Comparison of Mercury Distribution Between Liver and Muscle – A Biomonitoring of Fish from Lightly and Heavily Contaminated Localities
Abstract
:1. Introduction
2. Materials and methods
2.1. Collection of fish samples
2.2. Total mercury determination
2.3. Statistical analysis
3. Results
4. Discussion
5. Conclusion
Acknowledgments
Appendix 1
Fish species | N | X2 | df | Significance level |
---|---|---|---|---|
Abramis brama * | 137 | 10.203 | 1 | P = 0.001 |
Alburnus alburnus * | 73 | 6.662 | 1 | P = 0.010 |
Anguilla anguilla | 30 | 2.602 | 1 | P = 0.107 |
Aspius aspius | 21 | 3.368 | 1 | P = 0.066 |
Barbus barbus | 32 | 1.749 | 1 | P = 0.186 |
Blicca bjoercna | 66 | 3.289 | 1 | P = 0.070 |
Carassius auratus | 27 | 1.749 | 1 | P = 0.186 |
Cyprinus carpio * | 27 | 14.479 | 1 | P < 0.001 |
Esox lucius * | 49 | 4.631 | 1 | P = 0.031 |
Gobio gobio * | 60 | 35.875 | 1 | P < 0.001 |
Gymnocephalus cernua | 4 | 2.321 | 1 | P = 0.128 |
Ictalurus nebulosus * | 35 | 7.185 | 1 | P = 0.007 |
Leuciscus cephalus | 113 | 0.019 | 1 | P = 0.892 |
Leuciscus idus | 38 | 0.045 | 1 | P = 0.833 |
Leuciscus leuciscus | 10 | 5.820 | 1 | P = 0.016 |
Perca fluviatilis | 118 | 0.272 | 1 | P = 0.602 |
Rutilus rutilus | 138 | 0.266 | 1 | P = 0.606 |
Salmo trutta | 5 | 2.321 | 1 | P = 0.128 |
Scardinius erythrophthalmus * | 29 | 15.030 | 1 | P < 0.001 |
Stizostedion lucioperca | 63 | 3.343 | 1 | P = 0.067 |
Tinca tinca | 29 | 1.292 | 1 | P = 0.256 |
Vimba vimba | 8 | 0.600 | 1 | P = 0.439 |
Lota lota | 2 | |||
Silurus glanis | 2 | |||
Thymallus thymallus | 1 | |||
Predator vs. no predator | 702 | 1.759 | 1 | P = 0.185 |
Appendix 2
Hg in muscle | Hg in liver | Hg in liver / Hg in muscle | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
intercept | slope | r2 | P | intercept | slope | r2 | P | intercept | slope | r2 | P | |
Anguilla anguilla | 0.526 | -0.010 | 0.004 | 0.726 | 1.085 | -0.012 | 0.001 | 0.911 | 1.674 | 0.037 | 0.002 | 0.825 |
Aspius aspius | 0.491 | 0.135 | 0.197 | 0.044 | 2.120 | -0.021 | 0.001 | 0.923 | 3.027 | -0.242 | 0.096 | 0.196 |
Barbus barbus | 0.233 | 0.070 | 0.036 | 0.296 | 0.089 | 0.077 | 0.038 | 0.287 | 0.344 | 0.073 | 0.058 | 0.183 |
Blicca bjoercna | 0.358 | 0.006 | 0.003 | 0.689 | -0.002 | 0.118 | 0.089 | 0.025 | 0.569 | 0.147 | 0.064 | 0.060 |
Carassius auratus | 0.173 | 0.016 | 0.105 | 0.099 | 0.088 | 0.004 | 0.016 | 0.534 | 0.489 | -0.005 | 0.002 | 0.835 |
Gymnocephalus cernua | 0.212 | -0.011 | 0.228 | 0.523 | ||||||||
Leuciscus cephalus | 0.308 | 0.032 | 0.018 | 0.161 | 0.058 | 0.080 | 0.051 | 0.017 | 0.418 | 0.071 | 0.085 | 0.002 |
Leuciscus idus | 0.350 | -0.011 | 0.013 | 0.493 | 0.458 | -0.004 | 0.000 | 0.931 | 0.605 | 0.106 | 0.032 | 0.294 |
Leuciscus leuciscus | 0.229 | 0.042 | 0.447 | 0.035 | 0.283 | 0.008 | 0.006 | 0.839 | 1.045 | -0.062 | 0.051 | 0.531 |
Perca fluviatilis | -0.147 | 0.335 | 0.254 | < 0.001 | -0.226 | 0.379 | 0.335 | < 0.001 | 0.925 | 0.056 | 0.009 | 0.328 |
Rutilus rutilus | 0.236 | 0.015 | 0.018 | 0.116 | 0.255 | 0.028 | 0.013 | 0.218 | 0.855 | 0.048 | 0.007 | 0.346 |
Salmo trutta | 0.289 | -0.082 | 0.435 | 0.341 | ||||||||
Stizostedion lucioperca | 0.710 | -0.023 | 0.010 | 0.427 | 0.583 | -0.005 | 0.000 | 0.913 | 0.881 | -0.014 | 0.002 | 0.708 |
Tinca tinca | 0.692 | -0.047 | 0.106 | 0.085 | 0.434 | -0.021 | 0.010 | 0.625 | 0.656 | -0.017 | 0.007 | 0.693 |
Vimba vimba | 0.746 | -0.052 | 0.030 | 0.682 | 0.177 | 0.124 | 0.016 | 0.763 | -1.050 | 0.492 | 0.132 | 0.377 |
References and Notes
- Kannan, K.; Smith, R.G.; Lee, R.F.; Windom, H.L.; Heitmuller, P.T.; Macauley, J.M.; Summers, J.K. Distribution of total mercury and methylmercury in water, sediment, and fish from south Florida estuaries. Arch. Environ. Con. Tox. 1998, 34, 109–118. [Google Scholar]
- Park, J.G.; Curtis, L.R. Mercury distribution in sediments and bioaccumulation by fish in two Oregon reservoirs: point-source and nonpoint-source impacted systems. Arch. Environ. Con. Tox. 1997, 33, 423–429. [Google Scholar]
- Mzoughi, N.; Stoichev, T.; Dachraoui, M.; El Abed, A.; Amouroux, D.; Donard, O.F.X. Inorganic mercury and methylmercury in surface sediments and mussel tissues from a microtidal lagoon (Bizerte, Tunisia). J. Coast. Conserv. 2002, 8, 141–145. [Google Scholar]
- Rincon-Leon, F.; Zurera-Cosano, G.; Moreno-Rojas, R.; Amaro-Lopez, M. Importance of eating habits and sample size in the estimation of environmental mercury contamination using biological indicators. Environ. Monit. Assess. 1993, 27, 193–200. [Google Scholar]
- Cizdziel, J.V.; Hinners, T.A.; Pollard, J.E.; Heithmar, E.M.; Cross, C.L. Mercury concentrations in fish from Lake Mead, USA, related to fish size, condition, trophic level, location, and consumption risk. Arch. Environ. Con. Tox. 2002, 43, 309–317. [Google Scholar]
- Dušek, L.; Svobodová, Z.; Janoušková, D.; Vykusová, B.; Jarkovský, J.; Šmid, R.; Pavliš, P. Bioaccumulation of mercury in muscle tissue of fish in the Elbe River (Czech Republic): multispecies monitoring study 1991-1996. Ecotox. Environ. Safe. 2005, 61, 256–267. [Google Scholar]
- Phillips, C.R.; Heilprin, D.J.; Hart, M.A. Mercury accumulation in barred sand bass (Paralabrax nebulifer) near a large wastewater outfall in the Southern California Bight. Mar. Pollut. Bull. 1997, 34, 96–102. [Google Scholar]
- Yamashita, Y.; Omura, Y.; Okazaki, E. Total mercury and methylmercury levels in commercially important fishes in Japan. Fisheries Sci. 2005, 71, 1029–1035. [Google Scholar]
- Honda, K.; Sahrul, M.; Hidaka, H.; Tatsukawa, R. Organ and tissue distribution of heavy metals, and their growth-related changes in Antarctic fish. Pagothenia borchgrevinki. Agr. Biol. Chem. Tokyo. 1983, 47, 2521–2532. [Google Scholar]
- Abreu, S.N.; Pereira, E.; Vale, C.; Duarte, A.C. Accumulation of mercury in sea bass from a contaminated lagoon (Ria de Aveiro, Portugal). Mar. Pollut. Bull. 2000, 40, 293–297. [Google Scholar]
- Farkas, A.; Salanki, J.; Specziar, A. Age- and size-specific patterns of heavy metals in the organs of freshwater fish Abramis bramaL. populating a low contaminated site. Water Res. 2003, 37, 959–964. [Google Scholar]
- Maršálek, P.; Svobodová, Z.; Randák, T. The content of total mercury in common carp from selected Czech ponds. Aquacult. Int. 2007, 3-4, 299–304. [Google Scholar]
- Berg, V.; Ugland, K.I.; Hareide, N.R.; Groenningen, D.; Skaare, J.U. Mercury, cadmium, lead, and selenium in fish from a Norwegian fjord and off the coast, the importance of sampling locality. J. Environ. Monitor. 2000, 2, 375–377. [Google Scholar]
- Farkas, A.; Salanki, J.; Varanka, I. Heavy metal concentrations in fish of Lake Balaton. Lake Reserv. Manage. 2000, 5, 271–279. [Google Scholar]
- Kennedy, C.J. Uptake and accumulation of mercury from dental amalgam in the common goldfish. Carassius auratus. Environ. Pollut. 2003, 121, 321–326. [Google Scholar]
- Gonzalez, P.; Dominique, Y.; Massabuau, J.C.; Boudou, A.; Bourdineaud, J.P. Comparative effects of dietary methylmercury on gene expression in liver, skeletal muscle, and brain of the zebrafish (Danio rerio). Environ. Sci. Technol. 2005, 39, 3972–3980. [Google Scholar]
- Wang, N.; Zhu, Y.M.; Sheng, L.X.; Meng, D. Mercury pollution in Rana Chensinensisin Weisha river reach, in the upstream region of Songhua river. Chinese Sci. Bull. 2005, 50, 2166–2170. [Google Scholar]
- Chen, Y.C.; Chen, C.Y.; Hwang, H.J.; Chang, W.B.; Yeh, W.J.; Chen, M.H. Comparison of the metal concentrations in muscle and liver tissues of fishes from the Erren River, southwestern Taiwan, after the restoration in 2000. J. Food Drug Anal. 2004, 12, 358–366. [Google Scholar]
- Havelkova, M.; Blahova, J.; Kroupova, H.; Randak, T.; Slatinska, I.; Leontovycova, D.; Grabic, R.; Pospisil, R.; Svobodova, Z. Biomarkers of contaminant exposure in Chub (Leuciscus cephalus L.) – a biomonitoring of major rivers in the Czech Republic. Sensors 2008, 8, 2589–2603. [Google Scholar]
- Havelkova, M.; Randak, T.; Zlabek, V.; Krijt, J.; Kroupova, H.; Pulkrabova, J.; Svobodova, Z. Biochemical markers for assessing aquatic contamination. Sensors 2008, 7, 2599–2611. [Google Scholar]
- Cizdziel, J.V.; Hinners, T.A.; Cross, C.L.; Pollard, J.E. Distribution of mercury in the tissues of five species of freshwater fish from Lake Mead, USA. J. Environ. Monitor. 2003, 5, 802–807. [Google Scholar]
- Evans, D.W.; Dodoo, D.K.; Hanson, P.J. Trace-element concentrations in fish livers: implications of variations with fish size in pollution monitoring. Mar. Pollut. Bull. 1993, 26, 329–334. [Google Scholar]
- Goldstein, R.M.; Brigham, M.E.; Stauffer, J.C. Comparison of mercury concentrations in liver, muscle, whole bodies, and composites of fish from the Red River of the North. Can. J. Fish. Aquat. Sci. 1996, 53, 244–252. [Google Scholar]
- Maršálek, P.; Svobodová, Z.; Randák, T.; Švehla, J. Total mercury and methylmercury contamination of fish from the Skalka reservoir: a case study. Acta Vet. Brno. 2005, 74, 427–434. [Google Scholar]
- Arribere, M.A.; Guevara, S.R.; Sánchez, R.S.; Gil, M.I.; Ross, G.R.; Daurade, L.E.; Fajon, V.; Horvat, M.; Alcalde, R.; Kestelman, A.J. Heavy metals in the vicinity of a chlor-alkali factory in the upper Negro River ecosystem, Northern Patagonia, Argentina. Sci. Total Environ. 2003, 301, 187–203. [Google Scholar]
- Svobodová, Z.; Piačka, V.; Vykusová, B.; Máchová, J.; Hejtmánek, M.; Hrbková, M.; Bastl, J. Residues of pollutants in siluriformes from various localities of the Czech Republic. Acta Vet. Brno. 1995, 64, 195–208. [Google Scholar]
- Foster, E.P.; Drake, D.L.; DiDomenico, G. Seasonal changes and tissue distribution of mercury in largemouth bass (Micropterus salmoides) from Dorena Reservoir, Oregon. Arch. Environ. Con. Tox. 2000, 38, 78–82. [Google Scholar]
- Svobodová, Z.; Vykusová, B.; Máchová, J.; Bastl, J.; Hrbková, M.; Svobodník, J. Monitoring of foreign substances in fishes from the Jizera River in the Otradovice locality. Bulletin VURH Vodňany 1993, 29, 28–42. [Google Scholar]
- Svobodová, Z.; Žlábek, V.; Čelechovská, O.; Randák, T.; Máchová, J.; Kolářová, J. Content of metals in tissues of marketable common carp and in bottom sediments of selected ponds of South and West Bohemia. Czech J. Anim. Sci. 2002, 47, 339–350. [Google Scholar]
- Linde, A.R.; Sanchez-Galan, S.; Garcia-Vazquez, E. Heavy metal contamination of European eel (Anguilla anguilla) and brown trout (Salmo trutta) caught in wild ecosystems in Spain. J. Food Protect. 2004, 67, 2332–2336. [Google Scholar]
- Joiris, C.R.; Holsbeek, L.; Moatemri, N.L. Total and methylmercury in sardines Sardinella aurita and Sardina pilchardus from Tunisia. Mar. Pollut. Bull. 1999, 38, 188–192. [Google Scholar]
- Storelli, M.M.; Marcotrigiano, G.O. Heavy metal residues in tissues of marine turtles. Mar. Pollut. Bull. 2003, 46, 397–400. [Google Scholar]
- Storelli, M.M.; Storelli, A.; Giacominelli-Stuffler, R.; Marcotrigiano, G. O. Mercury speciation in the muscle of two commercially important fish, hake (Merluccius merluccius) and striped mullet (Mullus barbatus) from the Mediterranean sea: estimated weekly intake. Food Chem. 2005, 89, 295–300. [Google Scholar]
- Voegborlo, R.B.; Matsuyama, A.; Akagi, H.; Adimado, A.A.; Ephraim, J.H. Total mercury and methylmercury accumulation in the muscle tissue of frigate (Auxis thazard thazard) and yellow fin (Thunnus albacares) tuna from the Gulf of Guinea, Ghana. B. Environ. Contam. Tox. 2006, 76, 840–847. [Google Scholar]
- Young, R.A. Toxicity summary for methylmercury. Oak Ridge Resevation Environmental Restoration Program (RAIS: Methyl Mercury (2269-92-6)). 1992. http://risk.lsd.ornl.gov/tox/profiles/methyl_mercury_f_V1.shtml.
Fish species | Common name | Feeding guild |
Abramis brama | Bream | Benthophagous |
Alburnoides bipunctatus | Spirlin, riffle minnow | Planctivorous |
Alburnus alburnus | Bleak | Planctivorous |
Anguilla anguilla | European eel | Predator |
Aspius aspius | Asp | Predator |
Barbus barbus | Barbel | Benthophagous |
Blicca bjoerkna | White bream, silver bream | Benthophagous |
Carassius auratus | Gibel carp, goldfish | Planctivorous |
Esox lucius | Pike | Predator |
Gobio gobio | Gudgeon | Benthophagous |
Gymnocephalus cernuus | Ruffe, pope | Benthophagous |
Ictalurus nebulosus | Catfish, brown bullhead | Benthophagous |
Leuciscus cephalus | Chub | Omnivorous |
Leuciscus idus | Ide, orfe | Omnivorous |
Leuciscus leuciscus | Dace | Omnivorous |
Oncorhynchus mykiss | Rainbow trout | Predator |
Perca fluviatilis | Perch | Predator |
Rutilus rutilus | Roach | Benthophagous |
Salmo trutta | Trout | Predator |
Scardinius erythrophthalmus | Rudd | Phytophagous |
Silurus glanis | Wels, sheatfish | Predator |
Stizostedion lucioperca | Pikeperch, zander | Predator |
Tinca tinca | Tench | Benthophagous |
Thymallus thymallus | Grayling | Benthophagous |
Vimba vimba | Vimba bream | Benthophagous |
Fish species | Locality contamination | N | Mean | Median | Minimum | Maximum | Std.Dev. | Mann-Whitney U test |
---|---|---|---|---|---|---|---|---|
PERCH | HC | 71 | 0.202 | 0.139 | -0.791 | 1.514 | 0.549 | U = 268 |
LC | 32 | -0.448 | -0.554 | -0.892 | 2.170 | 0.535 | P < 0.001 | |
CHUB | HC | 82 | 0.148 | 0.068 | -0.553 | 2.537 | 0.488 | U = 230 |
LC | 29 | -0.420 | -0.487 | -0.783 | 0.835 | 0.320 | P < 0.001 | |
ROACH | HC | 90 | 0.242 | -0.105 | -0.738 | 5.669 | 1.075 | U = 187 |
LC | 32 | -0.680 | -0.721 | -1.002 | -0.005 | 0.197 | P < 0.001 | |
PREDATOR | HC | 160 | 0.154 | 0.055 | -1.592 | 3.190 | 0.687 | U = 1192 |
LC | 48 | -0.512 | -0.506 | -1.658 | 2.170 | 0.542 | P < 0.001 | |
NO PREDATOR | HC | 313 | 0.217 | 0.028 | -0.963 | 5.669 | 0.812 | U = 3931 |
LC | 115 | -0.590 | -0.581 | -1.959 | 1.189 | 0.409 | P < 0.001 |
Fish species | Locality contamination | N | Mean | Median | Minimum | Maximum | Std.Dev. | Mann-Whitney U test |
---|---|---|---|---|---|---|---|---|
PERCH | HC | 86 | 0.152 | 0.043 | -0.842 | 3.941 | 0.647 | U = 351 |
LC | 32 | -0.407 | -0.370 | -0.820 | -0.038 | 0.213 | P < 0.001 | |
CHUB | HC | 84 | 0.142 | -0.100 | -0.365 | 2.564 | 0.554 | U = 110 |
LC | 29 | -0.412 | -0.432 | -0.558 | -0.069 | 0.127 | P < 0.001 | |
ROACH | HC | 104 | 0.062 | 0.014 | -0.207 | 1.180 | 0.198 | U = 54.5 |
LC | 32 | -0.200 | -0.192 | -0.308 | -0.094 | 0.042 | P < 0.001 | |
PREDATOR | HC | 188 | 0.107 | 0.060 | -0.842 | 3.941 | 0.481 | U = 705 |
LC | 48 | -0.417 | -0.370 | -1.030 | -0.038 | 0.202 | P < 0.001 | |
NO PREDATOR | HC | 348 | 0.087 | 0.012 | -0.558 | 2.564 | 0.352 | U = 3627.5 |
LC | 115 | -0.264 | -0.228 | -0.558 | 0.024 | 0.140 | P < 0.001 |
Fish species | Locality contamination n | N | Mean | Median | Minimum | Maximum | Std.Dev. | Mann-Whitney U test |
---|---|---|---|---|---|---|---|---|
PERCH | HC | 71 | 0.225 | 0.113 | -0.973 | 2.028 | 0.549 | U = 166 |
LC | 32 | -0.500 | -0.440 | -0.899 | -0.075 | 0.210 | P < 0.001 | |
CHUB | HC | 82 | 0.182 | -0.059 | -0.546 | 3.950 | 0.794 | U = 158 |
LC | 29 | -0.515 | -0.523 | -0.764 | -0.209 | 0.168 | P < 0.001 | |
ROACH | HC | 91 | 0.123 | -0.037 | -0.323 | 2.669 | 0.473 | U = 46 |
LC | 32 | -0.349 | -0.341 | -0.473 | -0.239 | 0.062 | P < 0.001 | |
PREDATOR | HC | 160 | 0.170 | 0.063 | -1.283 | 3.379 | 0.679 | U = 830 |
LC | 48 | -0.566 | -0.453 | -1.846 | -0.075 | 0.295 | P < 0.001 | |
NO PREDATOR | HC | 314 | 0.158 | -0.031 | -0.684 | 3.950 | 0.605 | U = 2939 |
LC | 115 | -0.431 | -0.369 | -1.278 | 0.015 | 0.222 | P < 0.001 |
© 2008 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Havelková, M.; Dušek, L.; Némethová, D.; Poleszczuk, G.; Svobodová, Z. Comparison of Mercury Distribution Between Liver and Muscle – A Biomonitoring of Fish from Lightly and Heavily Contaminated Localities. Sensors 2008, 8, 4095-4109. https://doi.org/10.3390/s8074095
Havelková M, Dušek L, Némethová D, Poleszczuk G, Svobodová Z. Comparison of Mercury Distribution Between Liver and Muscle – A Biomonitoring of Fish from Lightly and Heavily Contaminated Localities. Sensors. 2008; 8(7):4095-4109. https://doi.org/10.3390/s8074095
Chicago/Turabian StyleHavelková, Marcela, Ladislav Dušek, Danka Némethová, Gorzyslaw Poleszczuk, and Zdeňka Svobodová. 2008. "Comparison of Mercury Distribution Between Liver and Muscle – A Biomonitoring of Fish from Lightly and Heavily Contaminated Localities" Sensors 8, no. 7: 4095-4109. https://doi.org/10.3390/s8074095
APA StyleHavelková, M., Dušek, L., Némethová, D., Poleszczuk, G., & Svobodová, Z. (2008). Comparison of Mercury Distribution Between Liver and Muscle – A Biomonitoring of Fish from Lightly and Heavily Contaminated Localities. Sensors, 8(7), 4095-4109. https://doi.org/10.3390/s8074095