Gas Sensors Based on Conducting Polymers
Abstract
:1. Introduction
2. Synthesis of conducting polymers and preparation of conducting polymer films
2.1. Synthesis of conducting polymers
2.2 Preparation of conducting polymer films
Electrochemical deposition
Dip-coating
Spin-coating
Langmuir-Blodgett (LB) technique
Layer-by-layer (LBL) self-assembly technique
Thermal evaporation
Vapor deposition polymerization
Drop-coating
Other methods
3. Sensing Principles
3.1 Interactions between gas molecules and conducting polymer films
3.1.1 Chemical reactions between analytes and conducting polymers
3.1.2 Weak interactions between analytes and conducting polymers
3.2 The configurations and sensing principles of different sensors
3.2.1 Chemiresistors
3.2.2 Transistor and diode sensors
3.3.3 Optic devices
3.3.4 Piezoelectric crystal sensors
3.2.5 Amperometric sensors
3.3 The Parameters Influence the Performance of the Gas Sensors Based on Conducting Polymers
3.3.1 Sensing materials
3.3.2 Device Fabrication
3.3.3 Working environment
4. Summary and prospect
Room-temperature operations
Facile property adjustment
High sensitivity and short response time
Easy device fabrication
Long-time instability and irreversibility
Low selectivity
Acknowledgments
References and Notes
- Nylabder, C.; Armgrath, M.; Lundstrom, I. An ammonia detector based on a conducting polymer. Proceedings of the International Meeting on Chemical Sensors, Fukuoka, Japan; 1983; pp. 203–207. [Google Scholar]
- Dubbe, A. Fundamentals of solid state ionic micro gas sensors. Sens. Actuators B 2003, 88, 138–148. [Google Scholar]
- Zakrzewska, K. Mixed oxides as gas sensors. Thin Solid Films 2001, 391, 229–238. [Google Scholar]
- Timmer, B.; Olthuis, W.; van den Berg, A. Ammonia sensors and their applications - a review. Sens. Actuators B 2005, 107, 666–677. [Google Scholar]
- Nicolas-Debarnot, D.; Poncin-Epaillard, F. Polyaniline as a new sensitive layer for gas sensors. Anal. Chim. Acta 2003, 475, 1–15. [Google Scholar]
- Maksymiuk, K. Chemical reactivity of polypyrrole and its relevance to polypyrrole based electrochemical sensors. Electroanalysis 2006, 18, 1537–1551. [Google Scholar]
- Ameer, Q.; Adeloju, S.B. Polypyrrole-based electronic noses for environmental and industrial analysis. Sens. Actuators B 2005, 106, 541–552. [Google Scholar]
- MacDiarmid, A.G. “Synthetic metals”: A novel role for organic polymers (Nobel lecture). Angew. Chem. Int. Edit. 2001, 40, 2581–2590. [Google Scholar]
- Shi, G.Q.; Jin, S.; Xue, G.; Li, C. A conducting polymer film stronger than aluminum. Science 1995, 267, 994–996. [Google Scholar]
- Yang, Z.; Hu, B.; Karasz, F.E. Polymer Electroluminescence Using Ac or Reverse Dc Biasing. Macromolecules 1995, 28, 6151–6154. [Google Scholar]
- Jung, S.H.; Kim, H.K.; Kim, S.H.; Kim, Y.H.; Jeoung, S.C.; Kim, D. Palladium-catalyzed direct synthesis, photophysical properties, and tunable electroluminescence of novel silicon-based alternating copolymers. Macromolecules 2000, 33, 9277–9288. [Google Scholar]
- Gilch, H.G.; Wheelwright, W.L. Polymerization of a-halogenated p-xylenes with base. J. Polym. Sci. A 1966, 4, 1337–1349. [Google Scholar]
- McCullough, R.D. The chemistry of conducting polythiophenes. Adv. Mater. 1998, 10, 93–116. [Google Scholar]
- The classification of film preparation method is from Ref. 5, and for film preparation of PAni, also see Ref. 5.
- Lu, G.W.; Qu, L.T.; Shi, G.Q. Electrochemical fabrication of neuron-type networks based on crystalline oligopyrene nanosheets. Electrochim. Acta 2005, 51, 340–346. [Google Scholar]
- Reemts, J.; Parisi, J.; Schlettwein, D. Electrochemical growth of gas-sensitive polyaniline thin films across an insulating gap. Thin Solid Films 2004, 466, 320–325. [Google Scholar]
- McGovern, S.T.; Spinks, G.M.; Wallace, G.G. Micro-humidity sensors based on a processable polyaniline blend. Sens. Actuators B 2005, 107, 657–665. [Google Scholar]
- Cho, J.H.; Yu, J.B.; Kim, J.S.; Sohn, S.O.; Lee, D.D.; Huh, J.S. Sensing behaviors of polypyrrole sensor under humidity condition. Sens. Actuators B 2005, 108, 389–392. [Google Scholar]
- Brady, S.; Lau, K.T.; Megill, W.; Wallace, G.G.; Diamond, D. The development and characterisation of conducting polymeric-based sensing devices. Synth. Met. 2005, 154, 25–28. [Google Scholar]
- Silverstein, M.S.; Tai, H.W.; Sergienko, A.; Lumelsky, Y.L.; Pavlovsky, S. PolyHIPE: IPNs, hybrids, nanoscale porosity, silica monoliths and ICP-based sensors. Polymer 2005, 46, 6682–6694. [Google Scholar]
- Prasad, G.K.; Radhakrishnan, T.P.; Kumar, D.S.; Krishna, M.G. Ammonia sensing characteristics of thin film based on polyelectrolyte templated polyaniline. Sens. Actuators B 2005, 106, 626–631. [Google Scholar]
- Tongpool, R.; Yoriya, S. Kinetics of nitrogen dioxide exposure in lead phthalocyanine sensors. Thin Solid Films 2005, 477, 148–152. [Google Scholar]
- Ram, M.K.; Yavuz, O.; Lahsangah, V.; Aldissi, M. CO gas sensing from ultrathin nano-composite conducting polymer film. Sens. Actuators B 2005, 106, 750–757. [Google Scholar]
- Nohria, R.; Khillan, R.K.; Su, Y.; Dikshit, R.; Lvov, Y.; Varahramyan, K. Humidity sensor based on ultrathin polyaniline film deposited using layer-by-layer nano-assembly. Sens. Actuators B 2006, 114, 218–222. [Google Scholar]
- Agbor, N.E.; Petty, M.C.; Monkman, A.P. Polyaniline Thin-Films for Gas-Sensing. Sens. Actuators B 1995, 28, 173–179. [Google Scholar]
- Stussi, E.; Cella, S.; Serra, G.; Venier, G.S. Fabrication of conducting polymer patterns for gas sensing by a dry technique. Mater. Sci. Eng. C-Biomimetic Mater. Sens. Syst. 1996, 4, 27–33. [Google Scholar]
- Ruangchuay, L.; Sirivat, A.; Schwank, J. Selective conductivity response of polypyrrole-based sensor on flammable chemicals. React. Funct. Polym. 2004, 61, 11–22. [Google Scholar]
- Sandberg, H.G.O.; Backlund, T.G.; Osterbacka, R.; Jussila, S.; Makela, T.; Stubb, H. Applications of an all-polymer solution-processed high-performance, transistor. Synth. Met. 2005, 155, 662–665. [Google Scholar]
- Su, M.; Fu, L.; Wu, N.Q.; Aslam, M.; Dravid, V.P. Individually addressed large-scale patterning of conducting polymers by localized electric fields. Appl. Phys. Lett. 2004, 84, 828–830. [Google Scholar]
- Li, G.F.; Martinez, C.; Semancik, S. Controlled electrophoretic patterning of polyaniline from a colloidal suspension. J. Am. Chem. Soc. 2005, 127, 4903–4909. [Google Scholar]
- Mabrook, M.F.; Pearson, C.; Petty, M.C. Inkjet-printed polypyrrole thin films for vapour sensing. Sens. Actuators B 2006, 115, 547–551. [Google Scholar]
- Athawale, A.A.; Kulkarni, M.V. Polyaniline and its substituted derivatives as sensor for aliphatic alcohols. Sens. Actuators B 2000, 67, 173–177. [Google Scholar]
- Athawale, A.A.; Bhagwat, S.V.; Katre, P.P. Nanocomposite of Pd-polyaniline as a selective methanol sensor. Sens. Actuators B 2006, 114, 263–267. [Google Scholar]
- Nguyen, V.C.; Potje-Kamloth, K. Electrical and chemical sensing properties of doped polypyrrole/gold Schottky barrier diodes. Thin Solid Films 1999, 338, 142–148. [Google Scholar]
- Van, C.N.; Potje-Kamloth, K. Electrical and NOx gas sensing properties of metallophthalocyanine-doped polypyrrole/silicon heterojunctions. Thin Solid Films 2001, 392, 113–121. [Google Scholar]
- Xie, D.; Jiang, Y.D.; Pan, W.; Li, D.; Wu, Z.M.; Li, Y.R. Fabrication and characterization of polyaniline-based gas sensor by ultra-thin film technology. Sens. Actuators B 2002, 81, 158–164. [Google Scholar]
- Mello, S.V.; Dynarowicz-Latka, P.; Dhanabalan, A.; Bianchi, R.F.; Onmori, R.; Janssen, R.A.J.; Oliveira, O.N. Langmuir and Langmuir-Blodgett films from the N-hexyl-pyrrole-thiophene (AB) semi-amphiphilic copolymer. Colloid Surf. A-Physicochem. Eng. Asp. 2002, 198, 45–51. [Google Scholar]
- Bhat, N.V.; Gadre, A.P.; Bambole, V.A. Investigation of electropolymerized polypyrrole composite film: Characterization and application to gas sensors. J. Appl. Polym. Sci. 2003, 88, 22–29. [Google Scholar]
- An, K.H.; Jeong, S.Y.; Hwang, H.R.; Lee, Y.H. Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube-polypyrrole nanocomposites. Adv. Mater. 2004, 16, 1005–1009. [Google Scholar]
- Li, G.F.; Josowicz, M.; Janata, J.; Semancik, S. Effect of thermal excitation on intermolecular charge transfer efficiency in conducting polyaniline. Appl. Phys. Lett. 2004, 85, 1187–1189. [Google Scholar]
- Elizalde-Torres, J.; Hu, H.L.; Garcia-Valenzuela, A. NO2-induced optical absorbance changes in semiconductor polyaniline thin films. Sens. Actuators B 2004, 98, 218–226. [Google Scholar]
- Ram, M.K.; Yavuz, O.; Aldissi, M. NO2 gas sensing based on ordered ultrathin films of conducting polymer and its nanocomposite. Synth. Met. 2005, 151, 77–84. [Google Scholar]
- Bhat, N.V.; Gadre, A.P.; Bambole, V.A. Structural, mechanical, and electrical properties of electropolymerized polypyrrole composite films. J. Appl. Polym. Sci. 2001, 80, 2511–2517. [Google Scholar]
- Yoon, H.; Chang, M.; Jang, J. Sensing behaviors of polypyrrole nanotubes prepared in reverse microemulsions: Effects of transducer size and transduction mechanism. J. Phys. Chem. B 2006, 110, 14074–14077. [Google Scholar]
- Saxena, V.; Choudhury, S.; Gadkari, S.C.; Gupta, S.K.; Yakhmi, J.V. Room temperature operated ammonia gas sensor using polycarbazole Langmuir-Blodgett film. Sens. Actuators B 2005, 107, 277–282. [Google Scholar]
- Blackwood, D.; Josowicz, M. Work function and spectroscopic studies of interactions between conducting polymers and organic vapors. J. Phys. Chem. 1991, 95, 493–502. [Google Scholar]
- Dixit, V.; Misra, S.C.K.; Sharma, B.S. Carbon monoxide sensitivity of vacuum deposited polyaniline semiconducting thin films. Sens. Actuators B 2005, 104, 90–93. [Google Scholar]
- Densakulprasert, N.; Wannatong, L.; Chotpattananont, D.; Hiamtup, P.; Sirivat, A.; Schwank, J. Electrical conductivity of polyaniline/zeolite composites and synergetic interaction with CO. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 2005, 117, 276–282. [Google Scholar]
- Misra, S.C.K.; Mathur, P.; Srivastava, B.K. Vacuum-deposited nanocrystalline polyaniline thin film sensors for detection of carbon monoxide. Sens. Actuators A 2004, 114, 30–35. [Google Scholar]
- Watcharaphalakorn, S.; Ruangchuay, L.; Chotpattahanont, D.; Sirivat, A.; Schwank, J. Polyaniline/polyimide blends as gas sensors and electrical conductivity response to CO-N-2 mixtures. Polym. Int. 2005, 54, 1126–1133. [Google Scholar]
- Anitha, G.; Subramanian, E. Recognition and exposition of intermolecular interaction between CH2H2Cl2 and CHCl3 by conducting polyaniline materials. Sens. Actuators B 2005, 107, 605–615. [Google Scholar]
- Tongpool, R. Effect of nitrogen dioxide and temperature on the properties of lead phthalocyanine in polypyrrole. Thin Solid Films 2003, 438, 14–19. [Google Scholar]
- Chyla, A.; Lewandowska, A.; Soloducho, J.; Gorecka-Drzazga, A.; Szablewski, M. 4-t-butyl-CuPc-PODT molecular composite material for an effective gas sensor. IEEE Trns. Dielectr. Electr. Insul. 2001, 8, 559–565. [Google Scholar]
- Suri, K.; Annapoorni, S.; Sarkar, A.K.; Tandon, R.P. Gas and humidity sensors based on iron oxide-polypyrrole nanocomposites. Sens. Actuators B 2002, 81, 277–282. [Google Scholar]
- Torsi, L.; Pezzuto, M.; Siciliano, P.; Rella, R.; Sabbatini, L.; Valli, L.; Zambonin, P.G. Conducting polymers doped with metallic inclusions: New materials for gas sensors. Sens. Actuators B 1998, 48, 362–367. [Google Scholar]
- Yang, J.S.; Swager, T.M. Fluorescent porous polymer films as TNT chemosensors: Electronic and structural effects. J. Am. Chem. Soc. 1998, 120, 11864–11873. [Google Scholar]
- Toal, S.J.; Trogler, W.C. Polymer sensors for nitroaromatic explosives detection. J. Mater. Chem. 2006, 16, 2871–2883. [Google Scholar]
- Jin, Z.; Su, Y.X.; Duan, Y.X. Development of a polyaniline-based optical ammonia sensor. Sens. Actuators B 2001, 72, 75–79. [Google Scholar]
- Nicho, M.E.; Trejo, M.; Garcia-Valenzuela, A.; Saniger, J.M.; Palacios, J.; Hu, H. Polyaniline composite coatings interrogated by a nulling optical-transmittance bridge for sensing low concentrations of ammonia gas. Sens. Actuators B 2001, 76, 18–24. [Google Scholar]
- Hu, H.; Trejo, M.; Nicho, M.E.; Saniger, J.M.; Garcia-Valenzuela, A. Adsorption kinetics of optochemical NH3 gas sensing with semiconductor polyaniline films. Sens. Actuators B 2002, 82, 14–23. [Google Scholar]
- Bekyarova, E.; Davis, M.; Burch, T.; Itkis, M.E.; Zhao, B.; Sunshine, S.; Haddon, R.C. Chemically functionalized single-walled carbon nanotubes as ammonia sensors. J. Phys. Chem. B 2004, 108, 19717–19720. [Google Scholar]
- Hong, K.H.; Oh, K.W.; Kang, T.J. Polyaniline-nylon 6 composite fabric for ammonia gas sensor. J. Appl. Polym. Sci. 2004, 92, 37–42. [Google Scholar]
- Liu, H.Q.; Kameoka, J.; Czaplewski, D.A.; Craighead, H.G. Polymeric nanowire chemical sensor. Nano. Lett. 2004, 4, 671–675. [Google Scholar]
- Virji, S.; Huang, J.X.; Kaner, R.B.; Weiller, B.H. Polyaniline nanofiber gas sensors: Examination of response mechanisms. Nano Lett. 2004, 4, 491–496. [Google Scholar]
- Hao, Q.L.; Wang, X.; Lu, L.D.; Yang, X.J.; Mirsky, V.M. Electropolymerized multilayer conducting polymers with response to gaseous hydrogen chloride. Macromol. Rapid. Commun. 2005, 26, 1099–1103. [Google Scholar]
- Virji, S.; Fowler, J.D.; Baker, C.O.; Huang, J.X.; Kaner, R.B.; Weiller, B.H. Polyaniline manofiber composites with metal salts: Chemical sensors for hydrogen sulfide. Small 2005, 1, 624–627. [Google Scholar]
- Ogura, K.; Shiigi, H. A CO2 sensing composite film consisting of base-type polyaniline and poly(vinyl alcohol). Electrochem. Solid State Lett. 1999, 2, 478–480. [Google Scholar]
- Ogura, K.; Shiigi, H.; Oho, T.; Tonosaki, T. A CO2 sensor with polymer composites operating at ordinary temperature. J. Electrochem. Soc. 2000, 147, 4351–4355. [Google Scholar]
- Jain, S.; Chakane, S.; Samui, A.B.; Krishnamurthy, V.N.; Bhoraskar, S.V. Humidity sensing with weak acid-doped polyaniline and its composites. Sens. Actuators B 2003, 96, 124–129. [Google Scholar]
- Virji, S.; Kaner, R.B.; Weiller, B.H. Hydrogen sensors based on conductivity changes in polyaniline nanofibers. J. Phys. Chem. B 2006, 110, 22266–22270. [Google Scholar]
- Krivan, E.; Visy, C.; Dobay, R.; Harsanyi, G.; Berkesi, O. Irregular response of the polypyrrole films to H2S. Electroanalysis 2000, 12, 1195–1200. [Google Scholar]
- Geng, L.; Wang, S.R.; Zhao, Y.Q.; Li, P.; Zhang, S.M.; Huang, W.P.; Wu, S.H. Study of the primary sensitivity of polypyrrole/r-Fe2O3 to toxic gases. Mater. Chem. Phys. 2006, 99, 15–19. [Google Scholar]
- Gustafsson, G.; Lundrom, I.; Liedberg, B.; Wu, C.R.; Inganas, O.; Wennerstom, O. The interaction between ammonia and polypyrrole. Synth. Met. 1989, 31, 163. [Google Scholar]
- Guernion, N.; Ewen, R.J.; Pihlainen, K.; Ratcliffe, N.M.; Teare, G.C. The fabrication and characterisation of a highly sensitive polypyrrole sensor and its electrical responses to amines of differing basicity at high humidities. Synth. Met. 2002, 126, 301–310. [Google Scholar]
- Kemp, N.T.; Kaiser, A.B.; Trodahl, H.J.; Chapman, B.; Buckley, R.G.; Partridge, A.C.; Foot, P.J.S. Effect of ammonia on the temperature-dependent conductivity and thermopower of polypyrrole. J. Polym. Sci. B 2006, 44, 1331–1338. [Google Scholar]
- Chabukswar, V.V.; Pethkar, S.; Athawale, A.A. Acrylic acid doped polyaniline as an ammonia sensor. Sens. Actuators B 2001, 77, 657–663. [Google Scholar]
- Mohammad, F. Compensation behaviour of electrically conductive polythiophene and polypyrrole. J. Phys. D: Appl. Phys. 1998, 31, 951–959. [Google Scholar]
- Jung, H.S.; Shimanouchi, T.; Morita, S.; Kuboi, R. Novel fabrication of conductive polymers contained micro-array gas sensitive films using a micromanipulation method. Electroanalysis 2003, 15, 1453–1459. [Google Scholar]
- Ewbank, P.C.; Loewe, R.S.; Zhai, L.; Reddinger, J.; Sauve, G.; McCullough, R.D. Regioregular poly(thiophene-3-alkanoic acid)s: water soluble conducting polymers suitable for chromatic chemosensing in solution and soild state. Tetrahedron 2004, 60, 11269–11275. [Google Scholar]
- English, J.T.; Deore, B.A.; Freund, M.S. Biogenic amine vapour detection using poly(anilineboronic acid) films. Sens. Actuators B 2006, 115, 666–671. [Google Scholar]
- Gardner, J.W.; Bartlett, P.N.; Pratt, K.F.E. Modeling of Gas-Sensitive Conducting Polymer Devices. Iee Proceedings-Circuits Devices and Systems 1995, 142, 321–333. [Google Scholar]
- Gardner, J.W.; Bartlett, P.N. Design of conducting polymer gas sensors: modeling and experiment. Synth. Met. 1994, 57, 2665–2670. [Google Scholar]
- Bartlett, P.N.; Gardner, J.W. Diffusion and binding of molecules to sites within homogeneous thin films. Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences 1996, 354, 35–57. [Google Scholar]
- Lin, C.W.; Hwang, B.J.; Lee, C.R. Characteristics and sensing behavior of electrochemically codeposited polypyrrole-poly(vinyl alcohol) thin film exposed to ethanol vapors. J. Appl. Polym. Sci. 1999, 73, 2079–2087. [Google Scholar]
- Hwang, B.J.; Yang, J.Y.; Lin, C.W. A microscopic gas-sensing model for ethanol sensors based on conductive polymer composites from polypyrrole and poly(ethylene oxide). J. Electrochem. Soc. 1999, 146, 1231–1236. [Google Scholar]
- Lin, C.W.; Liu, S.S.; Hwang, B.J. Study of the actions of BTEX compounds on polypyrrole film as a gas sensor. J. Appl. Polym. Sci. 2001, 82, 954–961. [Google Scholar]
- Charlesworth, J.M.; Partridge, A.C.; N., G. Mechanistic studies on the interactions between poly(pyrrole) and organic vapors. J. Phys. Chem. 1993, 97, 4518–5423. [Google Scholar]
- Bissell, R.A.; Persaud, K.C.; Travers, P. The influence of non-specific molecular partitioning of analytes on the electrical responses of conducting organic polymer gas sensors. Phys. Chem. Chem. Phys. 2002, 4, 3482–3490. [Google Scholar]
- Littlewood, A.B. Gas Chromatography; Academic Press: New York, 1970; pp. 44–121. [Google Scholar]
- Deng, Z.P.; Stone, D.C.; Thompson, M. Characterization of polymer films of pyrrole derivatives for chemical sensing by cyclic voltammetry, X-ray photoelectron spectroscopy and vapour sorption studies. Analyst 1997, 122, 1129–1138. [Google Scholar]
- Chen, Z.K.; Ng, S.C.; Li, S.F.Y.; Zhong, L.; Xu, L.G.; Chan, H.S.O. The fabrication and evaluation of a vapour sensor based on quartz crystal microbalance coated with poly(o-anisidine) Langmuir-Blodgett layers. Synth. Met. 1997, 87, 201–204. [Google Scholar]
- Appel, G.; Mikalo, R.; Henkel, K.; Oprea, A.; Yfantis, A.; Paloumpa, I.; Schmeisser, D. Polymeric electrodes. Solid-State Electron. 2000, 44, 855–861. [Google Scholar]
- Rizzo, S.; Sannicolo, F.; Benincori, T.; Schiavon, G.; Zecchin, S.; Zotti, G. Calix[4]arene-functionalized poly-cyclopenta[2,1-b;3,4-b ′]bithiophenes with good recognition ability and selectivity for small organic molecules for application in QCM-based sensors. J. Mater. Chem. 2004, 14, 1804–1811. [Google Scholar]
- Mirmohseni, A.; Rostamizadeh, K. Quartz crystal nanobalance in conjunction with principal component analysis for identification of volatile organic compounds. Sensors 2006, 6, 324–334. [Google Scholar]
- Vercelli, B.; Zecchin, S.; Comisso, N.; Zotti, G.; Berlin, A.; Dalcanale, E.; Groenendaal, L.B. Solvoconductivity of polyconjugated polymers: The roles of polymer oxidation degree and solvent electrical permittivity. Chem. Mater. 2002, 14, 4768–4774. [Google Scholar]
- Paterno, L.G.; Mattoso, L.H.C. Influence of different dopants on the adsorption, morphology, and properties of self-assembled films of poly(o-ethoxyaniline). J. Appl. Polym. Sci. 2002, 83, 1309–1316. [Google Scholar]
- Hosseini, S.H.; Entezami, A.A. Chemical and electrochemical synthesis of conducting graft copolymer of vinyl acetate with pyrrole and studies of its gas and vapor sensing. J. Appl. Polym. Sci. 2003, 90, 40–48. [Google Scholar]
- Nigorikawa, K.; Kunugi, Y.; Harima, Y.; Yamashita, K. A Selective Gas Sensor Using a Polypyrrole Thin-Film as a Sensitive Matrix on a Piezoelectric Crystal. J. Electroanal. Chem. 1995, 396, 563–567. [Google Scholar]
- Hwang, B.J.; Yang, J.Y.; Lin, C.W. Recognition of alcohol vapor molecules by simultaneous measurements of resistance changes on polypyrrole-based composite thin films and mass changes on a piezoelectric crystal. Sens. Actuators B 2001, 75, 67–75. [Google Scholar]
- Torsi, L.; Tanese, M.C.; Cioffi, N.; Gallazzi, M.C.; Sabbatini, L.; Zambonin, P.G. Alkoxy-substituted polyterthiophene thin-film-transistors as alcohol sensors. Sens. Actuators B 2004, 98, 204–207. [Google Scholar]
- Sharma, S.; Nirkhe, C.; Pethkar, S.; Athawale, A.A. Chloroform vapour sensor based on copper/polyaniline nanocomposite. Sens. Actuators B 2002, 85, 131–136. [Google Scholar]
- Lee, Y.S.; Joo, B.S.; Choi, N.J.; Lim, J.O.; Huh, J.S.; Lee, D.D. Visible optical sensing of ammonia based on polyaniline film. Sens. Actuators B 2003, 93, 148–152. [Google Scholar]
- Segal, E.; Tchoudakov, R.; Narkis, M.; Siegmann, A. Thermoplastic polyurethane-carbon black compounds: Structure, electrical conductivity and sensing of liquids. Polym. Eng. Sci. 2002, 42, 2430–2439. [Google Scholar]
- Segal, E.; Tchoudakov, R.; Narkis, M.; Siegmann, A.; Wei, Y. Polystyrene/polyaniline nanoblends for sensing of aliphatic alcohols. Sens. Actuators B 2005, 104, 140–150. [Google Scholar]
- Sakurai, Y.; Jung, H.S.; Shimanouchi, T.; Inoguchi, T.; Morita, S.; Kuboi, R.; Natsukawa, K. Novel array-type gas sensors using conducting polymers, and their performance for gas identification. Sens. Actuators B 2002, 83, 270–275. [Google Scholar]
- Ruangchuay, L.; Sirivat, A.; Schwank, J. Polypyrrole/poly(methylmethacrylate) blend as selective sensor for acetone in lacquer. Talanta 2003, 60, 25–30. [Google Scholar]
- Matsubara, I.; Hosono, K.; Murayama, N.; Shin, W.; Izu, N. Synthesis and gas sensing properties of polypyrrole/MoO3-layered nanohybrids. Bull. Chem. Soc. Jpn. 2004, 77, 1231–1237. [Google Scholar]
- Hosono, K.; Matsubara, I.; Murayama, N.; Shin, W.; Izu, N. The sensitivity of 4-ethylbenzenesulfonic acid-doped plasma polymerized polypyrrole films to volatile organic compounds. Thin Solid Films 2005, 484, 396–399. [Google Scholar]
- Chang, J.B.; Liu, V.; Subramanian, V.; Sivula, K.; Luscombe, C.; Murphy, A.; Liu, J.S.; Frechet, J.M.J. Printable polythiophene gas sensor array for low-cost electronic noses. J. Appl. Phys. 2006, 100. [Google Scholar]
- Torsi, L.; Tafuri, A.; Cioffi, N.; Gallazzi, M.C.; Sassella, A.; Sabbatini, L.; Zambonin, P.G. Regioregular polythiophene field-effect transistors employed as chemical sensors. Sens. Actuators B 2003, 93, 257–262. [Google Scholar]
- Hosseini, S.H.; Entezami, A.A. Conducting polymer blends of polypyrrole with polyvinyl acetate, polystyrene, and polyvinyl chloride based toxic gas sensors. J. Appl. Polym. Sci. 2003, 90, 49–62. [Google Scholar]
- Ruangchuay, L.; Sirivat, A.; Schwank, J. Electrical conductivity response of polypyrrole to acetone vapor: effect of dopant anions and interaction mechanisms. Synth. Met. 2004, 140, 15–21. [Google Scholar]
- Tan, C.K.; Blackwood, D.J. Interactions between polyaniline and methanol vapour. Sens. Actuators B 2000, 71, 184–191. [Google Scholar]
- Costello, B.P.J.D.; Ratcliffe, N.M.; Sivanand, P.S. The synthesis of novel 3-substituted pyrrole monomers possessing chiral side groups: a study of their chemical polymerisation and the assessment of their chiral discrimination properties. Synth. Met. 2003, 139, 43–55. [Google Scholar]
- Svetlicic, V.; Schmidt, A.J.; Miller, L.L. Conductometric sensors based on the hypersensitive response of plasticized polyaniline films to organic vapors. Chem. Mater. 1998, 10, 3305–3307. [Google Scholar]
- Miller, L.L.; Bankers, J.S.; Schmidt, A.J.; Boyd, D.C. Organic vapors, organic polymers and electrical conductivity. J. Phys. Org. Chem. 2000, 13, 808–815. [Google Scholar]
- Ogura, K.; Shiigi, H.; Nakayama, M.; Ogawa, A. Thermal properties of poly(anthranilic acid) (PANA) and humidity-sensitive composites derived from heat-treated PANA and poly(vinyl alcohol). J. Polym. Sci. A 1999, 37, 4458–4465. [Google Scholar]
- Ogura, K.; Saino, T.; Nakayama, M.; Shiigi, H. The humidity dependence of the electrical conductivity of a soluble polyaniline-poly(vinyl alcohol) composite film. J. Mater. Chem. 1997, 7, 2363–2366. [Google Scholar]
- Kang, H.S.; Kang, H.S.; Lee, J.K.; Lee, J.W.; Joo, J.; Ko, J.M.; Kim, M.S.; Lee, J.Y. Humidity-dependent characteristics of thin film poly(3,4-ethylenedioxythiophene) field-effect transistor. Synth. Met. 2005, 155, 176–179. [Google Scholar]
- Adam, H.; Stanislaw, G.; Folke, I. Chemical sensors definitions and classification. Pure Appl. Chem. 1991, 63, 1274–1250. [Google Scholar]
- Nylabder, C. Chemical and biological sensors. J. Phys. E: Sci. Instrum. 1985, 18, 736–750. [Google Scholar]
- Lavrik, N.V.; DeRossi, D.; Kazantseva, Z.I.; Nabok, A.V.; Nesterenko, B.A.; Piletsky, S.A.; Kalchenko, V.I.; Shivaniuk, A.N.; Markovskiy, L.N. Composite polyaniline/calixarene Langmuir-Blodgett films for gas sensing. Nanotechnology 1996, 7, 315–319. [Google Scholar]
- Bearzotti, A.; Foglietti, V.; Polzonetti, G.; Iucci, G.; Furlani, A.; Russo, M.V. Investigations on the response to humidity of an interdigitated electrode structure coated with iodine doped polyphenylacetylene. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 1996, 40, 1–4. [Google Scholar]
- Penza, M.; Milella, E.; Alba, M.B.; Quirini, A.; Vasanelli, L. Selective NH3 gas sensor based on Langmuir-Blodgett polypyrrole film. Sens. Actuators B 1997, 40, 205–209. [Google Scholar]
- Dobay, R.; Harsanyi, G.; Visy, C. Conducting polymer based electrochemical sensors on thick film substrate. Electroanalysis 1999, 11, 804–808. [Google Scholar]
- Jin, G.; Too, C.O.; Norrish, J.; Wallace, G.G. Directed electrochemical deposition of conducting polymer filament on screen-printed array. Synth. Met. 2003, 135, 29–30. [Google Scholar]
- Santhanam, K.S.V.; Sangoi, R.; Fuller, L. A chemical sensor for chloromethanes using a nanocomposite of multiwalled carbon nanotubes with poly(3-methylthiophene). Sens. Actuators B 2005, 106, 766–771. [Google Scholar]
- Janata, J.; Josowicz, M. Conducting polymers in electronic chemical sensors. Nat. Mater. 2003, 2, 19–24. [Google Scholar]
- Liu, D.M.; AguilarHernandez, J.; PotjeKamloth, K.; Liess, H.D. A new carbon monoxide sensor using a polypyrrole film grown on an interdigital-capacitor substrate. Sens. Actuators B 1997, 41, 203–206. [Google Scholar]
- Janata, J. Electrochemical microsensors. Proc. IEEE 2003, 91, 864–869. [Google Scholar]
- Chen, H.; Josowicz, M.; Janatax, J. Chemical effects in organic electronics. Chem. Mater. 2004, 16, 4728–4735. [Google Scholar]
- Hao, Q.L.; Kulikov, V.; Mirsky, V.A. Investigation of contact and bulk resistance of conducting polymers by simultaneous two- and four-point technique. Sens. Actuators B 2003, 94, 352–357. [Google Scholar]
- Krondak, M.; Broncova, G.; Anikin, S.; Merz, A.; Mirsky, V.M. Chemosensitive properties of poly-4,4′-dialkoxy-2,2′-bipyrroles. J. Solid State Electrochem. 2006, 10, 185–191. [Google Scholar]
- Li, G.F.; Martinez, C.; Janata, J.; Smith, J.A.; Josowicz, M.; Semancik, S. Effect of morphology on the response of polyaniline-based conductometric gas sensors: Nanofibers vs. thin films. Electrochem. Solid State Lett. 2004, 7, H44–H47. [Google Scholar]
- Musio, F.; Ferrara, M.C. Low frequency a.c. response of polypyrrole gas sensors. Sens. Actuators B 1997, 41, 97–103. [Google Scholar]
- Harris, P.D.; Arnold, W.M.; Andrews, M.K.; Partridge, A.C. Resistance characteristics of conducting polymer films used in gas sensors. Sens. Actuators B 1997, 42, 177–184. [Google Scholar]
- Musio, F.; Amrani, M.E.H.; Persaud, K.C. High-Frequency Ac Investigation of Conducting Polymer Gas Sensors. Sens. Actuators B 1995, 23, 223–226. [Google Scholar]
- Amrani, M.E.H.; Persaud, K.C.; Payne, P.A. High-Frequency Measurements of Conducting Polymers - Development of a New Technique for Sensing Volatile Chemicals. Meas. Sci. Technol. 1995, 6, 1500–1507. [Google Scholar]
- Amrani, M.E.H.; Payne, P.A. Multi-frequency interrogation technique applied to conducting polymer gas and odour sensors. IEE Proc.-Sci. Meas. Technol. 1999, 146, 95–101. [Google Scholar]
- Mabeck, J.T.; Malliaras, G.G. Chemical and biological sensors based on organic thin-film transistors. Anal. Bioanal. Chem. 2006, 384, 343–353. [Google Scholar]
- Dimitrakopoulos, C.D.; Mascaro, D.J. Organic thin-film transistors: A review of recent advances. IBM J. Res. Dev. 2001, 45, 11–27. [Google Scholar]
- Janata, J.; Josowicz, M. Chemical modulation of work function as a transduction mechanism for chemical sensors. Accounts of Chemical Research 1998, 31, 241–248. [Google Scholar]
- Liess, M.; Chinn, D.; Petelenz, D.; Janata, J. Properties of insulated gate field-effect transistors with a polyaniline gate electrode. Thin Solid Films 1996, 286, 252–255. [Google Scholar]
- Barker, P.S.; Monkman, A.P.; Petty, M.C.; Pride, R. A polyaniline/silicon hybrid field effect transistor humidity sensor. Synth. Met. 1997, 85, 1365–1366. [Google Scholar]
- Barker, P.S.; Monkman, A.P.; Petty, M.C.; Pride, R. Electrical characteristics of a polyaniline/silicon hybrid field-effect transistor gas sensor. Iee Proceedings-Circuits Devices and Systems 1997, 144, 111–116. [Google Scholar]
- Domansky, K.; Baldwin, D.L.; Grate, J.W.; Hall, T.B.; Li, J.; Josowicz, M.; Janata, J. Development and calibration of field-effect transistor-based sensor array for measurement of hydrogen and ammonia gas mixtures in humid air. Anal. Chem. 1998, 70, 473–481. [Google Scholar]
- Meijerink, M.G.H.; Koudelka-Hep, M.; de Rooij, N.F.; Strike, D.J.; Hendrikse, J.; Olthuis, W.; Bergveld, P. Gas-dependent field effect transistor with an electrodeposited conducting polymer gate contact. Electrochem. Solid State Lett. 1999, 2, 138–139. [Google Scholar]
- Covington, J.A.; Gardner, J.W.; Briand, D.; de Rooij, N.F. A polymer gate FET sensor array for detecting organic vapours. Sens. Actuators B 2001, 77, 155–162. [Google Scholar]
- Bufon, C.C.B.; Heinzel, T. Polypyrrole thin-film field-effect transistor. Appl. Phys. Lett. 2006, 89. [Google Scholar]
- Tuyen, L.T.T.; PotjeKamloth, K.; Liess, H.D. Electrical properties of doped polypyrrole/silicon heterojunction diodes and their response to NOx gas. Thin Solid Films 1997, 292, 293–298. [Google Scholar]
- Laranjeira, J.M.G.; Khoury, H.J.; de Azevedo, W.M.; da Silva, E.F.; de Vasconcelos, E.A. Fabrication of high quality silicon-polyaniline heterojunctions. Appl. Surf. Sci. 2002, 190, 390–394. [Google Scholar]
- Pinto, N.J.; Gonzalez, R.; Johnson, A.T.; MacDiarmid, A.G. Electrospun hybrid organic/inorganic semiconductor Schottky nanodiode. Appl. Phys. Lett. 2006, 89. [Google Scholar]
- Campos, M.; Bulhoes, L.O.S.; Lindino, C.A. Gas-sensitive characteristics of metal/semiconductor polymer Schottky device. Sens. Actuators A 2000, 87, 67–71. [Google Scholar]
- Van, C.N.; Potje-Kamloth, K. The influence of thickness and preparation temperature of doped polypyrrole films on the electrical and chemical sensing properties of polypyrrole/gold Schottky barrier diodes. J. Phys. D: Appl. Phys. 2000, 33, 2230–2238. [Google Scholar]
- Brédas, J.L.; Scott, J.C.; Yakushi, K.; Street, G.B. Polarons and bipolarons in polypyrrole: Evolution of the band structure and optical spectrum upon doing. Physical Review B 1984, 30, 1023. [Google Scholar]
- Inaoka, S.; Collard, D.M. Chemical and electrochemical polymerization of 3-alkylthiophenes on self-assembled monolayers of oligothiophene-substituted alkylsilanes. Langmuir 1999, 15, 3752–3758. [Google Scholar]
- Gallazzi, M.C.; Tassoni, L.; Bertarelli, C.; Pioggia, G.; Di Francesco, F.; Montoneri, E. Poly(alkoxy-bithiophenes) sensors for organic vapours. Sens. Actuators B 2003, 88, 178–189. [Google Scholar]
- Christie, S.; Scorsone, E.; Persaud, K.; Kvasnik, F. Remote detection of gaseous ammonia using the near infrared transmission properties of polyaniline. Sens. Actuators B 2003, 90, 163–169. [Google Scholar]
- Yuan, J.M.; El-Sherif, M.A. Fiber-optic chemical sensor using polyaniline as modified cladding material. IEEE Sens. J. 2003, 3, 5–12. [Google Scholar]
- Cao, W.Q.; Duan, Y.X. Optical fiber-based evanescent ammonia sensor. Sens. Actuators B 2005, 110, 252–259. [Google Scholar]
- Bansal, L.; El-Sherif, M. Intrinsic optical-fiber sensor for nerve agent sensing. IEEE Sens. J. 2005, 5, 648–655. [Google Scholar]
- Agbor, N.E.; Cresswell, J.P.; Petty, M.C.; Monkman, A.P. An optical gas sensor based on polyaniline Langmuir-Blodgett films. Sens. Actuators B 1997, 41, 137–141. [Google Scholar]
- Sih, B.C.; Wolf, M.O.; Jarvis, D.; Young, J.F. Surface-plasmon resonance sensing of alcohol with electrodeposited polythiophene and gold nanoparticle-oligothiophene films. J. Appl. Phys. 2005, 98. [Google Scholar]
- Chang, S.M.; Muramatsu, H.; Nakamura, C.; Miyake, J. The principle and applications of piezoelectric crystal sensors. Mater. Sci. Eng. C-Biomimetic Supramol. Syst. 2000, 12, 111–123. [Google Scholar]
- Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 1959, 155, 206–222. [Google Scholar]
- Kim, S.R.; Choi, S.A.; Kim, J.D.; Kim, K.J.; Lee, C.; Rhee, S.B. Preparation of Polythiophene Lb Films and Their Gas Sensitivities by the Quartz-Crystal Microbalance. Synth. Met. 1995, 71, 2027–2028. [Google Scholar]
- Syritski, V.; Reut, J.; Opik, A.; Idla, K. Environmental QCM sensors coated with polypyrrole. Synth. Met. 1999, 102, 1326–1327. [Google Scholar]
- Torsi, L.; Tanese, M.C.; Cioffi, N.; Gallazzi, M.C.; Sabbatini, L.; Zambonin, P.G.; Raos, G.; Meille, S.V.; Giangregorio, M.M. Side-chain role in chemically sensing conducting polymer field-effect transistors. J. Phys. Chem. B 2003, 107, 7589–7594. [Google Scholar]
- Henkel, K.; Oprea, A.; Paloumpa, I.; Appel, G.; Schmeisser, D.; Kamieth, P. Selective polypyrrole electrodes for quartz microbalances: NO2 and gas flux sensitivities. Sens. Actuators B 2001, 76, 124–129. [Google Scholar]
- Penza, M.; Milella, E.; Anisimkin, V.I. Gas sensing properties of Langmuir-Blodgett polypyrrole film investigated by surface acoustic waves. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1998, 45, 1125–1132. [Google Scholar]
- Penza, M.; Milella, E.; Anisimkin, V.I. Monitoring of NH3 gas by LB polypyrrole-based SAW sensor. Sens. Actuators B 1998, 47, 218–224. [Google Scholar]
- Milella, E.; Penza, M. SAW gas detection using Langmuir-Blodgett polypyrrole films. Thin Solid Films 1998, 329, 694–697. [Google Scholar]
- Do, J.S.; Chang, W.B. Amperometric nitrogen dioxide gas sensor: preparation of PAn/Au/SPE and sensing behaviour. Sens. Actuators B 2001, 72, 101–107. [Google Scholar]
- Diab, N.; Schuhmann, W. Electropolymerized manganese porphyrin/polypyrrole films as catalytic surfaces for the oxidation of nitric oxide. Electrochim. Acta 2001, 47, 265–273. [Google Scholar]
- Liu, Y.C.; Hwang, B.J.; Hsu, W.C. Characteristics of Pd/Nafion oxygen sensor modified with polypyrrole by chemical vapor deposition. J. Solid State Electrochem. 2002, 6, 351–356. [Google Scholar]
- Guernion, N.; Costello, B.P.J.D.; Ratcliffe, N.M. The synthesis of 3-octadecyl- and 3-docosylpyrrole, their polymerisation and incorporation into novel composite gas sensitive resistors. Synth. Met. 2002, 128, 139–147. [Google Scholar]
- Park, Y.H.; Kim, S.J.; Lee, J.Y. Preparation and characterization of electroconductive polypyrrole copolymer Langmuir-Blodgett films. Thin Solid Films 2003, 425, 233–238. [Google Scholar]
- Valentini, L.; Bavastrello, V.; Stura, E.; Armentano, I.; Nicolini, C.; Kenny, J.M. Sensors for inorganic vapor detection based on carbon nanotubes and poly(o-anisidine) nanocomposite material. Chem. Phys. Lett. 2004, 383, 617–622. [Google Scholar]
- Stella, R.; Barisci, J.N.; Serra, G.; Wallace, G.G.; De Rossi, D. Characterisation of olive oil by an electronic nose based on conducting polymer sensors. Sens. Actuators B 2000, 63, 1–9. [Google Scholar]
- Kondratowicz, B.; Narayanaswamy, R.; Persaud, K.C. An investigation into the use of electrochromic polymers in optical fibre gas sensors. Sens. Actuators B 2001, 74, 138–144. [Google Scholar]
- Schottland, P.; Bouguettaya, M.; Chevrot, C. Soluble polythiophene derivatives for NO2 sensing applications. Synth. Met. 1999, 102, 1325–1325. [Google Scholar]
- Li, B.; Sauve, G.; Iovu, M.C.; Jeffries-El, M.; Zhang, R.; Cooper, J.; Santhanam, S.; Schultz, L.; Revelli, J.C.; Kusne, A.G.; Kowalewski, T.; Snyder, J.L.; Weiss, L.E.; Fedder, G.K.; McCullough, R.D.; Lambeth, D.N. Volatile organic compound detection using nanostructured copolymers. Nano Lett. 2006, 6, 1598–1602. [Google Scholar]
- Kawai, T.; Kojima, S.; Tanaka, F.; Yoshino, K. Electrical property of poly(3-octyloxythiophene) and its gas sensor application. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 1998, 37, 6237–6241. [Google Scholar]
- Tanaka, F.; Kawai, T.; Kojima, S.; Yoshino, K. Electrical and optical properties of poly(3-alkoxythiophene) and their application for gas sensor. Synth. Met. 1999, 102, 1358–1359. [Google Scholar]
- Hosseini, S.H.; Entezami, A.A. Chemical and electrochemical synthesis of homopolymer and copolymers of 3-methoxyethoxythiophene with aniline, thiophene and pyrrole for studies of their gas and vapour sensing. Polym. Adv. Technol. 2001, 12, 524–534. [Google Scholar]
- Rella, R.; Siciliano, P.; Toscano, G.; Valli, L.; Schenetti, L.; Mucci, A.; Iarossi, D. Langmuir-Blodgett films of poly[3-(butylthio)thiophene]: optical properties and electrical measurements in controlled atmosphere. Sens. Actuators B 1999, 57, 125–129. [Google Scholar]
- Schottland, P.; Fichet, O.; Teyssie, D.; Chevrot, C. Langmuir-Blodgett films of an alkoxy derivative of poly(3,4-ethylenedioxythiophene). Synth. Met. 1999, 101, 7–8. [Google Scholar]
- Quartarone, E.; Mustarelli, P.; Magistris, A.; Russo, M.V.; Fratoddi, I.; Furlani, A. Investigations by impedance spectroscopy on the behaviour of poly(N,N-dimethylpropargylamine) as humidity sensor. Solid State Ion. 2000, 136, 667–670. [Google Scholar]
- Bearzotti, A.; Fratoddi, I.; Palummo, L.; Petrocco, S.; Furlani, A.; Lo Sterzo, C.; Russo, M.V. Highly ethynylated polymers: synthesis and applications for humidity sensors. Sens. Actuators B 2001, 76, 316–321. [Google Scholar]
- Brie, M.; Turcu, R.; Neamtu, C.; Pruneanu, S. The effect of initial conductivity and doping anions on gas sensitivity of conducting polypyrrole films to NH3. Sens. Actuators B 1996, 37, 119–122. [Google Scholar]
- Anitha, G.; Subramanian, E. Dopant induced specificity in sensor behaviour of conducting polyaniline materials with organic solvents. Sens. Actuators B 2003, 92, 49–59. [Google Scholar]
- de Souza, J.E.G.; dos Santos, F.L.; Barros-Neto, B.; dos Santos, C.G.; de Melo, C.P. Polypyrrole thin films gas sensors. Synth. Met. 2001, 119, 383–384. [Google Scholar]
- Xu, K.; Zhu, L.H.; Li, J.; Tang, H.Q. Effects of dopants on percolation behaviors and gas sensing characteristics of polyaniline film. Electrochim. Acta 2006, 52, 723–727. [Google Scholar]
- Freund, M.S.; Lewis, N.S. A Chemically Diverse Conducting Polymer-Based Electronic Nose. Proc. Natl. Acad. Sci. U. S. A. 1995, 92, 2652–2656. [Google Scholar]
- Unde, S.; Ganu, J.; Radhakrishnan, S. Conducting polymer-based chemical sensor: Characteristics and evaluation of polyaniline composite films. Adv. Mater. Opt. Electron. 1996, 6, 151–157. [Google Scholar]
- Lin, C.W.; Hwang, B.J.; Lee, C.R. Methanol sensors based on the conductive polymer composites from polypyrrole and poly(vinyl alcohol). Mater. Chem. Phys. 1998, 55, 139–144. [Google Scholar]
- Bhat, N.; Geetha, P.; Pawde, S. Preparation and characterization of composites of polypyrrole. Polym. Eng. Sci. 1999, 39, 1517–1524. [Google Scholar]
- Bouchtalla, S.; Auret, L.; Janot, J.M.; Deronzier, A.; Moutet, J.C.; Seta, P. [60]Fullerene immobilized in a thin functionalized polypyrrole film. Basic principles for the elaboration of an oxygen sensor. Mater. Sci. Eng. C-Biomimetic Supramol. Syst. 2002, 21, 125–129. [Google Scholar]
- Liu, Y.C.; Hwang, B.J.; Hsu, W.C. Improvement in anti-aging of metallized Nafion (R) hydrogen sensors modified by chemical vapor deposition of polypyrrole. Sens. Actuators B 2002, 87, 304–308. [Google Scholar]
- Liu, Y.C.; Hwang, B.J.; Chen, Y.L. Nafion based hydrogen sensors: Pt/Naflon electrodes prepared by Takenata-Torikai method and modified with polypyrrole. Electroanalysis 2002, 14, 556–558. [Google Scholar]
- Brezoi, D.V.; Ion, R.M. Phase evolution induced by polypyrrole in iron oxide-polypyrrole nanocomposite. Sens. Actuators B 2005, 109, 171–175. [Google Scholar]
- Geng, L.N.; Huang, X.L.; Zhao, Y.Q.; Li, P.; Wang, S.R.; Zhang, S.M.; Wu, S.H. H2S sensitivity study of polypyrrole/WO3 materials. Solid-State Electron. 2006, 50, 723–726. [Google Scholar]
- Geng, L.N.; Zhao, Y.Q.; Huang, X.L.; Wang, S.R.; Zhang, S.M.; Huang, W.P.; Wu, S.H. The preparation and gas sensitivity study of polypyrrole/zinc oxide. Synth. Met. 2006, 156, 1078–1082. [Google Scholar]
- Matsuguchi, M.; Io, J.; Sugiyama, G.; Sakai, Y. Effect of NH3 gas on the electrical conductivity of polyaniline blend films. Synth. Met. 2002, 128, 15–19. [Google Scholar]
- Matsuguchi, M.; Okamoto, A.; Sakai, Y. Effect of humidity on NH3 gas sensitivity of polyaniline blend films. Sens. Actuators B 2003, 94, 46–52. [Google Scholar]
- Kim, J.S.; Sohn, S.O.; Huh, J.S. Fabrication and sensing behavior of PVF2 coated-polyaniline sensor for volatile organic compounds. Sens. Actuators B 2005, 108, 409–413. [Google Scholar]
- Segal, E.; Tchoudakov, R.; Mironi-Harpaz, I.; Narkis, M.; Siegmann, A. Chemical sensing materials based on electrically-conductive immiscible polymer blends. Polym. Int. 2005, 54, 1065–1075. [Google Scholar]
- Cooper, H.; Segal, E.; Srebnik, S.; Tchoudakov, R.; Narkis, M.; Siegmann, A. Electrically conductive sensors for liquids based on quaternary ethylene vinyl acetate (EVA)/copolyamide/maleated-EVA/polyaniline blends. J. Appl. Polym. Sci. 2006, 101, 110–117. [Google Scholar]
- Sotzing, G.A.; Phend, J.N.; Grubbs, R.H.; Lewis, N.S. Highly sensitive detection and discrimination of biogenic amines utilizing arrays of polyaniline/carbon black composite vapor detectors. Chem. Mater. 2000, 12, 593–595. [Google Scholar]
- Zhang, T.; Nix, M.B.; Yoo, B.Y.; Deshusses, M.A.; Myung, N.V. Electrochemically functionalized single-walled carbon nanotube gas sensor. Electroanalysis 2006, 18, 1153–1158. [Google Scholar]
- Ma, X.F.; Li, G.; Wang, M.; Cheng, Y.N.; Bai, R.; Chen, H.Z. Preparation of a nanowire-structured polyaniline composite and gas sensitivity studies. Chem. Eur. J. 2006, 12, 3254–3260. [Google Scholar]
- Porter, T.L.; Thompson, D.; Bradley, M.; Eastman, M.P.; Hagerman, M.E.; Attuso, J.L.; Votava, A.E.; Bain, E.D. Nanometer-scale structure of hectorite-aniline intercalates. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films 1997, 15, 500–504. [Google Scholar]
- Conn, C.; Sestak, S.; Baker, A.T.; Unsworth, J. A polyaniline-based selective hydrogen sensor. Electroanalysis 1998, 10, 1137–1141. [Google Scholar]
- Wang, J.Z.; Matsubara, I.; Murayama, N.; Woosuck, S.; Izu, N. The preparation of polyaniline intercalated MoO3 thin film and its sensitivity to volatile organic compounds. Thin Solid Films 2006, 514, 329–333. [Google Scholar]
- Parvatikar, N.; Jain, S.; Bhoraskar, S.V.; Prasad, M. Spectroscopic and electrical properties of polyaniline/CeO2 composites and their application as humidity sensor. J. Appl. Polym. Sci. 2006, 102, 5533–5537. [Google Scholar]
- Sadek, A.Z.; Wlodarski, W.; Shin, K.; Kaner, R.B.; Kalantar-zadeh, K. A layered surface acoustic wave gas sensor based on a polyaniline/In2O3 nanofibre composite. Nanotechnology 2006, 17, 4488–4492. [Google Scholar]
- Do, J.S.; Chang, W.B. Amperometric nitrogen dioxide gas sensor based on PAn/Au/Nafion((R)) prepared by constant current and cyclic voltammetry methods. Sens. Actuators B 2004, 101, 97–106. [Google Scholar]
- Milella, E.; Musio, F.; Alba, M.B. Polypyrrole LB multilayer sensitive films for odorants. Thin Solid Films 1996, 285, 908–910. [Google Scholar]
- Stussi, E.; Stella, R.; De Rossi, D. Chemoresistive conducting polymer-based odour sensors: influence of thickness changes on their sensing properties. Sens. Actuators B 1997, 43, 180–185. [Google Scholar]
- Huang, J.; Virji, S.; Weiller, B.H.; Kaner, R.B. Nanostructured polyaniline sensors. Chem. Eur. J. 2004, 10, 1315–1319. [Google Scholar]
- Xing, S.X.; Zhao, C.; Jing, S.Y.; Wu, Y.; Wang, Z.C. Morphology and gas-sensing behavior of in situ polymerized nanostructured polyaniline films. Eur. Polym. J. 2006, 42, 2730–2735. [Google Scholar]
- Zhang, X.Y.; Goux, W.J.; Manohar, S.K. Synthesis of polyaniline nanofibers by “nanofiber seeding”. J. Am. Chem. Soc. 2004, 126, 4502–4503. [Google Scholar]
- Jang, J.; Chang, M.; Yoon, H. Chemical sensors based on highly conductive poly(3,4-ethylene-dioxythiophene) nanorods. Adv. Mater. 2005, 17, 1616–1620. [Google Scholar]
- Kim, B.K.; Kim, Y.H.; Won, K.; Chang, H.J.; Chi, Y.M.; Kong, K.J.; Rhyu, B.W.; Kim, J.J.; Lee, J.O. Electrical properties of polyaniline nanofibre synthesized with biocatalyst. Nanotechnology 2005, 16, 1177–1181. [Google Scholar]
- Liu, X.L.; Ly, J.; Han, S.; Zhang, D.H.; Requicha, A.; Thompson, M.E.; Zhou, C.W. Synthesis and electronic properties of individual single-walled carbon nanotube/polypyrrole composite nanocables. Adv. Mater. 2005, 17, 2727–2732. [Google Scholar]
- Dong, B.; Krutschke, M.; Zhang, X.; Chi, L.F.; Fuchs, H. Fabrication of polypyrrole wires between microelectrodes. Small 2005, 1, 520–524. [Google Scholar]
- Dong, B.; Zhong, D.Y.; Chi, L.F.; Fuchs, H. Patterning of conducting polymers based on a random copolymer strategy: Toward the facile fabrication of nanosensors exclusively based on polymers. Adv. Mater. 2005, 17, 2736–2741. [Google Scholar]
- Cui, X.Y.; Martin, D.C. Fuzzy gold electrodes for lowering impedance and improving adhesion with electrodeposited conducting polymer films. Sens. Actuators A 2003, 103, 384–394. [Google Scholar]
- Chen, Y.J.; Kang, E.T.; Neoh, K.G.; Tan, K.L. Oxidative graft polymerization of aniline on modified Si(100) surface. Macromolecules 2001, 34, 3133–3141. [Google Scholar]
- Jun, H.K.; Hoh, Y.S.; Lee, B.S.; Lee, S.T.; Lim, J.O.; Lee, D.D.; Huh, J.S. Electrical properties of polypyrrole gas sensors fabricated under various pretreatment conditions. Sens. Actuators B 2003, 96, 576–581. [Google Scholar]
- Kemp, N.T.; Flanagan, G.U.; Kaiser, A.B.; Trodahl, H.J.; Chapman, B.; Partridge, A.C.; Buckley, R.G. Temperature-dependent conductivity of conducting polymers exposed to gases. Synth. Met. 1999, 101, 434–435. [Google Scholar]
- Krutovertsev, S.A.; Ivanova, O.M.; Sorokin, S.I. Sensing properties of polyaniline films doped with Dawson heteropoly compounds. J. Anal. Chem. 2001, 56, 1057–1060. [Google Scholar]
- Kukla, A.L.; Shirshov, Y.M.; Piletsky, S.A. Ammonia sensors based on sensitive polyaniline films. Sens. Actuators B 1996, 37, 135–140. [Google Scholar]
- Fedorko, P.; Skakalova, V. Low pressure effect in the electrical conductivity of doped polypyrrole. Synth. Met. 1998, 94, 279–283. [Google Scholar]
- Misra, S.C.K.; Mathur, P.; Yadav, M.; Tiwari, M.K.; Garg, S.C.; Tripathi, P. Preparation and characterization of vacuum deposited semiconducting nanocrystalline polymeric thin film sensors for detection of HCl. Polymer 2004, 45, 8623–8628. [Google Scholar]
- Ricks-Laskoski, H.L.; Buckley, L.J. Twenty-year aging study of electrically conductive polypyrrole films. Synth. Met. 2006, 156, 417–419. [Google Scholar]
- Bay, L.; Mogensen, N.; Skaarup, S.; Sommer-Larsen, P.; Jorgensen, M.; West, K. Polypyrrole doped with alkyl benzenesulfonates. Macromolecules 2002, 35, 9345–9351. [Google Scholar]
Backbone | Side chain | Reference |
---|---|---|
PPy | S: alkyl | [95], [176], [37] |
S: alkoxy | [95], [133] | |
S: hydroxyalkyl | [90] | |
S: carboxyalkyl | [90] | |
S: alkyl sulfonic acid | [95] | |
S: amine | [95] | |
S: ester group | [95], [177], [114] | |
S: other | [90] | |
G: to PVA | [97] | |
C: with thiophene | [37] | |
PAni | S: alkoxy | [91], [96], [178] |
S: sulfonic acid | [179], [61] | |
S: phenyl | [180] | |
S: boronate | [80] | |
G: to SWNT | [61] | |
PTh | S: alkyl | [166], [181], [168], [110], [53], [105], [182], [127], [109] |
S: alkoxy | [183], [110], [157], [168], [184], [185], [100] | |
S: ester group | [166] | |
S: alkthio | [186] | |
S: carboxyl alkyl | [79] | |
C: poly(3-octylthiophene-co-thienylethanol) | [181] | |
C: with PS | [182] | |
C: with PMA | [182] | |
C: with PBA | [182] | |
PEdot | S: alkoxy | [187] |
S: ether group | [95] | |
PA | S: amine | [188] |
Poly(diethylyl benzene) (PEB) | S: alkoxy | [189] |
Conducting polymer | Second component | Texture | Reference |
---|---|---|---|
PPy | PS | Blend | [194], [111], [27] |
High density polyethylene (HDPE) | Blend | [27] | |
PEO | Blend | [195], [27] | |
PVA | Blend | [196], [84], [43] | |
PMMA | Blend | [38], [106], [27] | |
PMMA | Coated | [74] | |
Poly(etheretherletone) (PEEK) | Coated | [74] | |
PVDF | Blend | [197] | |
PVAc | Blend | [111] | |
PVC | Blend | [111] | |
Poly(acrylonitrile-co-butadiene-co-stryrene) (ABS) | Blend | [27] | |
Polyurethane (PU) | Coated | [19] | |
C60 | Blend | [198] | |
SWNT | Coated | [39] | |
Nafion®/metal | Coated | [175], [199], [200] | |
Calixarene | Blend | [122] | |
Various of plasticized polymers | Blend | [194] | |
Pb-phthalocyanine | Blend | [52], [22] | |
SnO2 | Blend | [176] | |
Fe2O3 | Blend | [54], [201], [72] | |
MoO3 | Layered | [107] | |
WO3 | Blend | [202] | |
ZnO2 | Blend | [203] | |
PAni | PS | Blend | [204], [205], [104], [20] |
PVA | Blend | [117], [118], [67], [68], [17] | |
PMMA | Blend | [60], [204], [205] | |
PVDF | Coated | [206] | |
Poly(butyl acrylate-co-vinyl acetate) (PBuA-VAc) | Blend | [17] | |
PP + Carbon black + Thermoplastic PU | Blend | [207] | |
PS + Carbon black + Thermoplastic PU | |||
Ethylene vinyl acetate copolymer (EVA)/copolyamide (CoPA) | Blend | [208] | |
Nylon 6 | Coated | [62] | |
Polyimide (PI) | Blend | [50] | |
PEDOT | Coated | [65] | |
Carbon black | Blend | [209] | |
SWNT | Coated | [210] | |
MWNT | Blend | [211] | |
Cu(II)-exchanged hectorite | Blend | [212] | |
PtO2 | Blend | [213] | |
TiO2 | Blend | [23] | |
SnO2 | Blend | [42] | |
MoO3 | Layered | [214] | |
CuCl2 | Blend | [66] | |
CeO2 | Blend | [215] | |
In2O3 | Blend | [216] | |
Zeolite and Cu2+ | Blend | [48] | |
Nafion®/metal | Coated | [173], [217] | |
Cu | Blend | [101] | |
Pd | Blend | [33] | |
PTh | 4-t-butyl-Cu-phthalocyanine | Blend | [53] |
MWCN | Blend | [127] | |
SnO2 | Blend | [42] | |
Cu | Blend | [55] | |
Pd | Blend | [55] | |
Analyte | Sensing material | Detect limit | Sensor type | Reference |
---|---|---|---|---|
NH3 | PAni/SWNT | 50 ppb | Chemresistor | [210] |
NO2 | PPy/PET | <20 ppm | Chemresistor | [36] |
PTh/CuPc | 4.3 ppm | Chemresistor | [53] | |
PAni/In2O3 | <0.5 ppm | SAW | [216] | |
HCl | PAni/FeAl | 0.2 ppm | Chemresistor | [235] |
H2S | PAni/heavy metal salts | <10 ppm | Chemresistor | [66] |
CO | PAni/FeAl | 10 ppm | Chemresistor | [47] |
PAni/In2O3 | <60 ppm | SAW | [216] | |
Water | PAni | < 25 ppm | Chemresistor | [30] |
Methanol | PAni/Pd | <1 ppm | Chemresistor | [33] |
Methane halide | Poly(3-methylthiophene)/MWNT | Several ppm | Chemresistor | [127] |
PAni/Cu | <10 ppm | Chemresistor | [101] | |
Acetone | PTh copolymer | 200∼ 300 ppm | Chemresistor | [182] |
Toluene | PTh copolymer | 20 ppm | Chemresistor | [182] |
Butylamine | Poly(anilineboronic acid) | 10 ppb | Chemresistor | [80] |
© 2007 by MDPI ( http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.
Share and Cite
Bai, H.; Shi, G. Gas Sensors Based on Conducting Polymers. Sensors 2007, 7, 267-307. https://doi.org/10.3390/s7030267
Bai H, Shi G. Gas Sensors Based on Conducting Polymers. Sensors. 2007; 7(3):267-307. https://doi.org/10.3390/s7030267
Chicago/Turabian StyleBai, Hua, and Gaoquan Shi. 2007. "Gas Sensors Based on Conducting Polymers" Sensors 7, no. 3: 267-307. https://doi.org/10.3390/s7030267
APA StyleBai, H., & Shi, G. (2007). Gas Sensors Based on Conducting Polymers. Sensors, 7(3), 267-307. https://doi.org/10.3390/s7030267