.; Dholakia, K.; Olivo, M. Metasurfaces for biomedical applications: Imaging and sensing from a nanophotonics perspective. Nanophotonics 2021, 10, 259–293. [Google Scholar] [CrossRef]
- Ranjbar, B.; Gill, P. Circular Dichroism Techniques: Biomolecular and Nanostructural Analyses—A Review. Chem. Biol. Drug Des. 2009, 74, 101–120. [Google Scholar] [CrossRef]
- Wang, H.P.; Li, Y.B.; Li, H.; Dong, S.Y.; Liu, C.; Jin, S.; Cui, T.J. Deep Learning Designs of Anisotropic Metasurfaces in Ultrawideband Based on Generative Adversarial Networks. Adv. Intell. Syst. 2020, 2, 2000068. [Google Scholar] [CrossRef]
- Khorasaninejad, M.; Chen, W.T.; Zhu, A.Y.; Oh, J.; Devlin, R.C.; Rousso, D.; Capasso, F. Multispectral chiral imaging with a metalens. Nano Lett. 2016, 16, 4595–4600. [Google Scholar] [CrossRef]
- Zhao, Y.; Askarpour, A.N.; Sun, L.; Shi, J.; Li, X.; Alù, A. Chirality detection of enantiomers using twisted optical metamaterials. Nat. Commun. 2017, 8, 14180. [Google Scholar] [CrossRef]
- Groever, B.; Rubin, N.A.; Mueller, J.P.; Devlin, R.C.; Capasso, F. High-Efficiency Chiral Meta-Lens. Sci. Rep. 2018, 8, 7240. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-T.; Oh, S.S.; Kim, H.-D.; Park, H.S.; Hess, O.; Min, B.; Zhang, S. Electrical Access to Critical Coupling of Circularly Polarized Waves in Graphene Chiral Metamaterials. Sci. Adv. 2017, 3, e1701377. [Google Scholar] [CrossRef] [PubMed]
- Luong, H.M.; Pham, M.T.; Nguyen, T.D.; Zhao, Y. Active Ag/Co Composite Chiral Nanohole Arrays. J. Phys. Chem. C 2021, 125, 716–723. [Google Scholar] [CrossRef]
- Yin, S.; Ji, W.; Xiao, D.; Li, Y.; Li, K.; Yin, Z.; Jiang, S.; Shao, L.-Y.; Luo, D.; Liu, Y. Intrinsically or Extrinsically Reconfigurable Chirality in Plasmonic Chiral Metasurfaces. Opt. Commun. 2019, 448, 10–14. [Google Scholar] [CrossRef]
- Zhao, Y.; Belkin, M.A.; Alu, A. Twisted Optical Metamaterials for Planarized Ultrathin Broadband Circular Polarizers. Nat. Commun. 2012, 3, 870. [Google Scholar] [CrossRef]
- Cheng, H.; Liu, Z.; Chen, S.; Tian, J. Emergent Functionality and Controllability in Few-layer Metasurfaces. Adv. Mater. 2015, 27, 5410–5421. [Google Scholar] [CrossRef]
- Zhao, Y.; Engheta, N.; Alù, A. Homogenization of plasmonic metasurfaces modeled as transmission-line loads. Metamaterials 2011, 5, 90–96. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Y.; Li, Z.; Cheng, H.; Tian, J. Empowered Layer Effects and Prominent Properties in Few-layer Metasurfaces. Adv. Opt. Mater. 2019, 7, 1801477. [Google Scholar] [CrossRef]
- Kim, J.; Rana, A.S.; Kim, Y.; Kim, I.; Badloe, T.; Zubair, M.; Mehmood, M.Q.; Rho, J. Chiroptical Metasurfaces: Principles, Classification, and Applications. Sensors 2021, 21, 4381. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, K.; Yang, W.; Wu, L.; Qu, K.; Zhao, J.; Jiang, T.; Feng, Y. Kirigami Reconfigurable Gradient Metasurface. Adv. Funct. Mater. 2022, 32, 2107699. [Google Scholar] [CrossRef]
- Ni, X.; Kildishev, A.V.; Shalaev, V.M. Metasurface Holograms for Visible Light. Nat. Commun. 2013, 4, 2807. [Google Scholar] [CrossRef]
- Hu, J.; Zhao, X.; Lin, Y.; Zhu, A.; Zhu, X.; Guo, P.; Cao, B.; Wang, C. All-Dielectric Metasurface Circular Dichroism Waveplate. Sci. Rep. 2017, 7, 41893. [Google Scholar] [CrossRef] [PubMed]
- Phon, R.; Jeong, H.; Lim, S. Rotational Kirigami Tessellation Metasurface for Tunable Chirality. Adv. Mater. Technol. 2022, 7, 2101706. [Google Scholar] [CrossRef]
- Overvig, A.C.; Malek, S.C.; Yu, N. Multifunctional Nonlocal Metasurfaces. Phys. Rev. Lett. 2020, 125, 017402. [Google Scholar] [CrossRef]
- Dixon, J.; Lawrence, M.; Barton, D.R., III; Dionne, J. Self-Isolated Raman Lasing with a Chiral Dielectric Metasurface. Phys. Rev. Lett. 2021, 126, 123201. [Google Scholar] [CrossRef]
- Mandal, P. Large Circular Dichroism in MDM Plasmonic Metasurface with Subwavelength Crescent Aperture. Plasmonics 2018, 13, 2229–2237. [Google Scholar] [CrossRef]
- Genevet, P.; Capasso, F.; Aieta, F.; Khorasaninejad, M.; Devlin, R. Recent advances in planar optics: From plasmonic to dielectric metasurfaces. Optica 2017, 4, 139–152. [Google Scholar] [CrossRef]
- Khaliq, H.S.; Nauman, A.; Lee, J.W.; Kim, H.R. Recent progress on plasmonic and dielectric chiral metasurfaces: Fundamentals, design strategies, and implementation. Adv. Opt. Mater. 2023, 16, 2300644. [Google Scholar] [CrossRef]
- Yoo, S.; Park, Q.-H. Metamaterials and Chiral Sensing: A Review of Fundamentals and Applications. Nanophotonics 2019, 8, 249–261. [Google Scholar] [CrossRef]
- Wang, Z.; Cheng, F.; Winsor, T.; Liu, Y. Optical Chiral Metamaterials: A Review of the Fundamentals, Fabrication Methods and Applications. Nanotechnology 2016, 27, 412001. [Google Scholar] [CrossRef]
- Mandal, P.; Mohan, S.; Sharma, S.; Goyat, M.S. Broadband Multi-Resonant Circular Dichroism in Metal-VO2 Hybrid Dagger-like Plasmonic Structure for Switching Application. Photonics Nanostruct. Fundam. Appl. 2019, 37, 100735. [Google Scholar] [CrossRef]
- Serrera, G.; González-Colsa, J.; Giannini, V.; Saiz, J.M.; Albella, P. Enhanced Optical Chirality with Directional Emission of Surface Plasmon Polaritons for Chiral Sensing Applications. J. Quant. Spectrosc. Radiat. Transf. 2022, 284, 108166. [Google Scholar] [CrossRef]
- Halas, N.J.; Lal, S.; Chang, W.-S.; Link, S.; Nordlander, P. Plasmons in Strongly Coupled Metallic Nanostructures. Chem. Rev. 2011, 111, 3913–3961. [Google Scholar] [CrossRef]
- Hentschel, M.; Wu, L.; Schäferling, M.; Bai, P.; Li, E.P.; Giessen, H. Optical Properties of Chiral Three-Dimensional Plasmonic Oligomers at the Onset of Charge-Transfer Plasmons. ACS Nano 2012, 6, 10355–10365. [Google Scholar] [CrossRef]
- Yang, S.; Liu, Z.; Hu, S.; Jin, A.-Z.; Yang, H.; Zhang, S.; Li, J.; Gu, C. Spin-Selective Transmission in Chiral Folded Metasurfaces. Nano Lett. 2019, 19, 3432–3439. [Google Scholar] [CrossRef]
- Lv, J.; Hou, K.; Ding, D.; Wang, D.; Han, B.; Gao, X.; Zhao, M.; Shi, L.; Guo, J.; Zheng, Y.; et al. Gold Nanowire Chiral Ultrathin Films with Ultrastrong and Broadband Optical Activity. Angew. Chem. Int. Ed. 2017, 56, 5055–5060. [Google Scholar] [CrossRef]
- Yang, Y.; Kim, M.; Mun, J.; Rho, J. Ultra-Sharp Circular Dichroism Induced by Twisted Layered C4 Oligomers. Adv. Theory Simul. 2020, 3, 1900229. [Google Scholar] [CrossRef]
- Decker, M.; Zhao, R.; Soukoulis, C.M.; Linden, S.; Wegener, M. Twisted Split-Ring-Resonator Photonic Metamaterial with Huge Optical Activity. Opt. Lett. 2010, 35, 1593–1595. [Google Scholar] [CrossRef]
- Zhang, W.; Ai, B.; Gu, P.; Guan, Y.; Wang, Z.; Xiao, Z.; Zhang, G. Plasmonic Chiral Metamaterials with Sub-10 Nm Nanogaps. ACS Nano 2021, 15, 17657–17667. [Google Scholar] [CrossRef]
- Rodrigues, S.P.; Cunha, P.A.; Kudtarkar, K.; Dede, E.M.; Lan, S. Review of Optically Active and Nonlinear Chiral Metamaterials. J. Nanophotonics 2022, 16, 020901. [Google Scholar] [CrossRef]
- Qin, H.; Su, Z.; Liu, M.; Zeng, Y.; Tang, M.C.; Li, M.; Shi, Y.; Huang, W.; Qiu, C.W.; Song, Q. Arbitrarily polarized bound states in the continuum with twisted photonic crystal slabs. Light Sci. Appl. 2023, 7, 66. [Google Scholar] [CrossRef] [PubMed]
- Overvig, A.; Yu, N.; Alù, A. Chiral quasi-bound states in the continuum. Phys. Rev. Lett. 2021, 19, 126. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.; Qin, H.; Su, Z.; Zhang, C.; Huang, J.; Shi, Y.; Li, B.; Genevet, P.; Song, Q. Robust generation of intrinsic C points with magneto-optical bound states in the continuum. Sci. Adv. 2024, 10, eads0157. [Google Scholar] [CrossRef] [PubMed]
- Kheirandish, A.; Sepehri Javan, N.; Mohammadzadeh, H. Modified Drude model for small gold nanoparticles surface plasmon resonance based on the role of classical confinement. Sci. Rep. 2020, 10, 6517. [Google Scholar] [CrossRef]
- Li, Z.; Liu, W.; Cheng, H.; Chen, S.; Tian, J. Spin-selective transmission and devisable chirality in two-layer metasurfaces. Sci. Rep. 2017, 15, 8204. [Google Scholar] [CrossRef]
- Menzel, C.; Rockstuhl, C.; Lederer, F. Advanced Jones calculus for the classification of periodic metamaterials. Phys. Rev. A 2010, 82, 053811. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, M.; Wang, W.; Song, Z. Reflective and transmissive cross-polarization converter for terahertz wave in a switchable metamaterial. Phys. Scr. 2022, 97, 015501. [Google Scholar] [CrossRef]
- Cerdán, L.; Zundel, L.; Manjavacas, A. Chiral lattice resonances in 2.5-dimensional periodic arrays with achiral unit cells. ACS Photonics 2023, 10, 1925–1935. [Google Scholar] [CrossRef]
- Ha, C.S.; Plesha, M.E.; Lakes, R.S. Chiral three-dimensional isotropic lattices with negative Poisson‘’s ratio. Phys. Status Solidi 2016, 253, 1243–1251. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asefa, S.A.; Seong, M.; Lee, D. Design of Bilayer Crescent Chiral Metasurfaces for Enhanced Chiroptical Response. Sensors 2025, 25, 915. https://doi.org/10.3390/s25030915
Asefa SA, Seong M, Lee D. Design of Bilayer Crescent Chiral Metasurfaces for Enhanced Chiroptical Response. Sensors. 2025; 25(3):915. https://doi.org/10.3390/s25030915
Chicago/Turabian StyleAsefa, Semere A., Myeongsu Seong, and Dasol Lee. 2025. "Design of Bilayer Crescent Chiral Metasurfaces for Enhanced Chiroptical Response" Sensors 25, no. 3: 915. https://doi.org/10.3390/s25030915
APA StyleAsefa, S. A., Seong, M., & Lee, D. (2025). Design of Bilayer Crescent Chiral Metasurfaces for Enhanced Chiroptical Response. Sensors, 25(3), 915. https://doi.org/10.3390/s25030915