An Electrochemical DNA Biosensor Developed on a Nanocomposite Platform of Gold and Poly(propyleneimine) Dendrimer
Abstract
:1. Introduction
2. Results and Discussion
2.1 Morphology and Voltammetric behaviour of GCE/PPI-AuNP
2.2 pH studies of GCE/PPI
2.3 Electrochemical Impedance spectroscopy of GCE/PPI-AuNP
2.4 The voltammetric responses of the biosensor
2.5 Impedimetric responses of the biosensors
3. Experimental
3.1 Materials
3.2. Solutions
3.3 Equipment and apparatus
3.4 Electro-preparation of platforms and development of the DNA biosensor
3.4.1 Preparation of GCE/PPI, GCE/AuNP and GCE/PPI-AuNP modified electrodes
3.4.2 Immobilization of probe DNA (GCE/PPI-AuNP/ssDNA) and hybridization with target DNA (GCE/PPI-AuNP/dsDNA)
4. Conclusions
Acknowledgments
References and Notes
- Iwuoha, E.I.; Smyth, M.R. Reactivities of organic phase biosensors: 6. Square-wave and differential pulse studies of genetically engineered cytochrome P450cam (CYP101) bioelectrodes in selected solvents. Biosens. Bioelectron. 2003, 18, 237–244. [Google Scholar]
- Iwuoha, E.; Ngece, R.; Klink, M.; Baker, P. Amperometric responses of CYP2D6 drug metabolism nanobiosensor for sertraline: a selective serotonin reuptake inhibitor. IET Nanobiotech. 2007, 1, 62–67. [Google Scholar]
- Zejli, H.; Cisneros, J.L.H.H.d.; Rodriguez, I.N.; Liu, B.; Temsamani, K.R.; Marty, J.L. Phenol biosensor based on Sonogel-Carbon transducer with tyrosinase alumina sol–gel immobilization. Anal. Chim. Acta 2008, 612, 198–203. [Google Scholar]
- Somerset, V.S.; Klink, M.J.; Baker, P.G.L.; Iwuoha, E.I. Acetylcholinesterase-polyaniline biosensor investigation of organophosphate pesticides in selected organic solvents. J. Environ. Sci. Health B 2007, 42, 297–304. [Google Scholar]
- Gore, M.R.; Szalai, V.A.; Ropp, P.; Yang, I.V.; Silverman, J.S.; Thorp, H.H. Detection of Attomole Quantitites of DNA Targets on Gold Microelectrodes by Electrocatalytic Nucleobase Oxidation. Anal. Chem. 2003, 75, 6586–6592. [Google Scholar]
- Owino, J.H.O.; Ignaszak, A.; Ahmed, A.A.; Baker, P.G.L.; Alemu, H.; Ngila, J.C.; Iwuoha, E.I. Modelling of the impedimetric responses of an aflatoxin B1 immunosensor prepared on an electrosynthetic polyaniline platform. Anal. Bioanal. Chem. 2007, 388, 1069. [Google Scholar]
- Drummond, T.G.; Hill, M.G.; Barton, J.K. Electrochemical DNA sensors. Nat. Biotechnol. 2003, 21, 1192–1199. [Google Scholar]
- Lucarelli, F.; Tombelli, S.; Minunni, M.; Marrazza, G.; Mascini, M. Electrochemical and piezoelectric DNA biosensors for hybridisation detection. Anal. Chim. Acta 2008, 609, 139–159. [Google Scholar]
- Bontidean, I.; Mortari, A.; Leth, S.; Brown, N.L.; Karlson, U.; Larsen, M.M.; Vangronsveld, J.; Corbisier, P.; Csöregi, E. Biosensors for detection of mercury in contaminated soils. Environ. Pollut. 2004, 131, 255–262. [Google Scholar]
- Nakamura, H.; Karube, I. Current research activity in biosensors. Anal. Bioanal. Chem. 2003, 377, 446–468. [Google Scholar]
- Mascini, M. Affinity electrochemical biosensors for pollution control. Pure Appl. Chem. 2001, 73, 23–30. [Google Scholar]
- Luckarift, H.R.; Greenwald, R.; Bergin, M.H.; Spain, J.C.; Johnson, G.R. Biosensor system for continuous monitoring of organophosphate aerosols. Biosens. Bioelectron. 2007, 23, 400–406. [Google Scholar]
- Bagni, G.; Osella, D.; Sturchio, E.; Mascini, M. Deoxyribonucleic acid (DNA) biosensors for environmental risk assessment and drug studies. Analytica Chimica Acta 2006, 573-574, 81–89. [Google Scholar]
- Berganza, J.; Olabarria, G.; Garcıa, R.; Verdoy, D.; Rebollo, A.; Arana, S. DNA microdevice for electrochemical detection of Escherichia coli 0157:H7 molecular markers. Biosens. Bioelectron. 2007, 22, 2132–2137. [Google Scholar]
- LaGier, M.J.; Fell, J.W.; Goodwin, K.D. Electrochemical detection of harmful algae and other microbial contaminants in coastal waters using hand-held biosensors. Marine Pollut. Bull. 2007, 54, 757–770. [Google Scholar]
- Patel, P.D. (Bio)sensors for measurement of analytes implicated in food safety: a review. Trends Anal. Chem. 2002, 21, 96–115. [Google Scholar]
- Gáspár, C.S.; Leth, S.; Niculescu, M.; Mortari, A.; Bontidean, I.; Soukharev, V.; Dorneanu, S.A.; Ryabov, A.D.; Csöregi, E. Biosensors for life quality: Design, development and applications. Sens. Actuat. B-Chem. 2004, 102, 179–194. [Google Scholar]
- Smith, R.G.; D’Souza, N.; Nicklin, S. A review of biosensors and biologically-inspired systems for explosives detection. Analyst 2008, in press. [Google Scholar]
- Viveros, L.; Paliwal, S.; McCrae, D.; Wild, J.; Simonian, A. A fluorescence-based biosensor for the detection of organophosphate pesticides and chemical warfare agents. Sens. Actuat. B-Chem. 2006, 115, 150–157. [Google Scholar]
- Brett, A.M.O.; Paquim, A.M.C.; Diculescu, V.; Oretskaya, T.S. Synthetic oligonucleotides: AFM characterisation and electroanalytical studies. Bioelectrochemistry 2005, 67, 181–190. [Google Scholar]
- Cloarec, J.P.; Chevolot, Y.; Laurenceau, E.; Phaner-Goutorbe, M.; Souteyrand, E. A multidisciplinary approach for molecular diagnostics based on biosensors and microarrays. ITBM-RBM 2008, 29, 105–127. [Google Scholar]
- Sassolas, A.; Bouvier, B.D.L.; Blum, L.J. DNA Biosensors and Microarrays. Chem. Rev. 2008, 108, 109–139. [Google Scholar]
- Lo, P.-H.; Kumar, S.A.; Chen, S.-M. Amperometric determination of H2O2 at nano-TiO2/DNA/thionin nanocomposite modified electrode. Coll. Surf. B: Biointerf. 2008, 66, 266–273. [Google Scholar]
- Zhang, W.; Yang, T.; Huang, D.; Jiao, K.; Li, G. Synergistic effects of nano-ZnO/multi-walled carbon nanotubes/chitosan nanocomposite membrane for the sensitive detection of sequence-specific of PAT gene and PCR amplification of NOS gene. J. Membr. Sci. 2008, 325, 245–251. [Google Scholar]
- Ghanbari, K.; Bathaie, S.Z.; Mousavi, M.F. Electrochemically fabricated polypyrrole nanofiber-modified electrode as a new electrochemical DNA biosensor. Biosens. Bioelectron. 2008, 23, 1825–1831. [Google Scholar]
- Fréchet, J.M. Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science 1994, 263, 1710–1715. [Google Scholar]
- Svenson, S.; Tomalia, D.A. Dendrimers in biomedical applications - reflections on the field. Adv. Drug Deliv. Rev. 2005, 57, 2106–2129. [Google Scholar]
- Boas, U.; Heegaard, P.M.H. Dendrimers in drug research. Chem. Soc. Rev. 2004, 33, 43–63. [Google Scholar]
- Dufes, C.; Uchegbu, I.F.; Schatzlein, A.G. Dendrimers in gene delivery. Adv. Drug Deliv. Rev. 2005, 57, 2177–2202. [Google Scholar]
- Astruc, D.; Chardac, F. Dendritic Catalysts and Dendrimers in Catalysis. Chem. Rev. 2001, 101, 2991–3023. [Google Scholar]
- Malgas, R.; Mapolie, S.F.; Ojwach, S.O.; Smith, G.S.; Darkwa, J. The application of novel dendritic nickel catalysts in the oligomerization of ethylene. Catal. Commun. 2008, 9, 1612–1617. [Google Scholar]
- Agashe, H.B.; Babbar, A.K.; Jain, S.; Sharma, R.K.; Mishra, A.K.; Asthana, A.; Garg, M.; Dutta, T.; Jain, N.K. Investigations on biodistribution of technetium-99m-labeled carbohydrate-coated poly(propylene imine) dendrimers. Nanomedicine NBM 2007, 3, 120–127. [Google Scholar]
- Arotiba, O.A.; Ignaszak, A.; Malgas, R.; Al-Ahmed, A.; Baker, P.G.L.; Mapolie, S.F.; Iwuoha, E.I. An electrochemical DNA biosensor developed on novel multinuclear nickel (II) salicylaldimine metallodendrimer platform. Electrochim. Acta 2007, 53, 1689–1696. [Google Scholar]
- McCarthy, T.D.; Karellas, P.; Henderson, S.A.; Giannis, M.; O’Keefe, D.F.; Heery, G.; Paull, J.R.A.; Matthews, B.R.; Holan, G. Dendrimers as Drugs: Discovery and Preclinical and Clinical Development of Dendrimer-Based Microbicides for HIV and STI Prevention. Molec. Pharmacol. 2005, 2, 312–318. [Google Scholar]
- Newkome, G.R.; Shreiner, C.D. Poly (amidoamine), polypropylenimine, and related dendrimers and dendrons possessing different 1 → 2 branching motifs: An overview of the divergent procedures. Polymer 2008, 49, 1–173. [Google Scholar]
- Willner, I.; Baron, R.; Willner, B. Integrated nanoparticle–biomolecule systems for biosensing and bioelectronics. Biosens. Bioelectron. 2007, 22, 1841–1852. [Google Scholar]
- Daniels, M.C.; Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2004, 104, 293–346. [Google Scholar]
- Liu, S.; Leech, D.; Ju, H. Application of Colloidal Gold in Protein Immobilization, Electron Transfer, and Biosensing. Anal. Lett. 2003, 36, 1–19. [Google Scholar]
- Shulga, O.; Kirchhoff, J.R. An acetylcholinesterase enzyme electrode stabilized by an electrodeposited gold nanoparticle layer. Electrochem. Commun. 2007, 9, 935–940. [Google Scholar]
- Katz, E.; Willner, I. Probing Biomolecular Interactions at Conductive and Semiconductive Surfaces by Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNA-Sensors, and Enzyme Biosensors. Electroanalysis 2003, 15, 913. [Google Scholar]
- Lucarelli, F.; Marrazza, G.; Mascini, M. Enzyme-based impedimetric detection of PCR products using oligonucleotide-modified screen-printed gold electrodes. Biosens. Bioelectron. 2005, 20, 2001–2009. [Google Scholar]
- Pingarrón, J.M.; Yáñez-Sedeño, P.; González-Cortés, A. Gold nanoparticle-based electrochemical biosensors. Electrochim. Acta 2008, 53, 5848–5866. [Google Scholar]
- Krasteva, N.; Guse, B.; Besnard, I.; Yasuda, A.; Vossmeyer, T. Gold nanoparticle/PPI-dendrimer based chemiresistors: Vapor-sensing properties as a function of the dendrimer size. Sens. Actuat. B-Chem. 2003, 92, 137–143. [Google Scholar]
- Barbier, B.; Pinson, J.; Desarmot, G.; Sanchez, M. Electrochemical bonding of amines to carbon fiber surfaces toward improved carbon-epoxy composites. J. Electrochem. Soc. 1990, 137, 1757–1764. [Google Scholar]
- Deinhammer, R.S.; Ho, M.; Anderegg, J.W.; Porter, M.D. Electrochemical Oxidation of Amine-Containing Compounds: A Route to the Surface Modification of Glassy Carbon Electrodes. Langmuir 1994, 10, 1306–1313. [Google Scholar]
- Downard, A.J. Electrochemically assisted covalent modification of carbon electrodes. Electroanalysis 2000, 12, 1085–1096. [Google Scholar]
- Krause, S. Impedance Methods. In ncyclopedia of Electrochemistry; Bard, A.J., Stratman, M., Unwin, P.R., Eds.; WILEY-VCH Verlag GmgH & Co. KGaA: Weinheim, 2003; Vol. 3, Ch. 2. [Google Scholar]
- Kabanov, V.A.; Zezin, A.B.; Rogacheva, V.B.; Gulyaeva, Z.G.; Zansochova, M.F.; Joosten, J.G.H.; Brackman, J. Polyelectrolyte Behavior of Astramol Poly(propyleneimine) Dendrimers. Macromolecules 1998, 31, 5142–5144. [Google Scholar]
- van-Duijvenbode, R.C.; Borkovec, M.; Koper, G.J.M. Acid-base properties of poly(propylene imine)dendrimers. Polymer 1998, 39, 2657–2664. [Google Scholar]
- Ferreira, V.; Tenreiro, A.; Abrantes, L.M. Electrochemical, microgravimetric and AFM studies of polythionine films Application as new support for the immobilisation of nucleotides. Sens. Actuat. B- Chem. 2006, 119, 632–641. [Google Scholar]
- Koper, G.J.M.; vanGenderen, M.H.P.; Elissen-Roman, C.; Baars, M.W.P.L.; Meijer, E.W.; Borkovec, M. Protonation Mechanism of Poly(propylene imine) Dendrimers and Some Associated Oligo Amines. J. Am. Chem. Soc. 1997, 119, 6512–6521. [Google Scholar]
- Cheng, W.; Dong, S.; Wang, E. Gold Nanoparticles as Fine Tuners of Electrochemical Properties of the Electrode/Solution Interface. Langmuir 2002, 18, 9947–9952. [Google Scholar]
- Kelly, S.O.; Barton, J.K. Electron transfer between bases in double helical DNA. Science 1999, 283, 375–381. [Google Scholar]
- Giese, B.; Amaudrut, J.; Kohler, A.K.; Spormann, M.; Wessely, S. Direct observation of hole transfer through DNA by hopping between adenine bases and by tunneling. Nature 2001, 412, 318–320. [Google Scholar]
- Flink, H.W.; Schoenenberger, C. Electrical conduction through DNA molecules. Nature 1999, 398, 407–410. [Google Scholar]
- Berlin, Y.A.; Burin, A.L.; Ratner, M.A. Charge Hopping in DNA. J. Am. Chem. Soc. 2001, 123, 260–268. [Google Scholar]
- Cohen, H.; Nogues, C.; Naaman, R.; Porath, D. Direct measurement of electrical transport through single DNA molecules of complex sequence. Proc. Natl. Acad. Sci. USA 2005, 102, 11589–11593. [Google Scholar]
- Ikeura-Sekiguchi, H.; Sekiguchi, T. Attosecond Electron Delocalization in the Conduction Band through the Phosphate Backbone of Genomic DNA. Phys. Rev. Lett. 2007, 99, 228102. [Google Scholar]
- Tasdelen, M.A.; Demirel, A.L.; Yagci, Y. Poly(propylene imine) dendrimers as hydrogen donor in Type II photoinitiated free radical polymerization. Eur. Polymer J. 2007, 43, 4423–4430. [Google Scholar]
- Liu, J.; Tian, S.; Nielsen, P.E.; Knoll, W. In situ hybridization of PNA/DNA studied label-free by electrochemical impedance spectroscopy. Chem. Commun. 2005, 2969–2971. [Google Scholar]
- Gu, H.; Su, X.d.; Loh, K.P. Electrochemical Impedance Sensing of DNA Hybridization on Conducting Polymer Film-Modified Diamond. J. Phys. Chem. B 2005, 109, 13611–13618. [Google Scholar]
pH | Epa (mV) | Epc (mV) | E°′ (mV) | AE (mV) |
---|---|---|---|---|
CV [SWV] | CV | CV | CV | |
2.17 | 388 [340] | 336 | 362 | 52 |
4.13 | 320 [284] | 270 | 295 | 50 |
6.17 | 249 [236] | 213 | 231 | 36 |
7.04 | 223 [216] | 201 | 212 | 22 |
8.02 | 211 [172] | 149 | 180 | 62 |
10.16 | -[155] | 186 | - | - |
12.00 | - | - | - | - |
Circuit element | Rs(Ω) | Retct(Ω) | CPE (nF) | ZW |
---|---|---|---|---|
GCE | 258 | 1348 | 463 | 699 |
GCE/PPI-AuNP | 236 | 251 | 434 | 617 |
GCE/PPI-AuNP/ssDNA | 212 | 528 | 468 | 604 |
Average Error | 6.88 | 2.97 | 8.31 | 2.47 |
Target DNA conc. (nM) | 0.01 | 0.05 | 0.1 | 0.5 | 1 | 5 |
---|---|---|---|---|---|---|
log (Target DNA conc. (nM)) | -11 | -10.3 | -10 | -9.3 | -9 | -8.3 |
Rct(Ω) | 538.3 | 651.2 | 680.5 | 850.4 | 908.8 | 981 |
Error (Rct) | 0.43 | 1.24 | 0.93 | 0.6 | 0.36 | 0.53 |
Rs(Ω) | 127.4 | 183 | 182.9 | 176.4 | 161.8 | 167.4 |
CPE (nF) | 852 | 871.3 | 850.5 | 802.7 | 830 | 812.8 |
Zw | 301.3 | 286.2 | 286.7 | 288.5 | 282.9 | 285.1 |
© 2008 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Arotiba, O.; Owino, J.; Songa, E.; Hendricks, N.; Waryo, T.; Jahed, N.; Baker, P.; Iwuoha, E. An Electrochemical DNA Biosensor Developed on a Nanocomposite Platform of Gold and Poly(propyleneimine) Dendrimer. Sensors 2008, 8, 6791-6809. https://doi.org/10.3390/s8116791
Arotiba O, Owino J, Songa E, Hendricks N, Waryo T, Jahed N, Baker P, Iwuoha E. An Electrochemical DNA Biosensor Developed on a Nanocomposite Platform of Gold and Poly(propyleneimine) Dendrimer. Sensors. 2008; 8(11):6791-6809. https://doi.org/10.3390/s8116791
Chicago/Turabian StyleArotiba, Omotayo, Joseph Owino, Everlyne Songa, Nicolette Hendricks, Tesfaye Waryo, Nazeem Jahed, Priscilla Baker, and Emmanuel Iwuoha. 2008. "An Electrochemical DNA Biosensor Developed on a Nanocomposite Platform of Gold and Poly(propyleneimine) Dendrimer" Sensors 8, no. 11: 6791-6809. https://doi.org/10.3390/s8116791
APA StyleArotiba, O., Owino, J., Songa, E., Hendricks, N., Waryo, T., Jahed, N., Baker, P., & Iwuoha, E. (2008). An Electrochemical DNA Biosensor Developed on a Nanocomposite Platform of Gold and Poly(propyleneimine) Dendrimer. Sensors, 8(11), 6791-6809. https://doi.org/10.3390/s8116791