Chemomechanical Polymers as Sensors and Actuators for Biological and Medicinal Applications
Abstract
:1. Introduction
2. Chemomechanical materials triggered by pH and alkali salt changes
3. Water content changes
4. Kinetics, concentration effects and sensitivity
5. Cooperativity between different effector molecules; logical gate functions
6. Selective response to organic effector molecules
7. Chiral discrimination
8. Activation of silent analytes by ternary complex formation/aminoacids and peptides as effectors
9. Selectivity by covalent interactions: glucose-triggered size changes of chemomechanical polymers
10. Conclusions
References and Notes
- a)Lehn, J.-M. Supramol. Chem.; Concepts and Perspectives; VCH: Weinheim, 1995. [Google Scholar]b)Beer, P.D.; Gale, P. A.; Smith, D. K. Supramol. Chem.; Oxford University Press: New York, 1999. [Google Scholar]c)Schneider, H. -J.; Yatsimirski, A. Principles and Methods in Supra-molecular Chemistry; Wiley: Chichester, 2000. [Google Scholar]d)Steed, J. W.; Atwood, J. L. Supramol. Chem.; Wiley: New York, 2000. [Google Scholar]e)Functional Synthetic Receptors; Schrader, T.; Hamilton, A. D. (Eds.) Wiley-VCH: Weinheim, Germany, 2005.
- a)Osada, O.; Rossi, D. E. (Eds.) Polymer Sensors and Actuators; Springer: Berlin, 1999.b)Dai, L. Intelligent Macromolecules for Smart Devices; Springer: London, 2004. [Google Scholar]
- a)Dinh, S.M.; P. Liu, P. (Eds.) Advances in controlled drug delivery: science, technology, and products; An American Chemical Society Publication: Washington, D.C., 2003.b)Hsiue, G.-H.; Okano, T.; Kim, U. Y.; Sung, H-W.; Yui, N.; Park, K. D. (Eds.) Advances in Biomaterials and Drug Delivery Systems; Princeton International Publishing: Taipei, 2002.Eddington, D. T.; Beebe, D. J. Flow control with hydrogels. Adv. Drug Delivery Rev. 2004, 56, 199–210. [Google Scholar]Schmaljohann, D. Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 2006, 58, 1655–1670. [Google Scholar]
- Kaneko, D.; Gong, J. P.; Osada, Y. Polymer gels as soft and wet chemomechanical systems - an approach to artificial muscles. J. Mater. Chem. 2002, 12, 2169–2177. [Google Scholar]Shahinpoor, M. Ionic polymer-conductor composites as biomimetic sensors, robotic actuators and artificial muscles - a review. Electrochim. Acta 2003, 48, 2343–2353. [Google Scholar]Mirfakhrai, T.; Madden, J. D. W.; Baughman, R. H. Polymer artificial muscles. Materials Today 2007, 10, 30–38. [Google Scholar]Bar-Cohen, Y. Biomimetics using electroactive polymers (EAP) as artificial muscles - A review. Adv. Mater. 2006, 38, 3–9. [Google Scholar]Peppas, N. A.; Hilt, J. Z.; Khademhosseini, A.; Langer, R. Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv. Mat. 2006, 18, 1345–1360. [Google Scholar]
- Osada, Y.; Okuzaki, H.; Hori, H. A Polymer Gel with Electrically Driven Motility. Nature 1992, 355, 242–244. [Google Scholar]Osada, Y.; Okuzaki, H.; Gong, J. P. Electro-driven gel actuators. Trends Polymer Sci. (Cambridge, UK) 1994, 2, 61–66. [Google Scholar]Ren, A.; Dalton, L. R. Electroactive polymers including non-linear optical polymers. Curr. Opin. Colloid Interface Sci. 1999, 4, 165–171. [Google Scholar]
- Shahinpoor, M.; Kim, K. J. Novel ionic polymer-metal composites equipped with physically loaded particulate electrodes as biomimetic sensors, actuators and artificial muscles. Sens. Actuators, A 2002, 96, 125–132. [Google Scholar]
- Cortes, M. T.; Moreno, J. C. Artificial muscles based on conducting polymers. e-Polymers 2003, Art.no. 041. 1–42. [Google Scholar]
- Suzuki, A.; Tanaka, T. Phase-Transition in Polymer Gels Induced by Visible-Light. Nature 1990, 346, 345–347. [Google Scholar]Seki, T.; Takahiro, K.; Kojima, J.; Ichimura, K. Light-Driven Dot Films Consisting of Single Polymer Chain. J. Phys. Chem. B 1999, 103, 10338–10340. [Google Scholar]Frkanec, L.; Jokic, M.; Makarevic, J.; Wolsperger, K.; Zinic, M. Bis(PheOH) maleic acid amide-fumaric acid amide photoizomerization induces microsphere-to-gel fiber morphological transition: The photoinduced gelation system. J. Am. Chem. Soc. 2002, 124, 9716–9717, and references cited therein. [Google Scholar]
- Bromberg, L.; Temchenko, M.; Hatton, T. A. Dually responsive microgels from polyether-modified poly(acrylic acid): Swelling and drug loading. Langmuir 2002, 18, 4944–4952. [Google Scholar]deGennes, P. G.; Hebert, M.; Kant, R. Artificial muscles based on nematic gels. Macromol. Symp. 1997, 113, 39–49. [Google Scholar]Arndt, K. F.; Schmidt, T.; Reichelt, R. Thermo-sensitive poly(methyl vinyl ether) micro-gel formed by high energy radiation. Polymer 2001, 42, 6785–6791. [Google Scholar]Ruel-Gariepy, E.; Chenite, A.; Chaput, C.; Guirguis, S.; Leroux, J. C. Characterization of thermosensitive chitosan gels for the sustained delivery of drugs. Int. J. Pharm. 2000, 203, 89–98. [Google Scholar]Kiyonaka, S.; Sugiyasu, K.; Shinkai, S.; Hamachi, I. First thermally responsive supramolecular polymer based on glycosylated amino acid. J. Am. Chem. Soc. 2002, 124, 10954–10955. [Google Scholar]Kobayashi, J.; Kikuchi, A.; Sakai, K.; Okano, T. Cross-Linked Thermoresponsive Anionic Polymer-Grafted Surfaces To Separate Bioactive Basic Peptides. Anal. Chem. 2003, 75, 3244–3249. [Google Scholar]
- Hoffman, A.S.; Stayton, P.S.; Bulmus, V.; Chen, G.; Chen, J.; Cheung, C.; Chilkoti, A.; Ding, Z.; Dong, L.; Fong, R.; Lackey, C.A.; Long, C.J.; Miura, M.; Morris, J.E.; Murthy, N.; Nabeshima, Y.; Park, T.G.; Press, O.W.; Shimoboji, T.; Shoemaker, S.; Yang, H.J.; Monji, N.; Nowinski, R.C.; Cole, C.A.; Priest, J.H.; Harris, J.M.; Nakamae, K.; Nishino, T.; Miyata, T. Really smart bioconjugates of smart polymers and receptor proteins. J. Biomed. Mater. Res. 2000, 52, 577–586. [Google Scholar]Otero, T.F.; Villanueva, S.; Cortes, M.T.; Cheng, S.A.; Vazquez, A.; Boyano, I.; Alonso, D.; Camargo, R. Electrochemistry and conducting polymers: soft, wet, multifunctional and biomimetic materials. Synth. Met. 2001, 119, 419–420. [Google Scholar]
- Tanaka, T. Collapse of Gels and Critical Endpoint. Phys. Rev. Lett. 1978, 40, 820–823. [Google Scholar]
- Ito, K.; Chuang, J.; Alvarez-Lorenzo, C.; Watanabe, T.; Ando, N.; Grosberg, A.Y. Multiple point adsorption in a heteropolymer gel and the Tanaka approach to imprinting: experiment and theory. In Prog. Polym. Sci.; 2003; Volume 28, pp. 1489–1515. [Google Scholar]Responsive Gels. Volume Transitions II; Dusek, K. (Ed.) Springer: Berlin, 1993.
- Annaka, M.; Tanaka, T. Multiple Phases of Protein Gels. Physica A 1994, 204, 40–46. [Google Scholar]Annaka, M.; Tanaka, T. Multiple Phases of Polymer Gels. Nature 1992, 355, 430–432. [Google Scholar]
- Wulff, G. Enzyme-like catalysis by molecularly imprinted polymers. Chem. Rev. 2002, 102, 1–27. [Google Scholar]Mosbach, K. Molecular Imprinting. Trends Biochem.Sci. 1994, 19, 9–14. [Google Scholar]Alexander, C.; Davidson, L.; Hayes, W. Imprinted polymers: artificial molecular recognition materials with applications in synthesis and catalysis. Tetrahedron 2003, 59, 2025–2057. [Google Scholar]
- Bartsch, R. A.; Maeda, M. Molecular and Ionic Recognition with Imprinted Polymers; ACS Symp. Ser. 703; 1998; p. 338. [Google Scholar]Byrne, M. E.; Oral, E.; Hilt, J. Z.; Peppas, N. A. Networks for recognition of biomolecules: Molecular imprinting and micropatterning poly(ethylene glycol)-containing films. Polym. Adv. Technol. 2002, 13, 798–816. [Google Scholar]Asanuma, H.; Hishiya, T.; Komiyama, M. Tailor-made receptors by molecular imprinting. Adv. Mater. 2000, 12, 1019–1030. [Google Scholar]
- Alvarez-Lorenzo, C.; Guney, O.; Oya, T.; Sakai, Y.; Kobayashi, M.; Enoki, T.; Takeoka, Y.; Ishibashi, T.; Kuroda, K.; Tanaka, K.; Wang, G.; Grosberg, A.Yu.; Masamune, S.; Tanaka, T. Polymer gels that memorize elements of molecular conformation. Macromolecules 2000, 33, 8693–8697. [Google Scholar]Moritani, T.; Alvarez-Lorenzo, C. Conformational imprinting effect on stimuli-sensitive gels made with an “ Imprinter” monomer. Macromolecules 2001, 34, 7796–7803. [Google Scholar]
- Watanabe, M.; Akahoshi, T.; Tabata, Y.; Nakayama, D. Molecular specific swelling change of hydrogels in accordance with the concentration of guest molecules. J. Am. Chem. Soc. 1998, 120, 5577–5578. [Google Scholar]
- See ref. 4; by pH alone: Oral, E.; Peppas, N. A. Responsive and recognitive hydrogels using star polymers. J. Biomed. Mater. Res. Part A 2004, 68A, 439–447. [Google Scholar]Robinson, D. N.; Peppas, N. A. Preparation and characterization of pH-responsive poly(methacrylic acid-g-ethylene glycol) nanospheres. Macromolecules 2002, 35, 3668–3674. [Google Scholar]Kaneko, M.; Fukui, M.; Takashima, W.; Kaneto, K. Electrolyte and strain dependences of chemomechanical deformation of polyaniline film. Synth. Met. 1997, 84, 795–796. [Google Scholar]Suzuki, K.; Yumura, T.; Tanaka, Y.; Akashi, M. pH-responsive model drug release from silica-poly(methacrylic acid) interpenetrating gel hybrids. J. Bioact. Compat. Polym. 2001, 16, 409–418. [Google Scholar]Roux, E.; Lafleur, M.; Lataste, E.; Moreau, P.; Leroux, J. C. On the characterization of pH-sensitive liposome/polymer complexes. Biomacromolecules 2003, 4, 240–248. [Google Scholar] and references cited therein.
- Brannonpeppas, L.; Peppas, N. A. Equilibrium Swelling Behavior of Ph-Sensitive Hydrogels. Chem. Engin. Sci. 1991, 46, 715–722. [Google Scholar]Siegel, R. A.; Firestone, B. A. Ph-Dependent Equilibrium Swelling Properties of Hydrophobic Poly-Electrolyte Copolymer Gels. Macromolecules 1988, 21, 3254–3259, and references cited therein. [Google Scholar]
- Kuhn, W.; Hargitay, B.; Katchalsky, A.; Eisenberg, H. Reversible Dilation and Contraction by Changing the State of Ionization of High-Polymer Acid Networks. Nature 1950, 165, 514–516. [Google Scholar]
- Shahinpoor, M. Microelectro-mechanics of ionic polymeric gels as synthetic robotic muscles. Proc. SPIE-Intern. Soc. Opt. Eng. 1994, 2189, 265–274. [Google Scholar]see also Shahinpoor, M. Ionic polymer-conductor composites as biomimetic sensors, robotic actuators and artificial muscles - a review. Electrochim. Acta 2003, 48, 2343–2353. [Google Scholar]
- Leading references on chemomechanical polymers as pH-sensitive sensors: Zhang, L.; Seitz, W. R. A pH sensor based on force generated by pH-dependent polymer swelling. Anal. Bioanal. Chem. 2002, 373, 555–559. [Google Scholar]Rooney, M. T. V.; Seitz, W. R. An optically sensitive membrane for pH based on swellable polymer microspheres in a hydrogel. Anal. Commun. 1999, 36, 267–270. [Google Scholar]
- Mahdavina, G.R.; Zohuriaan-Mehr, M.J.; Pourjavadi, A. Polym. Adv. Technol.; 2004; Volume 15, p. 173. [Google Scholar]
- Nam, K.; Watanabe, J.; Ishihara, K. Network structure of spontaneously forming physically cross-link hydrogel composed of two-water soluble phospholipid polymers. Polymer 2005, 46, 4704–4713. [Google Scholar]
- Hirotsu, S.; Hirokawa, Y.; Tanaka, T. Volume-Phase Transitions of Ionized N-Isopropyl-acrylamide Gels. J. Chem. Phys. 1987, 87, 1392–1395. [Google Scholar]
- Podual, K.; Peppas, N. A. Relaxational behavior and swelling-pH master curves of poly[(diethylaminoethyl methacrylate)-graft-(ethylene glycol)] hydrogels. Polym. Int. 2005, 54, 581–593. [Google Scholar]
- Eichenbaum, G. M.; Kiser, P. F.; Dobrynin, A. V.; Simon, S. A.; Needham, D. Investigation of the swelling response and loading of ionic microgels with drugs and proteins: The dependence on cross-link density. Macromolecules 1999, 32, 4867–4878. [Google Scholar]
- Iversen, C.; Kjoniksen, A. L.; Nystrom, B.; Nakken, T.; Palmgren, O.; Tande, T. Linear and nonlinear rheological responses in aqueous systems of hydrophobically modified chitosan and its unmodified analogue. Polym. Bull. 1997, 39, 747–754. [Google Scholar]Hamdine, M.; Heuzey, M. C.; Begin, A. Effect of organic and inorganic acids on concentrated chitosan solutions and gels. Int. J. Biol. Macromol. 2005, 37, 134–142. [Google Scholar]Montembault, A.; Viton, C.; Domard, A. Rheometric study of the gelation of chitosan in aqueous solution without cross-linking agent. Biomacromolecules 2005, 6, 653–662. [Google Scholar]
- Kam, H. M.; Khor, E.; Lim, L. Y. Storage of partially deacetylated chitosan films. J. Biomed. Mater. Res. 1999, 48, 881–888. [Google Scholar]
- Mi, F. L.; Shyu, S. S.; Wong, T. B.; Jang, S. F.; Lee, S. T.; Kuan, C.Y. Chitosan-polyelectrolyte complexation for the preparation of gel beads and controlled release of anticancer drug. II. Effect of pH-dependent ionic crosslinking or interpolymer complex using tripolyphosphate or polyphosphate as reagent. J. Appl. Polym. Sci. 1999, 74, 1093–1107. [Google Scholar]
- Kim, S. J.; Shin, S. R.; Kim, N. G.; Kim, S. I. Swelling behavior of semi-interpenetrating polymer network hydrogels based on chitosan and poly(acryl amide). J. Macromol. Sci., Pure Appl. Chem. 2005, A42, 1073–1083. [Google Scholar]
- Zhou, S. L.; Matsumoto, S.; Tian, H. D.; Yamane, H.; Ojida, A.; Kiyonaka, S.; Hamachi, I. pH-Responsive shrinkage/swelling of a supramolecular hydrogel composed of two small amphiphilic molecules. Chem.-Eur. J. 2005, 11, 1130–1136. [Google Scholar]
- Zhang, Y. X.; Wu, F. P.; Li, M. Z.; Wang, E. J. pH switching on-off semi-IPN hydrogel based on cross-linked poly(acrylamide-co-acrylic acid) and linear polyallyamine. Polymer 2005, 46, 7695–7700. [Google Scholar]
- Mi, F. L.; Liang, H. F.; Wu, Y. C.; Lin, Y. S.; Yang, T. F.; Sung, H. W. pH-sensitive behavior of two-component hydrogels composed of N,O-carboxymethyl chitosan and alginate. J. Biomater. Sci., Polym. Ed. 2005, 16, 1333–1345. [Google Scholar]
- Kim, B.; La Flamme, K.; Peppas, N. A. Dynamic swelling Behavior of pH-sensitive anionic hydrogels used for protein delivery. J. Appl. Polym. Sci. 2003, 89, 1606–1613. [Google Scholar]
- Ref. 27; see also Lin, W. C.; Yu, D. G.; Yang, M. C. pH-sensitive polyelectrolyte complex gel microspheres composed of chitosan/sodium tripolyphosphate/dextran sulfate: swelling kinetics and drug delivery properties. Colloids Surf. B. Biointerfaces 2005, 44, 143–151. [Google Scholar]
- see Kobayashi, S.; Tokunoh, M.; Saegusa, T.; Mashio, F. Poly(Allylamine) - Chelating Properties and Resins for Uranium Recovery from Seawater. Macromolecules 1985, 18, 2357–2361. [Google Scholar]
- Oliveira, E. D.; Hirsch, S. G.; Spontak, R. J.; Gehrke, S. H. Influence of polymer conformation on the shear modulus and morphology of polyallylamine and poly(alpha-L-lysine) hydrogels. Macromolecules 2003, 36, 6189–6201, and references cited therein. [Google Scholar]
- Schneider, H. J.; Liu, T. J.; Lomadze, N. Molecular recognition in a supramolecular polymer system translated into mechanical motion. Angew. Chem. Int. Ed. 2003, 42, 3544–3546. [Google Scholar]Schneider, H. J.; Liu, T. J.; Lomadze, N. Dimension changes in a chemomechanical polymer containing ethylenediamine and alkyl functions as selective recognition units. Eur. J. Org. Chem. 2006, 677–692. [Google Scholar]
- Chu, C.-H.; Sakiyama, T.; Yano, T. pH-sensitive swelling of a polyelectrolyte complex gel prepared from xanthan and chitosan. Biosci., Biotechnol., Biochem. 1995, 59, 717–719. [Google Scholar]
- see also Pourjavadi, A.; Hosseinzadeh, H.; Mazidi, R. Modified carrageenan. 4. Synthesis and swelling behavior of crosslinked kappa C-g-AMPS superabsorbent hydrogel with antisalt and pH-responsiveness properties. J. Appl. Polym. Sci. 2005, 98, 255–263. [Google Scholar]
- Pourjavadi, A.; Sadeghi, M.; Hosseinzadeh, H. Modified carrageenan. 5. Preparation, swelling behavior, salt- and pH-sensitivity of partially hydrolyzed crosslinked carrageenan-graft-polymethacrylamide superabsorbent hydrogel. Polym. Adv. Technol. 2004, 15, 645–653. [Google Scholar]
- Seo, K. W.; Kim, D. J.; Park, K. N. Swelling properties of poly(AM-co-AA)/chitosan pH sensitive superporous hydrogels. J. Indust. Engin. Chem. 2004, 10, 794–800. [Google Scholar]
- Schneider, J. P.; Pochan, D. J.; Ozbas, B.; Rajagopal, K.; Pakstis, L.; Kretsinger, J. Responsive hydrogels from the intramolecular folding and self- assembly of a designed peptide. J. Am. Chem. Soc. 2002, 124, 15030–15037. [Google Scholar]Ozbas, B.; Kretsinger, J.; Rajagopal, K.; Schneider, J. P.; Pochan, D. J. Salt-triggered peptide folding and consequent self-assembly into hydrogels with tunable modulus. Macromolecules 2004, 37, 7331–7337. [Google Scholar]
- Watanabe, T.; Ito, K.; Alvarez-Lorenzo, C.; Grosberg, A. Y.; Tanaka, T. Salt effects on multiple-point adsorption of target molecules by heteropolymer gel. J. Chem. Phys. 2001, 115, 1596–1600. [Google Scholar]
- Yamaguchi, S.; Yoshimura, L.; Kohira, T.; Tamaru, S.; Hamachi, I. Cooperation between artificial receptors and supramolecular hydrogels for sensing and discriminating phosphate derivatives. J. Am. Chem. Soc. 2005, 127, 11835–11841. [Google Scholar]
- Rao, G. V. R.; Konishi, T.; Ise, N. Ordering in Poly(allylamine hydrochloride) Gels. Macromolecules 1999, 32, 7582–7586. [Google Scholar]
- Kato, K.; Schneider, H.-J. unpublished results.
- Kim, B.; La Flamme, K.; Peppas, N. A. Dynamic swelling Behavior of pH-sensitive anionic hydrogels used for protein delivery. J. Appl. Polym. Sci. 2003, 89, 1606–1613. [Google Scholar]
- Qu, X.; Wirsen, A.; Albertsson, A. C. Novel pH-sensitive chitosan hydrogels: swelling behavior and states of water. Polymer 2000, 41, 4589–4598. [Google Scholar]see also Qu, X.; Wirsen, A.; Albertsson, A. C. Structural change and swelling mechanism of pH-sensitive hydrogels based on chitosan and D,L-lactic acid. J. Appl. Polym. Sci. 1999, 74, 3186–3192. [Google Scholar]
- Barbucci, R.; Magnani, A.; Consumi, M. Swelling behavior of carboxymethylcellulose hydrogels in relation to cross-linking, pH, and charge density. Macromolecules 2000, 33, 7475–7480. [Google Scholar]
- Park, H. Y.; Song, I. H.; Kim, J. H.; Kim, W. S. Preparation of thermally denatured albumin gel and its pH-sensitive swelling. Int. J. Pharm. 1998, 175, 231–236. [Google Scholar]
- Guan, Y. L.; Shao, L.; Liu, J.; DeYao, K. pH effect on correlation between water state and swelling kinetics of the crosslinked chitosan/polyether semi-IPN hydrogel. J. Appl. Polym. Sci. 1996, 62, 1253–1258. [Google Scholar]
- Zhang, Y.; Gu, H. W.; Yang, Z. M.; Xu, B. Supramolecular hydrogels respond to ligand-receptor interaction. J. Am. Chem. Soc. 2003, 125, 13680–13681. [Google Scholar]
- Chu, C. H.; Kumagai, H.; Sakiyama, T.; Ikeda, S.; Nakamura, K. Development of a model for analyzing the swelling rate of ionic gels on the basis of the diffusion of mobile ions: Application to the pH-sensitive swelling of a polyelectrolyte complex gel prepared from xanthan and chitosan. Biosci., Biotechnol., Biochem. 1996, 60, 1627–1632. [Google Scholar]
- Chu, Y.; Varanasi, P. P.; McGlade, M. J.; Varanasi, S. Ph-Induced Swelling Kinetics of Polyelectrolyte Hydrogels. J. Appl. Polym. Sci. 1995, 58, 2161–2176. [Google Scholar]
- Schneider, H. J.; Tianjun, L.; Lomadze, N. Sensitivity increase in molecular recognition by decrease of the sensing particle size and by increase of the receptor binding site - a case with chemomechanical polymers. Chem. Commun. 2004, 2436–2437. [Google Scholar]
- Kopelman, R.; Dourado, S. Is smaller better? - Scaling of characteristics with size of fiber-optic chemical and biochemical sensors. Proc. SPIE- Inter. Soc. Opt. Engin. 1996, 2836, 2–11. [Google Scholar]Clark, H. A.; Hoyer, M.; Philbert, M. A.; Kopelman, R. Optical Nanosensors for Chemical Analysis inside Single Living Cells. 1. Fabrication, Characterization, and Methods for Intracellular Delivery of PEBBLE Sensors. Analyt. Chem. 1999, 71, 4831–4836. [Google Scholar]
- Aguilar, J.; Diaz, P.; Escarti, F.; Garcia-Espana, E.; Gil, L.; Soriano, C.; Verdejo, B. Cation and anion recognition characteristics of open-chain polyamines containing ethylenic and propylenic chains. Inorg. Chim. Acta 2002, 339, 307–316, and references cited therein. [Google Scholar]
- See ref 57.
- Reviews: de Silva, A. P.; Fox, D. B.; Huxley, A. J. M.; Moody, T. S. Combining luminescence, coordination and electron transfer for signalling purposes. Coord. Chem. Rev. 2000, 205, 41–57. [Google Scholar]Pease, A. R.; Stoddart, J. F. Computing at the molecular level. Molecular Machines and Motors 2001, 99, 189–236. [Google Scholar]Raymo, F. M. Digital processing and communication with molecular switches. Adv. Mat. 2002, 14, 401–414. [Google Scholar]Balzani, V.; Credi, A.; Venturi, M. Molecular logic circuits. ChemPhysChem 2003, 4, 49–59. [Google Scholar]
- Schneider, H. J.; Liu, T. J.; Lomadze, N.; Palm, B. Cooperativity in a chemomechanical polymer: A chemically induced macroscopic logic gate. J. Adv. Mater. 2004, 16, 613. [Google Scholar]
- For other metal ion-responsive gels see e.g. Ricka, J.; Tanaka, T. Phase-Transition in Ionic Gels Induced by Copper Complexation. Macromolecules 1985, 18, 83–85. [Google Scholar]
- Meyer, E. A.; Castellano, R. K.; Diederich, F. Interactions with aromatic rings in chemical and biological recognition. Angew. Chem. Int. Ed. 2003, 42, 1210–1250. [Google Scholar]
- Lomadze, N.; Schneider, H. J. A chitosan-based chemomechanical polymer triggered by stacking effects with aromatic effectors including aminoacid derivatives. Tetrahedron Lett. 2005, 61, 8694–8698. [Google Scholar]
- Kato, K.; Schneider, H. -J. Langmuir; 2007; accepted. [Google Scholar]
- Liu, T. J.; Schneider, H. J. Additivity and quantification of dispersive interactions-from cyclopropyl to nitro groups: Measurements on porphyrin derivatives. Angew. Chem. Int. Ed. Engl. 2002, 41, 1368–1370. [Google Scholar]
- Brizard, A.; Oda, R.; Huc, I. Chirality effects in self-assembled fibrillar networks. Top. Curr. Chem. 2005, 256, 167–218. [Google Scholar]Sugiyasu, K.; Tamaru, S.; Takeuchi, M.; Berthier, D.; Huc, I.; Oda, R.; Shinkai, S. Double helical silica fibrils by sol-gel transcription of chiral aggregates of gemini surfactants. Chem. Commun. 2002, 1212–1213. [Google Scholar]Goto, H.; Zhang, H. Q.; Yashima, E. Chiral stimuli-responsive gels: Helicity induction in poly(phenylacetylene) gels bearing a carboxyl group with chiral amines. J. Am. Chem. Soc. 2003, 125, 2516–2523. [Google Scholar]
- Zhang, Y.; Gu, H. W.; Yang, Z. M.; Xu, B. Supramolecular hydrogels respond to ligand-receptor interaction. J. Am. Chem. Soc. 2003, 125, 13680–13681. [Google Scholar]
- Schneider, H. J.; Kato, K. Direct translation of chiral recognition into mechanical motion. Angew. Chem. 2007, 119, 2748–2750. [Google Scholar]Angew. Chem. Int. Ed. Engl.; 2007; Volume 46, pp. 2694–2696.
- Lomadze, N.; Schneider, H. -J. Ternary complex formation inducing large expansions of chemomechanical polymers by metal chelators, aminoacids and peptides as effectors. Tetrahedron Lett. 2005, 46, 751–754. [Google Scholar]
- See e.g. Sigel, H.; Martin, R. B. Coordinating Properties of the Amide Bond - Stability and Structure of Metal-Ion Complexes of Peptides and Related Ligands. Chem. Rev. 1982, 82, 385–426. [Google Scholar]Farkas, E.; Sóvágó, I. Metal Complexes of Amino Acids and Peptides. Amino Acids, Pept. Prot. 2006, 35, 353–435. [Google Scholar]Aoki, S.; Kimura, E. Zinc-nucleic acid interaction. Chem. Rev. 2004, 104, 769–787. [Google Scholar]Licini, G.; Scrimin, P. Metal-ion-binding peptides: From catalysis to protein tagging. Angew. Chem. Int. Ed. 2003, 42, 4572–4575. [Google Scholar]
- See e.g. Canary, J. W.; Gibb, B. C. Selective recognition of organic molecules by metallohosts. Progr. Inorg. Chem. 1997, 45, 1–81. [Google Scholar]Raymo, F. M.; Stoddart, J. F. Second-sphere coordination. Chem. Ber. 1996, 129, 981–990. [Google Scholar]Steed, J. W. First- and second-sphere coordination chemistry of alkali metal crown ether complexes. Coord. Chem. Rev. 2001, 215, 171–221. [Google Scholar]Fabbrizzi, L.; Licchelli, M.; Mancin, F.; Pizzeghello, M.; Rabaioli, G.; Taglietti, A.; Tecilla, B.; Tonellato, U. Fluorescence sensing of ionic analytes in water: From transition metal ions to Vitamin B13. Chem. Eur. J. 2002, 8, 94–101. [Google Scholar]
- Reviews: Mohr, G. J. Covalent bond formation as an analytical tool to optically detect neutral and anionic analytes. Sens. Actuators, B 2005, 107, 2–13. [Google Scholar]Mohr, G. J. New chromogenic and fluorogenic reagents and sensors for neutral and ionic analytes based on covalent bond formation - a review of recent developments. Anal. Bioanal. Chem. 2006, 386, 1201–1214. [Google Scholar]
- Kitano, Y.; Koyama, K.; Kataoka, O.; Kazunori, T.; Okano, Y.; Sakurai, Y. A novel drug delivery system utilizing a glucose responsive polymer complex between poly (vinyl alcohol) and poly (N-vinyl-2-pyrrolidone) with a phenylboronic acid moiety. J. Controlled Release 1992, 19, 161–170. [Google Scholar]
- Selected recent reviews: James, T. D.; Shinkai, S. Artificial receptors as chemosensors for carbohydrates. Top. Curr. Chem. 2002, 218, 159–200. [Google Scholar]Wang, W.; Gao, X. M.; Wang, B. H. Boronic acid-based sensors. Curr. Org. Chem. 2002, 6, 1285–1317. [Google Scholar]Striegler, S. Selective carbohydrate recognition by synthetic receptors in aqueous solution. Curr. Org. Chem. 2003, 7, 81–102. [Google Scholar]Cao, H. S.; Heagy, M. D. Fluorescent chemosensors for carbohydrates: A decade's worth of bright spies for saccharides in review. J. Fluoresc. 2004, 14, 569–584. [Google Scholar]Pickup, J. C.; Hussain, F.; Evans, N. D.; Rolinski, O. J.; Birch, D. J. S. Fluorescence-based glucose sensors. Biosens. Bioelectron. 2005, 20, 2555–2565. [Google Scholar]Yan, J.; Fang, H.; Wang, B. H. Boronolectins and fluorescent boronolectins: An examination of the detailed chemistry issues important for the design. Med. Res. Rev. 2005, 25, 490–520. [Google Scholar]Hilt, J. Z.; Byrne, M. E.; Peppas, N. A. Microfabrication of intelligent biomimetic networks for recognition of D-glucose. Chemistry of Materials 2006, 18, 5869–5875. [Google Scholar]
- James, T. D.; Sandanayake, K. R. A. S.; Shinkai, S. A glucose-selective molecular fluorescence sensor. Angew Chem. Int. Ed. Engl. 1994, 33, 2207–2209. [Google Scholar]Eggert, H.; Frederiksen, J.; Morin, C.; Norrild, J. C. A new glucose-selective fluorescent bisboronic acid. First report of strong alpha-furanose complexation in aqueous solution at physiological pH. J. Org. Chem. 1999, 64, 3846–3852. [Google Scholar]
- Alexeev, V. L.; Sharma, A. C.; Goponenko, A. V.; Das, S.; Lednev, I. K.; Wilcox, C. S.; Finegold, D. N.; Asher, S. A. High ionic strength glucose-sensing photonic crystal. Anal. Chem. 2003, 75, 2316–2323. [Google Scholar]
- Samoei, G. K.; Wang, W. H.; Escobedo, J. O.; Xu, X.; Schneider, H.-J.; Cook, R. L.; Strongin, R. M. A chemomechanical polymer that functions in blood plasma with high glucose selectivity. Angew. Chem. Int. Ed. Engl. 2006, 45, 5319–5322. [Google Scholar]
- Choi, Y. K.; Jeong, S. Y.; Kim, Y. H. A glucose-triggered solubilizable polymer gel matrix for an insulin delivery system. Int. J. Pharm. 1992, 80, 9–16. [Google Scholar]
- Shiino, D.; Kataoka, K.; Koyama, Y.; Yokoyama, M.; Okano, T.; Sakurai, Y. A self-regulated insulin delivery system using boronic acid gel. J. Intell. Mater. Syst. Struct. 1994, 311–314. [Google Scholar]
- Shiino, D.; Murata, Y.; Kubo, A.; Kim, Y. J.; Kataoka, K.; Koyama, Y.; Kikuchi, A.; Yokoyama, M.; Sakurai, Y.; Okano, T. Amine containing phenylboronic acid gel for glucose-responsive insulin release under physiological pH. J. Control. Release 1995, 37, 269–276. [Google Scholar]
- Kikuchi, A.; Suzuki, K.; Okabayashi, O.; Hoshino, H.; Kataoka, K.; Sakurai, Y.; Okano, T. Glucose-sensing electrode coated with polymer complex gel containing phenylboronic acid. Anal. Chem. 1996, 68, 823–828. [Google Scholar]
- Arnold, F. H.; Zheng, W. G.; Michaels, A. S. A membrane-moderated, conductimetric sensor for the detection and measurement of specific organic solutes in aqueous solutions. J. Membr. Sci. 2000, 167, 227–239. [Google Scholar]
- Hisamitsu, I.; Kataoka, K.; Okano, T.; Sakurai, Y. Glucose-responsive gel from phenylborate polymer and poly(vinyl alcohol): Prompt response at physiological pH through the interaction of borate with amine group in the gel. Pharm. Res. 1997, 14, 289–293. [Google Scholar]
- Kataoka, K.; Miyazaki, H.; Bunya, M.; Okano, T.; Sakurai, Y. Totally synthetic polymer gels responding to external glucose concentration: Their preparation and application to on-off regulation of insulin release. J. Am. Chem. Soc. 1998, 120, 12694–12695. [Google Scholar]
- Matsumoto, A.; Ikeda, S.; Harada, A.; Kataoka, K. Glucose-responsive polymer bearing a novel phenylborate derivative as a glucose-sensing moiety operating at physiological pH conditions. Biomacromolecules 2003, 4, 1410–1416. [Google Scholar]
- Matsumoto, A.; Yoshida, R.; Kataoka, K. Glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety operating at the physiological pH. Biomacromolecules 2004, 5, 1038–1045. [Google Scholar]
- Matsumoto, A.; Kurata, T.; Shiino, D.; Kataoka, K. Swelling and shrinking kinetics of totally synthetic, glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety. Macromolecules 2004, 37, 1502–1510. [Google Scholar]
- Reviews: Gronwald, O.; Snip, E.; Shinkai, S. Gelators for organic liquids based on self-assembly: a new facet of supramolecular and combinatorial chemistry. Curr. Opin. Colloid Interface Sci. 2002, 7, 148–156. [Google Scholar]Jung, J. H.; Shinkai, S. Gels as templates for nanotubes. Top. Curr. Chem. 2004, 248, 223–260. [Google Scholar]
- Kanekiyo, Y.; Inoue, K.; Ono, Y.; Sano, M.; Shinkai, S.; Reinhoudt, D. N. ‘Molecular-imprinting’ of AMP utilising the polyion complex formation process as detected by a QCM system. J. Chem. Soc., Perkin Trans. 2 1999, 2719–2722. [Google Scholar]
- Kanekiyo, Y.; Sano, M.; Iguchi, R.; Shinkai, S. Novel nucleotide-responsive hydrogels designed from copolymers of boronic acid and cationic units and their applications as a QCM resonator system to nucleotide sensing. J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 1302–1310. [Google Scholar]
- Gabai, R.; Sallacan, N.; Chegel, V.; Bourenko, T.; Katz, E.; Willner, I. Characterization of the swelling of acrylamidophenylboronic acid-acrylamide hydrogels upon interaction with glucose by faradaic impedance spectroscopy, chronopotentiometry, quartz-crystal microbalance (QCM), and surface plasmon resonance (SPR) experiments. J. Phys. Chem. B 2001, 105, 8196–8202. [Google Scholar]
- Ong, K. G.; Paulose, M.; Jain, M. K.; Gong, D.; Vargheses, O. K.; Mungle, C.; Grimes, C. A. Magnetism-based remote query glucose sensors. Sensors 2001, 1, 138–147. [Google Scholar]
- Asher, S. A.; Alexeev, V. L.; Goponenko, A. V.; Sharma, A. C.; Lednev, I. K.; Wilcox, C. S.; Finegold, D. N. Photonic crystal carbohydrate sensors: Low ionic strength sugar sensing. J. Am. Chem. Soc. 2003, 125, 3322–3329. [Google Scholar]
- Lee, Y. J.; Pruzinsky, S. A.; Braun, P. V. Glucose-sensitive inverse opal hydrogels: Analysis of optical diffraction response. Langmuir 2004, 20, 3096–3106. [Google Scholar]
- Ben-Moshe, M.; Alexeev, V. L.; Asher, S. A. Fast responsive crystalline colloidal array photonic crystal glucose sensors. Anal. Chem. 2006, 78, 5149–5157. [Google Scholar]
- Kabilan, S.; Blyth, J.; Lee, M. C.; Marshall, A. J.; Hussain, A.; Yang, X. P.; Lowe, C. R. Glucose-sensitive holographic sensors. J. Inclusion Phenom. Mol. Recognit. Chem. 2004, 17, 162–166. [Google Scholar]
- Lee, M. C.; Kabilan, S.; Hussain, A.; Yang, X. P.; Blyth, J.; Lowe, C. R. Glucose-sensitive holographic sensors for monitoring bacterial growth. Anal. Chem. 2004, 76, 5748–5755. [Google Scholar]
- Kabilan, S.; Marshall, A. J.; Sartain, F. K.; Lee, M. C.; Hussain, A.; Yang, X. P.; Blyth, J.; Karangu, N.; James, K.; Zeng, J.; Smith, D.; Domschke, A.; Lowe, C. R. Holographic glucose sensors. Biosens. Bioelectron. 2005, 20, 1602–1610. [Google Scholar]
- Yang, X. P.; Lee, M. C.; Sartain, F.; Pan, X. H.; Lowe, C. R. Designed boronate ligands for glucose-selective holographic sensors. Chem. Eur. J. 2006, 12, 8491–8497. [Google Scholar]
- For example: Beebe, D. J.; Moore, J. S.; Bauer, J. M.; Yu, Q.; Liu, R. H.; Devadoss, C.; Jo, B. H. Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 2000, 404, 588–596. [Google Scholar]
- Nakamura, K.; Murray, R. J.; Joseph, J. I.; Peppas, N. A.; Morishita, M.; Lowman, A. M. Oral insulin delivery using P(MAA-g-EG) hydrogels: effects of network morphology on insulin delivery characteristics. J. Controlled Release 2004, 95, 589–599. [Google Scholar]Morishita, M.; Goto, T.; Peppas, N. A.; Joseph, J. I.; Torjman, M. C.; Munsick, C.; Nakamura, K.; Yamagata, T.; Takayama, K.; Lowman, A. M. Mucosal insulin delivery systems based on complexation polymer hydrogels: effect of particle size on insulin enteral absorption. J. Controlled Release 2004, 97, 115–124. [Google Scholar]
© 2007 by MDPI ( http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.
Share and Cite
Schneider, H.-J.; Kato, K.; Strongin, R.M. Chemomechanical Polymers as Sensors and Actuators for Biological and Medicinal Applications. Sensors 2007, 7, 1578-1611. https://doi.org/10.3390/s7081578
Schneider H-J, Kato K, Strongin RM. Chemomechanical Polymers as Sensors and Actuators for Biological and Medicinal Applications. Sensors. 2007; 7(8):1578-1611. https://doi.org/10.3390/s7081578
Chicago/Turabian StyleSchneider, Hans-Jörg, Kazuaki Kato, and Robert M. Strongin. 2007. "Chemomechanical Polymers as Sensors and Actuators for Biological and Medicinal Applications" Sensors 7, no. 8: 1578-1611. https://doi.org/10.3390/s7081578
APA StyleSchneider, H. -J., Kato, K., & Strongin, R. M. (2007). Chemomechanical Polymers as Sensors and Actuators for Biological and Medicinal Applications. Sensors, 7(8), 1578-1611. https://doi.org/10.3390/s7081578