Electrochemical Oxidation and Determination of Oxalic Acid at an Exfoliated Graphite-Polystyrene Composite Electrode
Abstract
:1. Introduction
2. Results and Discussion
2.1. Surface characterization
2.2. Voltammetric measurements
2.3. Chronoamperometric measurements
3. Experimental Section
Conclusions
Acknowledgments
References and Notes
- Health Council of the Netherlands: Committee on Updating of Occupational Exposure Limits. Oxalic acid; Health-based Reassessment of Administrative Occupational Exposure Limits. The Hague; In Health Council of the Netherlands; 2004; 2000/15OSH/106. [Google Scholar]
- Menache, R. Routine Micromethod for Determination of Oxalic Acid in Urine by Atomic Absorption Spectrophotometry. Clin. Chem. 1974, 20, 1444–1445. [Google Scholar]
- Powers, H. H.; Levatin, P. A Method for the Determination of Oxalic Acid in Urine. J. Biol. Chem. 1944, 154, 207–213. [Google Scholar]
- Quisepe, C.; Villasenor, J.; Pecchi, G.; Reyes, P. Catalytic ozonation of Oxalic Acid with MnO2/TiO2 and Rh/TiO2. J. Chil. Chi. Soc. 2006, 51, 1049–1051. [Google Scholar]
- Casella, I.G. Electrocatalytic Oxidation of Oxalic Acid on Palladium-Based Modified Glassy Carbon Electrode in Acidic Medium. Electrochim. Acta. 1999, 44, 3353–3360. [Google Scholar]
- Martinez-Huitle, C. A.; Ferro, S.; De Batisti, A. Electrochemical Incineration of Oxalic Acid. Role of Electrode Material. Electrochim. Acta. 2004, 49, 4027–4034. [Google Scholar]
- Zarembski, P. M.; Hodgkinson, A. The Fluorimetric Determination of Oxalic Acid in Blood Biological Materials. Biochem. J. 1965, 96, 717–721. [Google Scholar]
- Ensafi, A. A.; Emadi, M. Spectrophotometric Reaction Rate Method for Determination of Oxalic Acid in Food Based on its Enhancing Effect on the Oxidation of Pyrocathecol Violet by Dichromate. Anal. Lett. 2004, 37, 321–332. [Google Scholar]
- Wilson, Ch. W.; Shaw, Ph.E.; Knight, R. J. Analysis of Oxalic Acid in Carambola (Averrhoa carambola L.) and Spinach by High-Performance Liquid Chromatography. J. Agric. Food Chem. 1982, 30, 1106–1108. [Google Scholar]
- Gancedo, M. C.; Luh, B.S. HPLC Analysis of Organic Acids and Sugars in Tomato Juice. J. Food Sci. 1986, 51, 571–573. [Google Scholar]
- Oderiz, V.; Blanco, V.; Hernandez, L.; Lozano, S.; Rodriguez, R. Simultaneous Determination of Organic Acids and Vitamin C in Green Beans by Liquid Chromatography. J. AOAC Int. 1994, 77, 1056–1059. [Google Scholar]
- Khaskhali, M. H.; Bhanger, M. I.; Khand, F. D. Simultaneous Determination of Oxalic Acid and Citric Acids in Urine by High-Performance Liquid Chromatogrphy. J. Chromatogr. B. Biomed. Appl. 1996, 675, 147–151. [Google Scholar]
- Zhanguo, C.; Jiuru, L. Simultaneous and Direct Determination of Oxalic Acid, Tartaric Acid, Malic Acid, Vitamin C, Citric Acid, and Succinic Acid in Fructus Mume by Reversed-Phase High-Performance Liquid Chromatography. J. Chromatogr. Sci. 2002, 40, 35–39. [Google Scholar]
- He, Z.; Yuan, L.; Luo, Q.; Zeng, Y. Simultaneous Determination of Oxalic and Tartaric Acid with Chemiluminescence Detection. Analyst 1997, 122, 1343–1345. [Google Scholar]
- Wu, F.; He, Z.; Luo, Q.; Zeng, Y. High-Performance Liquid Chromatographic Determination of Oxalic Acid in Tea using Tris (1,10-phenanthroline)-ruthenium (II) Chemiluminescence. Anal. Sci. 1998, 14, 971–973. [Google Scholar]
- Hong, F.; Nilvebrant, N.-O.; Jonsson, L. J. Rapid and Convenient Determination of Oxalic Acid Employing a Novel Oxalate Biosensor Based on Oxalate Oxidase and SIRE Technology. Biosens. Biolectron. 2003, 18, 1173–1181. [Google Scholar]
- Ivandini, T. A.; Rao, T. N.; Fujishima, A.; Einaga, Y. Electrochemical Oxidation of Oxalic Acid at Highly Boron-Doped Diamond Electrode. Anal. Chem. 2006, 78, 3467–3471. [Google Scholar]
- Berna, A.; Rodes, A.; Feliu, J. M. Oxalic Acid Adsorption and Oxidation at Platinum Single Crystal Electrodes. J. Electroanal. Chem. 2004, 563, 49–62. [Google Scholar]
- Pron'kin, S. N.; Petrii, O. A.; Tsirlina, G. A.; Schiffrin, D. J. Size Effects on the Electrochemical Oxidation of Oxalic Acid on Nanocrystalline Platinum. J. Electroanal. Chem. 2000, 480, 112–119. [Google Scholar]
- Sun, D.; Zhu, L.; Zhu, G. Glassy Carbon Ceramic Composite Electrodes. Anal. Chim. Acta 2006, 564, 243–247. [Google Scholar]
- Mendes, R. K.; Cervini, P.; Cavalheiro, E. T. G. The Use of a gragphite-Castor Oil Polyurethane Composite Electrode for the Determination of Hidroquinone in Photographic Developers. Talanta 2006, 68, 708–712. [Google Scholar]
- O'Hare, D.; Macpherson, J. V.; Wilson, A. On the Microelectrode Behaviour of Graphite-Epoxy Composite Electrodes. Electrochem. Commun. 2002, 4, 245–250. [Google Scholar]
- Marken, F.; Gerrard, M. L.; Mellor, I. M.; Mortimer, R. J.; Madden, C. E.; Fletcher, S.; Holt, K.; Foord, J. S.; Dahm, R. H.; F. Voltammetry at carbon nanofiber electrodes. Electrochem. Commun. 2001, 3, 177–180. [Google Scholar]
- Tu, Y.; Lin, Y.; Yantasee, W.; Ren, Z. Carbon Nanotubes based Nanoelectrode Arrays: Fabrication, Evaluattion, and Application in Voltammetric Analysis. Electroanalysis. 2005, 17, 79–84. [Google Scholar]
- Luque, M.; Rios, A.; Valcarcel, M. A Poly(vinyl choloride) Graphite Electrode for Flow-Injection Amperometric Determination of Antioxidants. Anal. Chim. Acta. 1999, 395, 217–223. [Google Scholar]
- Fernandez, C.; Reviejo, A. J.; Polo, L. M.; Pingarron, J. M. HPLC-Electrochemical Detection with Graphite-poly (tetrafluoroethylene) Electrode Determination of the Fungicides Thiram and Disulfiram. Talanta 1996, 43, 1341–1348. [Google Scholar]
- Moreno-Baron, L.; Merkoci, A.; Alegret, S. Graphite-epoxy Composite as an Alternative Material to Design Mercury Free Working Electrodes for Stripping Voltammetry. Electrochim. Acta. 2003, 48, 2599–2605. [Google Scholar]
- Sun, D.; Zhang, H. Electrochemical Determination of 2-chlorophenol Using an Acetylene Black Film Modified Glassy Carbon Electrode. Wat. Res. 2006, 40, 3069–3074. [Google Scholar]
- Pumera, M.; Merkoci, A.; Alegret, S. Carbon-Nanotube-Epoxy Composites for Electrochemical Sensing. Sens. Actuators B 2006, 113, 617–622. [Google Scholar]
- Mailley, P.; Cummings, E. A.; Mailley, S.; Cosnier, S.; Eggins, B. R.; McAdams, E. Amperometric Detection of Phenolic Compounds by Polypyrrole-Based Composite Carbon Paste Electrodes. Bioelectrochem. 2004, 63, 291–296. [Google Scholar]
- Ramesh, P.; Sivakumar, P.; Sampath, S. Renewable Surface Electrodes based on Dopamine Functionalized Exfoliated Graphite: NADH Oxidation and Ethanol Biosensing. J. Electroanal. Chem. 2002, 528, 82–92. [Google Scholar]
- Somashekarappa, M. P.; Sampath, S. Sol-gel Derived, Silicate-Phtalocyanine Functionalized Exfoliated Graphite Based Composite Electrodes. Anal. Chim. Acta. 2004, 503, 195–201. [Google Scholar]
- Shankaran, D. R.; Uehara, N.; Kato, T. Sol-gel Derived Metal Dispersed Ceramic-Graphite Composite Electrode for Amperometric Determination of Dopamine. Anal. Chim. Acta. 2003, 478, 321–327. [Google Scholar]
- Cervini, P.; Ramos, A.; Cavalheiro, E. T. G. Determination of Atenolol at a Graphite-Polyurethane Composite Electrode. Talanta. 2007, 72, 206–209. [Google Scholar]
- Salimi, A.; MamKhezri, H.; Hallaj, R. Simultaneous Determination of Ascorbic Acid, Uric Acid and Neurotransmitters with a Carbon Ceramic Electrode Prepared by Sol-Gel Technique. Talanta. 2006, 70, 823–832. [Google Scholar]
- Kirgoz, U. A.; Odaci, D.; Timur, S.; Merkoci, A.; Alegret, S.; Besun, N.; Telefoncu, A. Biosensor Based on Graphite Epoxi Composite Electrode for Aspartame and Ethanol Detection. Anal. Chim. Acta. 2006, 570, 165–169. [Google Scholar]
- Ramirez-Garcia, S.; Alegret, S.; Cespedes, F.; Forster, R. J. Carbon Composite Electrodes: Surface and Electrochemical Properties. Analyst 2002, 127, 1512–1519. [Google Scholar]
- Ardakani, M. M.; Akrami, Z.; Kazemian, H.; Zare, H. R. Electrocatalytic Characteristics of Uric Acid Oxidation at Graphite-Zeolite-Modified Electrode Doped with Iron (III). J. Electroanal. Chem. 2006, 586, 31–38. [Google Scholar]
- Wang, J. Analytical Electrochemistry; VCH Publishers: New York, 1994; Chapter 6; p. p.163. [Google Scholar]
Technique used | Concentration range(mM) | Calibration plots* | Correlation coefficient (R2) | LOD (mM) | RSD (%) |
---|---|---|---|---|---|
CV | 0.1-1 | y=-3.07·10-8+2.22·10-5 x | 0.9992 | 0.05 | 2.5 |
LSV | 0.1-1 | y=-5.69·10-8 +1.33·10-5 x | 0.9962 | 0.08 | 2.7 |
CA | 0.5-3 | y=-6.13·10-8 +1.52·10-6 x | 0.9992 | 0.5 | 3.1 |
BSA-CA | 0.5-3 | y=-4.52·10-8 +1.48·10-6 x | 0.9984 | 0.8 | 3.5 |
© 2007 by MDPI ( http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.
Share and Cite
Manea, F.; Radovan, C.; Corb, I.; Pop, A.; Burtica, G.; Malchev, P.; Picken, S.; Schoonman, J. Electrochemical Oxidation and Determination of Oxalic Acid at an Exfoliated Graphite-Polystyrene Composite Electrode. Sensors 2007, 7, 615-627. https://doi.org/10.3390/s7040615
Manea F, Radovan C, Corb I, Pop A, Burtica G, Malchev P, Picken S, Schoonman J. Electrochemical Oxidation and Determination of Oxalic Acid at an Exfoliated Graphite-Polystyrene Composite Electrode. Sensors. 2007; 7(4):615-627. https://doi.org/10.3390/s7040615
Chicago/Turabian StyleManea, Florica, Ciprian Radovan, Ioana Corb, Aniela Pop, Georgeta Burtica, Plamen Malchev, Stephen Picken, and Joop Schoonman. 2007. "Electrochemical Oxidation and Determination of Oxalic Acid at an Exfoliated Graphite-Polystyrene Composite Electrode" Sensors 7, no. 4: 615-627. https://doi.org/10.3390/s7040615
APA StyleManea, F., Radovan, C., Corb, I., Pop, A., Burtica, G., Malchev, P., Picken, S., & Schoonman, J. (2007). Electrochemical Oxidation and Determination of Oxalic Acid at an Exfoliated Graphite-Polystyrene Composite Electrode. Sensors, 7(4), 615-627. https://doi.org/10.3390/s7040615