Multifunctional Polypeptide EQCN Sensors: Probing the Cysteamine-Glutathione Film Permeability with Hg(II) Ions
Abstract
:1. Introduction
2. Results and Discussion
2.1. EQCN voltammetric analysis of Hg(II) processes at Au/CA and Au/CA-GSH piezoelectrodes
2.2. Mass-to-charge ratio
2.3. Electronic structure of CA and CA-GSH SAM films on Au
3. Experimental Section
4. Conclusions
Acknowledgments
References and Notes
- Hepel, M.; Tewksbury, E. Ion-gating phenomena of self-assembling glutathione films on gold piezoelectrodes. J. Electroanal. Chem. 2003, 552, 291. [Google Scholar]
- Hepel, M.; Tewksbury, E. Nanogravimetric study of templated copper deposition in ion-channels of self-assembled films on gold piezoelectrodes. Electrochim. Acta 2004, 49, 3827. [Google Scholar]
- Hepel, M.; Dallas, J.; Noble, M.D. Glutathione-modified gold piezoelectric and voltammetric sensors for determination of mercury in a wide concentration range. Sens. Transduc. J. 2008, 88, 47. [Google Scholar]
- Hepel, M.; Dallas, J.; Noble, M.D. Interactions and reactivity of Hg(II) on glutathione modified gold electrode studied by EQCN technique. J. Electroanal. Chem. 2008, 622, 173–183. [Google Scholar]
- Takehara, K.; Ide, Y.; Aihara, M. An ion-gate response of the glutathione monolayer assembly formed on a gold electrode. Part 2. The effect of alkaline earth ions. Bioelectrochem. Bioenerg. 1991, 29, 113–120. [Google Scholar]
- Liu, J.; Chou, A.; Rahmat, W.; Paddon-Row, M.N.; Gooding, J.J. Achieving direct electrical connection to glucose oxidase using aligned single walled carbon nanotube arrays. Electroanalysis 2005, 17, 38. [Google Scholar]
- Park, S.Y.; Lytton-Jean, A.K. R.; Lee, B.; Weigand, S.; Schatz, G.C.; Mirkin, C.A. DNA-Programmable Nanoparticle Crystallization. Nature 2008, 451, 553–556. [Google Scholar]
- Wang, W.U.; Chen, C.; Lin, K.H.; Fang, Y.; Lieber, C.M. Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 3208–3212. [Google Scholar]
- Hepel, M. Quantum conductance of monatomic Ni nanobridges. Electrochim. Acta 2006, 51, 5811–5824. [Google Scholar]
- Kutner, W.; Pieta, P.; Nowakowski, R.; Sobczak, J.W.; Kaszkur, Z.; McCarty, A.L.; D'Souza, F. Composition, Structure, Surface Topography and Electrochemical Properties of Electrophoretically Deposited Nanostructured Fullerene Films. Chem. Mater. 2005, 17, 5635–5645. [Google Scholar]
- Vega, R.A.; Shen, C.K.F.; Maspoch, D.; Robach, J.G.; Lamb, R.A.; Mirkin, C.A. Monitoring Single Cell Infectivity from Virus Particle Nanoarrays Fabricated by Parallel Dip-Pen Nanolithography. Small 2007, 3, 1482–1485. [Google Scholar]
- Fang, C.; Zhou, X. Voltammetry and EQCM investigation of glutathione monolayer and its complexation with Cu2+. Electroanalysis 2002, 15, 1632. [Google Scholar]
- Chow, E.; Hibbert, D.B.; Gooding, J.J. Voltammetric detection of cadmium ions at glutathione-modified gold electrodes. Analyst 2005, 130, 831–837. [Google Scholar]
- Gooding, J.J.; Pugliano, I.; Hibbert, D.B.; Erokhin, P. Amperometric biosensor with enzyme amplification fabricated using self-assembled monolayers of alkanethiols: the influence of the spatial distribution of the enzymes. Electrochem. Commun. 2000, 2, 217–221. [Google Scholar]
- Mizutani, F.; Yabuki, S.; Sato, Y.; Sawaguchi, T.; Iijima, S. Amperometric determination of pyruvate, phosphate and urea using enzyme electrodes based on pyruvate oxidase-containing poly(vinyl alcohol):polyion complex-bilayer membrane. Electrochim. Acta 2000, 45, 2945–2952. [Google Scholar]
- Halamek, J.; Hepel, M.; Skladal, P. Investigation of highly sensitive piezoelectric immunosensors for 2,4-dichlorophenoxyacetic acid. Biosensors Bioelectronics 2001, 16, 253–260. [Google Scholar]
- Pribyl, J.; Hepel, M.; Halamek, J.; Skladal, P. Development of piezoelectric immunosensors for competitive and direct determination of atrazine. Sens. Actuat. B 2003, 91, 333–341. [Google Scholar]
- Pribyl, J.; Hepel, M.; Skladal, P. Piezoelectric immunosensors for polychlorinated biphenyls operating in aqueous and organic phases. Sens. Actuat. B 2006, 113, 900–910. [Google Scholar]
- Bernard, S.; Enayati, A.; Redwood, L.; Roger, H.; Binstock, T. Autism: a novel form of mercury poisoning. Med. Hypotheses 2001, 56, 462–471. [Google Scholar]
- Clark-Taylor, T.; Clark-Taylor, B.E. Is autism a disorder of fatty acid metabolism? Possible dysfunction of mitochondrial b-oxidation by long chain acyl-CoA dehydrogenase. Med. Hypotheses 2004, 62, 970–975. [Google Scholar]
- Beard, K.M.; Shangari, M.; Wu, B.; O'Brien, P.J. Metabolism, not autoxidation, plays a role in α-oxoaldehyde- and reducing sugar-induced erythrocyte GSH depletion: Relevance for diabetes mellitus. Mol. Cell. Biochem. 2003, 252, 331–338. [Google Scholar]
- Polidoro, G.; Ilio, C.D.; Arduini, A.; Rovere, G.L.; Federici, G. Superoxide dismutase, reduced glutathione and TBA-reactive products in erythrocytes of patients with multiple sclerosis. Int. J. Biochem. 1984, 16, 505–509. [Google Scholar]
- Almazzan, G.; Liu, H.N.; Knorchid, A.; Sundararajan, S.; Martinez-Bermudez, A.K.; Chemtob, S. Exposure of developing oligodendrocytes to cadmium causes HSP72 induction, free radical generation, reduction in glutathione levels, and cell death. Free Radical Biol. Med. 2000, 29, 858–869. [Google Scholar]
- Repetto, M.; Reides, C.; Carretero, M.L.G.; Costa, M.; Griemberg, G.; Llesuy, S. Oxidative stress in blood of HIV infected patients. Clin. Chim. Acta 1996, 255, 107–117. [Google Scholar]
- Upadhya, S.; Mohan, S.K.; Vanajakshamma, K.; Kunder, M.; Mathias, S. Indian J. Clin. Biochem. 2004, 19, 80.
- Clarkson, T.W. Mercury: Major Issues in Environmental Health. Environ. Health Perspect. 1993, 100, 31–37. [Google Scholar]
- Noble, M.; Mayer-Proschel, M.; Proschel, C. Redox regulation of preecursor cell function: Insights and paradoxes. Antioxid. Redox Signal. 2005, 7, 1456–1467. [Google Scholar]
- Bruckenstein, S.; Shay, M. Experimental aspects of use of the quartz crystal microbalance in solution. Electrochim. Acta 1985, 30, 1295–1300. [Google Scholar]
- Hepel, M. Electrode-Solution Interface Studied with Electrochemical Quartz Crystal Nanobalance. In Interfacial Electrochemistry. Theory, Experiment and Applications; Wieckowski, A., Ed.; Marcel Dekker, Inc.: New York, 1999; pp. 599–630. [Google Scholar]
- Lindstrom, T.R.; Johnson, D.C. Evaluation of naPPfo r the Underpotential Deposition of Mercury on Gold by Flow Injection Coulometry. Anal. Chem. 1981, 53, 1855–1857. [Google Scholar]
- Schadewald, L.A.; Lindstrom, T.R.; Hussein, W.; Evenson, E.E.; Johnson, D.C. Deposition and Stripping of Mercury at Gold Electrodes in Acidic Media: 1. Voltammetric Studies. J. Electrochem. Soc. 1984, 131, 1583–1587. [Google Scholar]
- Shay, M.; Bruckenstein, S. Determination of Hg(1) Adsorption Accompanying the Coulostatic Underpotential Deposition of Mercury on Gold Using the Quartz Crystal Microbalance. Langmuir 1989, 5, 280–282. [Google Scholar]
- Romeo, F.M.; Tucceri, R.I.; Posadas, D. Voltammetric and Surface Conductance Study of the Deposition and Stripping of Mercury on Gold. Langmuir 1990, 6, 839–842. [Google Scholar]
- Salie, G.; Bartels, K. Partial charge transfer in the underpotential deposition of metals Part II. mercury deposition on polycrystalline gold electrodes. J. Electroanal. Chem. 1988, 245, 21–38. [Google Scholar]
- Salie, G. Evidence of two differently charged mercury species in underpotential deposits on gold by impedance spectrometry. J. Electroanal. Chem. 1989, 259, 315–319. [Google Scholar]
- Salie, G.; Bartels, K. Partial charge transfer and adsorption at metal electrodes. The underpotential deposition of Hg(I), Tl(I), Bi(III) and Cu(II) on polycrystalline gold electrodes. Electrochim. Acta 1994, 39, 1057–1065. [Google Scholar]
- Zeng, X.; Prasad, S.; Bruckenstein, S. X-ray Photoelectron Spectroscopy and Time-of-Flight Secondary Ion Mass Spectrometry Study of Hg(I) and Sulfate Adsorption Processes Accompanying the Coulostatic Underpotential Deposition of Mercury on Gold. Langmuir 1998, 14, 2535–2540. [Google Scholar]
- Welch, C.M.; Nekrassova, O.; Dai, X.; Hyde, M.E.; Compton, R.G. Fabrication, Characterisation and Voltammetric Studies of Gold Amalgam Nanoparticle Modified Electrodes. ChemPhysChem 2004, 5, 1405–1410. [Google Scholar]
- Chen, C.H.; Gewirth, A.A. In situ observation of monolayer structures of underpotentially deposited Hg on Au(111) with atomic force microscope. Phys. Rev. Lett. 1992, 68, 1571–1574. [Google Scholar]
- Inukai, J.; Sugita, S.; Itaya, K. Underpotential deposition of mercury on Au(111) investigated by in situ scanning tunnelling microscopy. J. Electroanal. Chem. 1996, 403, 159–168. [Google Scholar]
- Li, J.; Abruna, H.D. Coadsorption of Sulfate/Bisulfate Anions with Hg Cations during Hg Underpotential Deposition on Au(111): An in Situ X-ray Diffraction Study. J. Phys. Chem. B 1997, 101, 244–252. [Google Scholar]
- Li, J.; Abruna, H.D. Phases of Underpotentially Deposited Hg on Au(111): An in Situ Surface X-ray Diffraction Study. J. Phys. Chem. B 1997, 101, 2907–2916. [Google Scholar]
- Herrero, E; Abruna, H.D. Underpotential Deposition of Mercury on Au(111): Electrochemical Studies and Comparison with Structural Investigations. Langmuir 1997, 13, 4446–4453. [Google Scholar]
- Chen, C.H.; Gewirth, A.A. AFM study of the structure of underpotentially deposited Ag and Hg on Au(111). Ultramicroscopy 1992, 42, 437–444. [Google Scholar]
- Abruna, H.D.; Feliu, J.M.; Brock, J.D.; Buller, L.J.; Herrero, E.; Li, J.; Gomez, R.; Finnefrock, A. Anion and electrode surface structure effects on the deposition of metal monolayers: electrochemical and time-resolved surface diffraction studies. Electrochim. Acta 1998, 43, 2899–2909. [Google Scholar]
- Herrero, E.; Buller, L.J.; Li, J.; Finnefrock, A.; Salomon, A.B.; Alonso, C.; Brock, J.D.; Abruna, H.D. Electrodeposition dynamics: electrochemical and X-ray scattering studies. Electrochim. Acta 1998, 44, 983–992. [Google Scholar]
- Li, J.; Herrero, E.; Abruna, H.D. The effects of anions on the underpotential deposition of Hg on Au(111) An electrochemical and in situ surface X-ray diffraction study. Colloids Surf. A 1998, 134, 113–131. [Google Scholar]
- Herrero, E.; Abruna, H.D. Anion Effects on the Kinetics of Mercury Underpotential Deposition on Au(111) Electrodes. J. Phys. Chem. B 1998, 102, 444–451. [Google Scholar]
- Herrero, E.; Buller, L.J.; Abruna, H.D. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev. 2001, 101, 1897–1930. [Google Scholar]
- Evans, C.D.; Nicic, I.; Chambers, J.Q. An electrochemical quartz crystal microbalance study of the deposition of mercury on graphite films. Electrochim. Acta 1995, 40, 2611–2615. [Google Scholar]
- Cho, K.; Yoon, S.; Jung, M.C; Kim, H. Stable mercury films on gold for the electrochemical quartz crystal microbalance. Colloid Surf. A 1998, 134, 59–65. [Google Scholar]
- Daujotis, V.; Britz, D.; Teiserskiene, A. EQCM Study of the Couple Thallium(I)/Thallium Amalgam at a Thin Film Mercury Electrode. Russ. J. Electrochem. 2004, 40, 612–618. [Google Scholar]Elektrokhimiya 2004, 40, 699–706.
- Wojciechowski, M.; Balcerzak, J. Square-Wave Anodic Stripping Voltammetry at Glassy-Carbon-Based Thin Mercury Film Electrodes in Solutions Containing Dissolved Oxygen. Anal. Chem. 1990, 62, 1325–1331. [Google Scholar]
- Wu, H.P. Nature and Stability of Mercury Thin Films on Glassy Carbon Electrodes under Fast-Scan Anodic Stripping Voltammetry. Anal. Chem. 1994, 66, 3151–3157. [Google Scholar]
- Frenze, W. Mercury films on a glassy carbon support: attributes and problems. Anal. Chim. Acta 1993, 273, 123–137. [Google Scholar]
- Florence, T.M. Anodic stripping voltammetry with a glassy carbon electrode mercury-plated in situ. J. Electroanal. Chem. 1970, 27, 273–281. [Google Scholar]
- Ciszkowska, M.; Donten, M.; Stojek, Z. Preparation of a Mercury Disk Solid Silver Amalgam. Anal. Chem. 1994, 66, 4112–4115. [Google Scholar]
- Sauerbrey, G.Z. Phys 1959, 155, 206.
- Zheng, W.X.; Maye, M.M.; Leibowitz, F.L.; Zhong, C.J. Imparting Biomimetic Ion-Gating Recognition Properties to Electrodes with a Hydrogen-Bonding Structured Core-Shell Nanoparticle Network. Anal. Chem. 2000, 72, 2190–2199. [Google Scholar]
- Kariuki, N.N.; Luo, J.; Han, L.; Maye, M.M.; Moussa, L.; Patterson, M.; Lin, Y.; Engelhard, M.H.; Zhong, C.J. Nanoparticle-Structured Ligand Framework as Electrode Interfaces. Electroanalysis 2004, 16, 120–126. [Google Scholar]
- Kariuki, N.N.; Han, L.; Ly, N.K.; Patterson, M.J.; Maye, M.M.; Liu, G.J.; Zhong, C.J. Preparation and Characterization of Gold Nanoparticles Dispersed in Poly(2-hydroxyethyl methacrylate). Langmuir 2002, 18, 8255–8259. [Google Scholar]
- Han, L.; Luo, J.; Kariuki, N.N.; Maye, M.M.; Jones, V.W.; Zhong, C.J. Novel Interparticle Spatial Properties of Hydrogen-Bonding Mediated Nanoparticle Assembly. Chem. Mater. 2003, 15, 29–37. [Google Scholar]
- Atkins, P.W.; Friedman, R.S. Molecular Quantum Mechanics; Oxford University Press: Oxford, 2004. [Google Scholar]
- Hehre, W.J.; Radon, L.; Schleyer, P.R.; Pople, J.A. Ab-initio Molecular Orbital Theory; Wiley: New York, 1985. [Google Scholar]
- Takehara, K.; Aihara, M.; Miura, Y.; Tanaka, F. An ion-gate response of the cysteine-containing dipeptide monolayers formed on a gold electrode. The effects of alkaline earth ions. Bioelectrochem. Bioenerg. 1996, 39, 135–138. [Google Scholar]
- Takehara, K.; Ide, Y.; Aihara, M.; Obuchi, E. An ion-gate response of the glutathione monolayer assembly formed on a gold electrode Part 1. The effect of pH, K+ and Ca2+. Bioelectrochem. Bioenerg. 1992, 29, 103–111. [Google Scholar]
- Takehara, K.; Aihara, M.; Ueda, N. An ion-gate response of a glutathione monolayer assembly highly sensitive to lanthanide ions. Electroanalysis 1994, 6, 1083–1086. [Google Scholar]
- Yang, X.M.; Tonami, K.; Nagahara, L.A.; Hashimoto, K.; Wei, Y.; Fujishima, A. In-situ atomic force microscope observation of stripping of mercury from Hg/Au alloy films in acidic media. Surf. Sci. 1995, 324, L363–366. [Google Scholar]
- Gilbert, S.E.; Cavalleri, O.; Kern, K. Electrodeposition of Cu Nanoparticles on Decanethiol-Covered Au(111) Surfaces: An in Situ STM Investigation. J. Phys. Chem. 1996, 100, 12123–12130. [Google Scholar]
- Nishizawa, M.; Sunagawa, T.; Yoneyama, H. Underpotential deposition of copper on gold electrodes through self-assembled monolayers of propanethiol. Langmuir 1997, 13, 5215–5217. [Google Scholar]
- Cavalleri, O.; Bittner, A.; Kern, K.; Greber, T.Z. Phys. Chem. 1999, 208, 107.
- Hagenstrom, H.; Schneeweiss, M.A.; Kolb, D.M. Modification of a Au(111) Electrode with Ethanethiol. 2. Copper Electrodeposition. Langmuir 1999, 15, 7802–7809. [Google Scholar]
- Hagenstrom, H.; Schneeweiss, M.A.; Kolb, D.M. Copper underpotential deposition on ethanethiol-modified Au(111) electrodes: kinetic effects. Electrochim. Acta 1999, 45, 1141–1145. [Google Scholar]
- Oyamatsu, D.; Kubawata, S.; Yoneyama, H. Underpotential deposition behavior of metals onto gold electrodes coated with self-assembled monolayers of alkanethiols. J. Electroanal. Chem. 1999, 473, 59–67. [Google Scholar]
- Schneeweiss, M.A.; Hagenstrom, H.; Esplandiu, M.J.; Kolb, D.M. Electrolyticmetal deposition onto chemically modified electrodes. Appl. Phys. A 1999, 69, 537–551. [Google Scholar]
- Esplandiu, M.J.; Hagenstrom, H.; Kolb, D.M. Functionalized Self-Assembled Alkanethiol Monolayers on Au(111) Electrodes: 1. Surface Structure and Electrochemistry. Langmuir 2001, 17, 828–838. [Google Scholar]
- Baunach, T.; Kolb, DM. The electrochemical characterisation of benzyl mercaptan-modified Au(111): Structure and copper deposition. Anal. Bioanal. Chem. 2002, 373, 743–748. [Google Scholar]
- Kudelski, A. Raman and Electrochemical Characterization of 2-Mercaptoethanesulfonate Monolayers on Silver: A Comparison with Monolayers of 3-Mercaptopropionic Acid. Langmuir 2002, 18, 4741–4747. [Google Scholar]
- Ivanova, V.; Baunach, T.; Kolb, D.M. Metal deposition onto a thiol-covered gold surface: A new approach. Electrochim. Acta 2005, 50, 4283–4288. [Google Scholar]
© 2008 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hepel, M.; Dallas, J. Multifunctional Polypeptide EQCN Sensors: Probing the Cysteamine-Glutathione Film Permeability with Hg(II) Ions. Sensors 2008, 8, 7224-7240. https://doi.org/10.3390/s8117224
Hepel M, Dallas J. Multifunctional Polypeptide EQCN Sensors: Probing the Cysteamine-Glutathione Film Permeability with Hg(II) Ions. Sensors. 2008; 8(11):7224-7240. https://doi.org/10.3390/s8117224
Chicago/Turabian StyleHepel, Maria, and Julia Dallas. 2008. "Multifunctional Polypeptide EQCN Sensors: Probing the Cysteamine-Glutathione Film Permeability with Hg(II) Ions" Sensors 8, no. 11: 7224-7240. https://doi.org/10.3390/s8117224
APA StyleHepel, M., & Dallas, J. (2008). Multifunctional Polypeptide EQCN Sensors: Probing the Cysteamine-Glutathione Film Permeability with Hg(II) Ions. Sensors, 8(11), 7224-7240. https://doi.org/10.3390/s8117224