From Maxwell’s Equations to Polarimetric SAR Images: A Simulation Approach
Abstract
:1. Introduction
2. Electromagnetic Model
2.1. Electromagnetic Fields in the Structure
2.2. Moment Method - MoM
2.3. Four-Layer Structure
3. Polarimetric SAR Image Simulation
3.1. Simulated Images
4. Image Analysis
4.1 Amplitude Data
4.2 Polarimetric Data
4.3 Data Classification
5. Conclusions
Acknowledgments
References and Notes
- Lucca, E.V.D.; Freitas, C.C.; Frery, A.C.; Sant'Anna, S.J.S. Comparison of SAR segmentation algorithms. In Segunda Jornada Latino-Americana de Sensoriamento Remoto por Radar: Técnicas de Processamento de Imagens.; Santos, São Paulo, Sept. 1998. [Google Scholar]ESA Workshop Proceedings; 1999; pp. 123–130, ESA SP-434.
- Moschetti, E.; Palacio, M.G.; Picco, M.; Bustos, O.H.; Frery, A.C. On the use of Lee's protocol for speckle-reducing techniques. Lat. Am. Appl. Res. 2006, 36, 115–121. [Google Scholar]
- Gambini, J.; Mejail, M.; Jacobo-Berlles, J.; Frery, A.C. Accuracy of edge detection methods with local information in speckled imagery. Stat. Comput. 2008, 18, 15–26. [Google Scholar]
- Frery, A. C.; Müller, H. J.; Yanasse, C. C. F.; Sant'Anna, S. J. S. A model for extremely heterogeneous clutter. IEEE T. Geosci. Remote Sens. 1997, 35, 648–659. [Google Scholar]
- Sant'Anna, S.J.S.; Lacava, J.C.S.; Fernandes, D. A useful tool to simulate polarimetric SAR images. Eleventh URSI Commission F Triennial Open Symposium on Radio Wave Propagation and Remote Sensing. Anais., Rio de Janeiro, RJ, Brazil, 30 Oct. / 02 Nov., 2007.
- Singh, D.; Dubey, V. Microwave bistatic polarization measurements for retrieval of soil moisture using an incident angle approach. J. Geophys. Eng. 2007, 4, 75–82. [Google Scholar]
- Sarabandi, K.; Nashashibi, A. A novel bistatic scattering matrix measurement technique using a monostatic radar. IEEE T. Antenn. Propag. 1996, 44, 41–50. [Google Scholar]
- Lacava, J.C.S.; Proaño De la Torre, A.V.; Cividanes, L. A dynamic model for printed apertures in anisotropic stripline structures. IEEE T. Microw. Theory 2002, 50, 22–26. [Google Scholar]
- Newman, E.H.; Forrai, D. Scattering from microstrip patch. IEEE T. Antenn. Propag. 1987, AP-35, 245–251. [Google Scholar]
- Collin, R.E.; Zucker, F.J. Antenna Theory: Part 1; McGraw-Hill Book Company: New York, 1969. [Google Scholar]
- Marin, M.A.; Barkeshli, S.; Pathak, P.H. On the location of proper and improper surface wave poles for the grounded dielectric slab. IEEE T. Antenn. Propag. 1990, 38, 570–573. [Google Scholar]
- Sant'Anna, S.J.S.; Pereira, C.G.; Lacava, J.C.S.; Fernandes, D. Seção reta radar de microfitas excitadas por ondas planas. In Anais., XXVII Iberian Latin American Congress on Computational Methods in Engineering (CILAMCE), Belém, PA, Brazil, 3-7 Set. 2006.
- Van Trees, H.L. Detection, estimation, and modulation theory. Part III: Radar-sonar signal processing and Gaussian signals in noise.; John Wiley and Sons Inc.: New York, 1971. [Google Scholar]
- Ulaby, F.T.; Elachi, C. Radar polarimetry for geoscience applications.; Artech House: Norwood, MA, 1990. [Google Scholar]
- Goodman, J.W. Statistical properties of laser speckle patterns. In Laser Speckle and Related Phenomena; Dainty, J. C., Ed.; Springer-Verlag: New York, 1984; Chapter 2. [Google Scholar]
- Neter, J.; Wasserman, W. Applied linear statistical models.; Richard D. Irwin Inc.: Homewood, Illinois, 1974. [Google Scholar]
- Le Toan, T.; Beaudoin, A.; Guyon, D. Relating forest biomass to SAR data. IEEE T. Geosci. Remote Sens. 1992, 30, 403–411. [Google Scholar]
- Durden, S.L.; Klein, S.L.; Zebcker, H.A. Polarimetric radar measurements of a forested area near Mt. Shasta. IEEE T. Geosci. Remote Sens. 1991, 29, 444–450. [Google Scholar]
- van Zyl, J.J. Unsupervised classification of scattering behavior using radar polarimetry data. IEEE T. Geosci. Remote Sens. 1989, 29, 36–45. [Google Scholar]
- Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE T. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar]
- Vieira, P.R. Desenvolvimento de classificadores de máxima verossimilhança e ICM para imagens SAR. Master Dissertation (in Portuguese), Instituto Nacional de Pesquisas Espaciais, INPE-6124-TDI/585. São José dos Campos, SP, Brazil, 1996. [Google Scholar]
- Correia, A.H. Desenvolvimento e avaliação de classificadores estatísticos pontuais e contextuais para imagens SAR polarimétricas. Master Dissertation (in Portuguese), Instituto Nacional de Pesquisas Espaciais, INPE-7178-TDI/679. São José dos Campos, SP, Brazil, 1998. [Google Scholar]
- Correia, A.H.; Freitas, C.C.; Frery, A.C.; Sant'Anna, S.J.S. A user friendly statistical system for polarimetric SAR image classification. Rev. Teledetec. 1998, 10, 79–93. [Google Scholar]
- Frery, A.C.; Yanasse, C.C.F.; Vieira, P.R.; Sant'Anna, S.J.S.; Rennó, C.D. A user-friendly system for synthetic aperture radar image classification based on grayscale distributional properties and context. Simpósio Brasileiro de Computação Gráfica e Processamento de Imagens, Campos de Jordão, IEEE Brazil, 14-17 October, 1997; pp. 211–218.
- Freitas, C.C.; Soler, L.S.; Sant'Anna, S.J.S.; Dutra, L.V.; Santos, J.R.; Mura, J.C.; Correia, A.H. Land use and land cover mapping in Brazilian Amazon using polarimetric airborne P-band SAR data. IEEE T. Geosci. Remote Sens. 2008, 46, 2956–2970. [Google Scholar]
- Lee, J.S.; Hoppel, K.W.; Mango, S.A.; Miller, A.R. Intensity and phase statistics of multi-look polarimetric and interferometric SAR imagery. IEEE T. Geosci. Remote Sens. 1994, 32, 1017–1028. [Google Scholar]
- Lee, J.S.; Du, L.; Shuler, D.L.; Grunes, M.R. Statistical analysis and segmentation of multilook SAR imagery using partial polarimetric data. International Geoscience and Remote Sensing Symposium, Florence, Italy, 10-14 July, 1995; Firenze: IGARSS. 3, pp. 1422–1424.
- Srivastava, M.S. On the complex Wishart distribution. Ann. Math. Stat 1963, 36, 313–315. [Google Scholar]
- Goodman, N.R. Statistical analysis based on a certain complex Gaussian distributions (an introduction). Ann. Math. Stat 1963, 34, 152–177. [Google Scholar]
- Tadono, T.; Qong, M.; Wakabayashi, H.; Shimada, M.; Kobayashi, T.; Shi, J. Preliminary studies for estimating surface soil moisture and roughness based on a simultaneous experiment with CRL/NASDA airbone SAR (PI-SAR). Asian Conference on Remote Sensing, Hong Kong; 1999. [Google Scholar]
- Bishop, Y.S.; Fienberg, S.E.; Holland, P.W. Discrete multivariate analysis-theory and practice; MIT Press: MA, 1975. [Google Scholar]
- Congalton, R.G.; Green, K. Assessing the accuracy of remotely sensed data: principles and practices.; Lewis Publishers: New York, 1999. [Google Scholar]
Region | Color | εr | tanδr | εrg | tanδg | Dipole Orientation |
---|---|---|---|---|---|---|
A | Red | 2.33 | 1.2×10-4 | 5.0 | 2.0×10-1 | 10° |
B | Magenta | 2.33 | 1.2×10-4 | 5.0 | 2.0×10-1 | 30° |
C | Cyan | 2.33 | 1.2×10-4 | 5.0 | 2.0×10-1 | TR |
D | Blue | 4.00 | 1.2×10-1 | 8.0 | 2.0×10+1 | TR |
E | Green | 2.33 | 1.2×10-4 | 8.0 | 2.0×10+1 | TR |
Region | p-value (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
HH | HV | VV | |||||||
L | C | X | L | C | X | L | C | X | |
A | 22.59 | 92.44 | 73.35 | 79.30 | 35.35 | 67.36 | 48.03 | 48.53 | 84.72 |
B | 79.46 | 72.05 | 90.44 | 46.18 2 | 68.9 | 59.72 | 51.89 | 41.01 | 95.50 |
C | 31.52 | 87.14 | 79.49 | 38.00 | 24.35 | 69.15 | 36.07 | 46.24 | 78.61 |
D | 72.66 | 72.78 | 98.72 | 77.65 | 11.51 | 68.92 | 52.18 | 68.92 | 33.27 |
E | 68.24 | 52.09 | 46.94 | 41.74 | 84.77 | 57.41 | 82.88 | 48.68 | 44.35 |
L | C | X | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Average ENL | Region | HH | HV | VV | HH | HV | VV | HH | HV | VV |
Per Samples | A | 0.984 | 0.972 | 0.958 | 1.003 | 1.022 | 1.037 | 1.047 | 1.068 | 1.084 |
B | 1.118 | 1.117 | 1.113 | 0.985 | 0.986 | 0.988 | 1.083 | 1.087 | 1.093 | |
C | 0.981 | 1.041 | 1.113 | 1.049 | 1.028 | 0.999 | 0.917 | 1.030 | 1.005 | |
D | 1.020 | 1.050 | 1.017 | 0.944 | 0.976 | 0.979 | 0.934 | 1.019 | 1.040 | |
E | 1.072 | 0.998 | 1.011 | 0.978 | 1.038 | 1.008 | 0.985 | 0.994 | 1.034 | |
Per Region | 1.035 | 1.035 | 1.042 | 0.992 | 1.010 | 1.002 | 0.993 | 1.040 | 1.051 | |
Per Band | 1.038 | 1.001 | 1.028 |
Band | Channel | n | p-value (%) | |
---|---|---|---|---|
b0 | b1 | |||
L | HH | 59 | 53.02 | 16.26 |
HV | 56 | 36.99 | 39.37 | |
VV | 59 | 8.44 | 10.64 | |
C | HH | 57 | 90.74 | 44.36 |
HV | 59 | 74.73 | 49.60 | |
VV | 59 | 16.45 | 20.60 | |
X | HH | 58 | 80.63 | 0.87 |
HV | 60 | 42.95 | 29.03 | |
VV | 58 | 94.03 | 59.67 |
Region | L-band | p-value (%) | C-band | p-value (%) | X-band | p-value (%) |
---|---|---|---|---|---|---|
A | 19.228 (3.553) | 99.63 | -9.612 (3.752) | 99.79 | 6.274 (5.489) | 97.05 |
B | 19.211 (1.496) | 99.67 | -9.290 (1.472) | 99.99 | 6.294 (1.335) | 97.27 |
C | 15.312 (53.839) | 54.24 | -8.177 (67.022) | 90.97 | -4.154 (78.240) | 99.83 |
D | -0.078 (50.710) | 63.92 | 1.596 (70.785) | 99.64 | -8.012 (80.024) | 98.94 |
E | 31.236 (47.823) | 30.56 | -17.912 (59.564) | 33.58 | 10.733 (82.977) | 99.08 |
Classification | Reference Data | |||||
---|---|---|---|---|---|---|
A | B | C | D | E | Total | |
A | 400 | 0 | 0 | 2 | 0 | 402 |
B | 0 | 400 | 0 | 1 | 0 | 401 |
C | 0 | 0 | 398 | 61 | 14 | 473 |
D | 0 | 0 | 2 | 330 | 6 | 338 |
E | 0 | 0 | 0 | 6 | 380 | 386 |
Total | 400 | 400 | 400 | 400 | 400 |
Classification | Reference Data | |||||
---|---|---|---|---|---|---|
A | B | C | D | E | Total | |
A | 400 | 0 | 1 | 0 | 0 | 401 |
B | 0 | 395 | 1 | 0 | 0 | 396 |
C | 0 | 5 | 392 | 0 | 0 | 397 |
D | 0 | 0 | 6 | 400 | 0 | 406 |
E | 0 | 0 | 0 | 0 | 400 | 400 |
Total | 400 | 400 | 400 | 400 | 400 |
Classification | Reference Data | |||||
---|---|---|---|---|---|---|
A | B | C | D | E | Total | |
A | 400 | 0 | 0 | 0 | 0 | 400 |
B | 0 | 396 | 0 | 0 | 0 | 396 |
C | 0 | 4 | 398 | 1 | 0 | 403 |
D | 0 | 0 | 2 | 399 | 0 | 401 |
E | 0 | 0 | 0 | 0 | 400 | 400 |
Total | 400 | 400 | 400 | 400 | 400 |
Classification | Reference Data | |||||
---|---|---|---|---|---|---|
A | B | C | D | E | Total | |
A | 400 | 0 | 0 | 3 | 0 | 403 |
B | 0 | 400 | 1 | 0 | 0 | 401 |
C | 0 | 0 | 375 | 45 | 0 | 420 |
D | 0 | 0 | 17 | 331 | 1 | 349 |
E | 0 | 0 | 7 | 21 | 399 | 427 |
Total | 400 | 400 | 400 | 400 | 400 |
Classification | Reference Data | |||||
---|---|---|---|---|---|---|
A | B | C | D | E | Total | |
A | 400 | 1 | 0 | 0 | 1 | 402 |
B | 0 | 398 | 0 | 0 | 0 | 398 |
C | 0 | 0 | 400 | 0 | 2 | 402 |
D | 0 | 0 | 0 | 400 | 0 | 400 |
E | 0 | 1 | 0 | 0 | 397 | 398 |
Total | 400 | 400 | 400 | 400 | 400 |
Classification | Reference Data | |||||
---|---|---|---|---|---|---|
A | B | C | D | E | Total | |
A | 400 | 1 | 0 | 0 | 0 | 401 |
B | 0 | 397 | 0 | 0 | 0 | 397 |
C | 0 | 0 | 399 | 0 | 2 | 401 |
D | 0 | 2 | 1 | 400 | 0 | 403 |
E | 0 | 0 | 0 | 0 | 398 | 398 |
Total | 400 | 400 | 400 | 400 | 400 |
© 2008 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Sant’Anna, S.J.S.; Da S. Lacava, J.C.; Fernandes, D. From Maxwell’s Equations to Polarimetric SAR Images: A Simulation Approach. Sensors 2008, 8, 7380-7409. https://doi.org/10.3390/s8117380
Sant’Anna SJS, Da S. Lacava JC, Fernandes D. From Maxwell’s Equations to Polarimetric SAR Images: A Simulation Approach. Sensors. 2008; 8(11):7380-7409. https://doi.org/10.3390/s8117380
Chicago/Turabian StyleSant’Anna, Sidnei J. S., J. C. Da S. Lacava, and David Fernandes. 2008. "From Maxwell’s Equations to Polarimetric SAR Images: A Simulation Approach" Sensors 8, no. 11: 7380-7409. https://doi.org/10.3390/s8117380
APA StyleSant’Anna, S. J. S., Da S. Lacava, J. C., & Fernandes, D. (2008). From Maxwell’s Equations to Polarimetric SAR Images: A Simulation Approach. Sensors, 8(11), 7380-7409. https://doi.org/10.3390/s8117380