“Microstructured Nanostructures” – Nanostructuring by Means of Conventional Photolithography and Layer-expansion Technique
Abstract
:Introduction
Method
Experimental
Results and discussions
Conclusions
Acknowledgments
References
- Namatsu, H.; Watanabe, Y.; Yamazaki, K.; Yamaguchi, T.; Nagase, M.; Ono, Y.; Fujiwara, A.; Horiguchi, S. Fabrication of Si single-electron transistors with precise dimensions by electron-beam nanolithography. J. Vac. Sci. Technol. B 2003, 21, 1. [Google Scholar]
- Sasajima, R.; Fujimaru, K.; Matsumura, H. A metal insulator tunnel transistor with 16 nm channel length. Appl. Phys. Lett. 1999, 74, 3215. [Google Scholar]
- Fujimaru, K.; Sasajima, R.; Matsumura, H. Nanoscale metal transistor control of Fowler-Nordheim tunneling currents through 16 nm insulating channel. J. Appl. Phys. 1999, 85, 6912. [Google Scholar]
- Chen, Y.; Pepin, A. Nanofabrication: Conventional and nonconventional methods. Electrophoresis 2001, 22, 187. [Google Scholar]
- Horstmann, J.T.; Goser, K.F. New fabrication technique for nano-MOS transistors with W=25 nm and L=25 nm using only conventional optical lithography. Microelectron. Eng. 2002, 61-62, 601. [Google Scholar]
- Heidemeyer, H.; Single, C.; Zhou, F.; Prins, F.E.; Kern, D.P.; Plies, E.J. Self-limiting and pattern dependent oxidation of silicon dots fabricated on silicon-on-insulator material. Appl. Phys. 2000, 87, 4580. [Google Scholar]
- Juhasz, R.; Linnros, J. Silicon nanofabrication by electron-beam lithography and laser-assisted electrochemical size-reduction. Microelectron. Eng. 2002, 61-62, 563. [Google Scholar]
- Lee, C.-S.; Han, C.-H. A novel sub-micron gap fabrication technology using chemical-mechanical polishing (CMP): Application to lateral field emission device (FED). Sens. Actuators A 2002, 97-98, 739. [Google Scholar]
- Morpurgo, A.F.; Marcus, C.M.; Robinson, D.B. Controlled fabrication of metallic electrodes with atomic separation. Appl. Phys. Lett. 1999, 74, 2084. [Google Scholar]
- Chung, K.-H.; Sung, S.-K.; Kim, D.H.; Choi, W.Y.; Lee, C.A.; Lee, J.D.; Park, B.-G. Nanoscale multi-line patterning using sidewall structure. Jpn. J. Appl. Phys. 2002, 41, 4410. [Google Scholar]
- Choi, Y.-K.; Zhu, J.; Grunes, J.; Bokor, J.; Somorjai, G.A. Fabrication of sub-10-nm silicon nanowire arrays by size reduction lithography. J. Phys. Chem. B 2003, 107, 3340. [Google Scholar]
- Georgiev, G.; Müller-Wiegand, M.; Georgieva, A.; Ludolph, K.; Oesterschulze, E. Lithography-free fabrication of sub-100 nm structures by self-aligned plasma etching of silicon dioxide layers and silicon. J. Vac. Sci. Technol. B 2003, 21, 1361. [Google Scholar]
- Meng, C.C.; Liao, G.R.; Lu, S.S. Formation of submicron T-gate by rapid thermally reflowed resist with metal transfer layer. Electron. Lett. 2001, 37, 1045. [Google Scholar]
- Hashioka, S.; Matsumura, H. 10-nm-size fabrication of semiconductor substrates and metal thin lines by conventional photolithography. Jpn. J. Appl. Phys. 2000, 39, 7063. [Google Scholar]
- Fujimaru, K.; Ono, T.; Nagai, R.; Matsumura, H. Nanometer pattern-mask fabricated by conventional photolithography. Jpn. J. Appl. Phys. 1997, 36, 7786. [Google Scholar]
- Hashioka, S.; Mogi, T.; Matsumura, H. Novel nano-fabrication technique with low edge roughness. Jpn. J. Appl. Phys. 2003, 42, 4169. [Google Scholar]
- Poghossian, A.; Schöning, M.J. German patent application DE 1033275.8. 2003.
- Poghossian, A.; Schöning, M.J.; Platen, J. Towards self-aligned nanostructures by means of layer expansion technique. Electrochim. Acta 2005, 51, 838. [Google Scholar]
- Atanassova, E.; Spassov, D. Electrical properties of thin Ta2O5 films obtained by thermal oxidation of Ta on Si. Microelectron. Reliability 1998, 38, 827. [Google Scholar]
- Park, S.W.; Im, H.B. Effect of oxidation conditions on the properties of tantalum oxide-films on silicon substrates. Thin Solid Films 1992, 207, 258. [Google Scholar]
- Poghossian, A.; Schöning, M.J. Detecting both physical and (bio-)chemical parameters by means of ISFET devices. Electroanalysis 2004, 16, 1863. [Google Scholar]
- Christensen, C.; de Reus, R.; Bouwstra, S. Tantalum oxide thin films as protective coatings for sensors. J. Micromech. Microeng. 1999, 9, 113. [Google Scholar]
- Chaneliere, C.; Autran, J.L.; Devine, R.A.B.; Balland, B. Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications. Mater. Sci. Eng. 1998, R22, 269. [Google Scholar]
- Schöning, M.J.; Brinkmann, D.; Rolka, D.; Demuth, C.; Poghossian, A. CIP (cleaning-in-place)-suitable “non-glass” pH sensor based on a Ta2O5-gate EIS structure. Sens. Actuators B 2005, 111-112, 423. [Google Scholar]
- Poghossian, A.; Baade, A.; Emons, H.; Schöning, M.J. Application of ISFETs for pH measurement in rain droplets. Sens. Actuators B 2001, 76, 634. [Google Scholar]
- Kwon, D.-H.; Cho, B.-W.; Kim, C.-S.; Sohn, B.-K. Effects of heat treatment on Ta2O5 sensing membrane for low drift and high sensitivity pH-ISFET. Sens. Actuators B 1996, 34, 441. [Google Scholar]
- Hara, H.; Ohta, T. Dynamic response of a Ta2O5-gate pH-sensitive field-effect transistor. Sens. Actuators B 1996, 32, 115. [Google Scholar]
© 2006 by MDPI ( http://www.mdpi.org). Reproduction is permitted for non-commercial purposes.
Share and Cite
Platen, J.; Poghossian, A.; Schöning, M.J. “Microstructured Nanostructures” – Nanostructuring by Means of Conventional Photolithography and Layer-expansion Technique. Sensors 2006, 6, 361-369. https://doi.org/10.3390/S6040361
Platen J, Poghossian A, Schöning MJ. “Microstructured Nanostructures” – Nanostructuring by Means of Conventional Photolithography and Layer-expansion Technique. Sensors. 2006; 6(4):361-369. https://doi.org/10.3390/S6040361
Chicago/Turabian StylePlaten, Johannes, Arshak Poghossian, and Michael J. Schöning. 2006. "“Microstructured Nanostructures” – Nanostructuring by Means of Conventional Photolithography and Layer-expansion Technique" Sensors 6, no. 4: 361-369. https://doi.org/10.3390/S6040361
APA StylePlaten, J., Poghossian, A., & Schöning, M. J. (2006). “Microstructured Nanostructures” – Nanostructuring by Means of Conventional Photolithography and Layer-expansion Technique. Sensors, 6(4), 361-369. https://doi.org/10.3390/S6040361