Drift and Hysteresis Characteristics of Drug Sensors Based on Ruthenium Dioxide Membrane
Abstract
:1. Introduction
2. Experimental
2.1. Materials and regents
2.2. Fabrication of ruthenium dioxide membrane
2.3. Preparation of drug sensors
2.4. Measurement system
3. Results and Discussion
3.1. Sensitivities of the drug sensors
3.2. Drift rates of drug sensors
3.3. Hysteresis width of drug sensors
4. Conclusions
Acknowledgments
References
- Tsai, C. N.; Chou, J. C.; Sun, T. P.; Hsiung, S. K. Study on the sensing characteristics and hysteresis effect of the tin oxide pH electrode. Sens. Actuat. B: Chem. 2005, 108, 877–882. [Google Scholar]
- Marzouk, S. A. M. Improved electrodeposited iridium oxide pH sensor fabricated on etched titanium substrates. Anal. Chem. 2003, 75, 1258–1266. [Google Scholar]
- Gill, E.; Arshak, K.; Arshak, A.; Korostynska, O. Mixed metal oxide films as pH sensing materials. Microsyst. Technol. 2007, 14, 499–507. [Google Scholar]
- Chou, J. C.; Liu, S. I.; Chen, S. H. Sensing characteristics of ruthenium flms fabricated by radio frequency sputtering. Jpn. J. Appl. Phys. 2005, 44, 1403–1408. [Google Scholar]
- Shakkthivel, P.; Chen, S. M. Simultaneous determination of ascorbic acid and dopamine in the presence of uric acid on ruthenium oxide modified electrode. Biosens. Bioelectron. 2007, 22, 1680–1687. [Google Scholar]
- Liao, C. W.; Chou, J. C.; Sun, T. P.; Hsiung, S. K.; Hsieh, J. H. Preliminary investigations on a new disposable potentiometric biosensor for uric acid. IEEE Trans. Biomed. Eng. 2006, 53, 1401–1408. [Google Scholar]
- Viticoli, M.; Curulli, A.; Cusma, A.; Kaciulis, S.; Nunziante, S.; Pandolfi, L.; Valentini, F.; Padeletti, G. Third-generation biosensors based on TiO2 nanostructured films. Mater. Sci. Eng. C 2006, 26, 947–951. [Google Scholar]
- Ogata, K.; Koike, K.; Tanite, T.; Komuro, T.; Sasa, S.; Inoue, M.; Yano, M. High resistive layers toward ZnO-based enzyme modified field effect transistor. Sens. Actuat. B: Chem. 2004, 100, 209–211. [Google Scholar]
- Wu, K. B.; Wang, H.; Chen, F.; Hu, S. S. Electrochemistry and voltammetry of procaine using a carbon nanotube film coated electrode. Bioelectrochemistry 2006, 68, 144–149. [Google Scholar]
- Bergamini, M. F.; Santos, A. L.; Stradiotto, N. R.; Zanoni, M. V. B. Flow injection amperometric determination of procaine in pharmaceutical formulation using a screen-printed carbon electrode. J. Pharm. Biomed. Anal. 2007, 43, 315–319. [Google Scholar]
- Chou, J. C.; Chiang, J. L.; Wu, C. L. pH and procaine characteristics of the extended gate field effect transistor based on ITO glass. Jpn. J. Appl. Phys. 2005, 44, 4838–4842. [Google Scholar]
- Lei, L. H.; X. Su, L.; Xie, Q. J.; He, J. L.; Yao, S. Z. A novel ion-selective sensor for procaine hydrochloride based on a piezoelectric quartz crystal coated with a procaine teraphenylborate PVC membrane. Microchim. Acta 2000, 134, 63–67. [Google Scholar]
- Hwang, J. M.; Kuo, H. C.; Tseng, T. H.; Liu, J. Y.; Chu, C. Y. Berberine induces apoptosis through a mitochondria/caspases pathway in human hepatoma cells. Arch. Toxicol. 2006, 80, 62–73. [Google Scholar]
- Yang, Y.; Yang, X.; Jiao, C. X.; Yang, H. F.; Liu, Z. M.; Shen, G. L.; Yu, R. Q. Optical sensor for berberine utilizing its intrinsic florescence enhanced by the formation of inclusion complex with butylated-β-cyclodextrin. Anal. Chim. Acta 2004, 513, 385–392. [Google Scholar]
- Zhang, X. B.; Li, Z. Z.; Guo, C. C.; Chen, S. H.; Shen, G. L.; Yu, R. Q. Porphyrin-metalloporphyrin composite based optical fiber sensor for the determination of berberine. Anal. Chim. Acta 2001, 439, 65–71. [Google Scholar]
- Yang, Y.; Yang, H. F.; Liu, Y. L.; Liu, Z. M.; Shen, G. L.; Yu, R. Q. Cetyltrimethylammonium assay using fluorescence probe berberine and a competitive host–guest complexation with butylated β-cyclodextrin. Sens. Actuat. B: Chem. 2005, 106, 632–640. [Google Scholar]
- Huang, H. M.; Wang, K. M.; Yang, R. H.; Yang, X. H.; Huang, S. S.; Xiao, D.; Feng, F. A sensitive optode membrane for berberine using conjugated polymer as sensing materials. Anal. Sci. 2002, 18, 1111–1115. [Google Scholar]
- Liu, W. H.; Ying, W.; Tang, J. H.; Shen, G. L.; Yu, R. Q. An optical fiber sensor for berberine based on immobilized 1,4-bis(naphtha[2,1-d]oxazole-2-yl)benzene in a new copolymer. Talanta. 1998, 46, 678–688. [Google Scholar]
- Hsiung, S. K.; Chou, J. C.; Sun, T. P.; Yen, C. Y. Using extended g ate field effect transistor to design and analyze the Chinese medicine biosensor. US. Pat. Appl. 20070001253 2007. [Google Scholar]
- Jindra, A. Modern ion exchangers in the analysis of narcotics and alkaloids. U. N. Off. Drugs Crime 1955, 20–26. [Google Scholar]
- Woias, P.; Meixner, L.; Frostl, P. Slow pH response effects of silicon nitride ISFET sensors. Sens. Actuat. B: Chem. 1988, 48, 501–504. [Google Scholar]
- Yu, D.; Wei, D.; Wang, G. H. Time-dependent response characteristics of pH-sensitive ISFET. Sens. Actuat. B: Chem. 1991, 3, 279–285. [Google Scholar]
- Tsai, C. N.; Chou, J. C.; Sun, T. P.; Hsiung, S. K. Study on the time-dependent slow response of the tin oxide pH electrode. IEEE Sens. J. 2006, 6, 1243–1249. [Google Scholar]
- Zhong, Y.; Zhao, S.; Liu, T. Drift characteristics of pH-ISFET output. Chin. J. Semicond. 1994, 12, 838–843. [Google Scholar]
- Bousse, L.; Hafeman, D.; Tran, N. Time-dependence of the chemical response of silicon nitride surfaces. Sens. Actuat. B: Chem. 1990, 1, 364–367. [Google Scholar]
- Chou, J. C.; Huang, K. Y.; Lin, J. S. Simulation of time-dependent effects of pH-ISFET. Sens. Actuat. B: Chem. 2000, 62, 88–91. [Google Scholar]
- Bousse, L.; Van Den Vlekkert, H. H.; De Rooij, N. F. Hysteresis in Al2O3 gate ISFETs. Sens. Actuat. B: Chem. 1990, 2, 103–110. [Google Scholar]
Procaine | |||
---|---|---|---|
substrate | Linear detection range | Detection limit | Ref. |
RuO2/Si | 1×10-6 M-1×10-2 M | 2×10-7 M | In this study |
MWNT/GCE | 5×10-7 M-1×10-4 M | 2×10-7 M | [9] |
Carbon electrode | 9×10-6 M-1×10-4 M | 6×10-6 M | [10] |
Indium tin oxide | 1×10-6 M-1×10-2 M | - | [11] |
Piezoelectric quartz crystal | 8.3×10-8 M-5.0×10-3 M | 8.3×10-8 M | [12] |
Berberine | |||
substrate | Linear detection range | Detection limit | Ref. |
RuO2/Si | 1×10-7 M - 1×10-2 M | 2×10-8 M | In this study |
Quartz plate | 4×10-7 M - 2×10-5 M | 8×10-8 M | [14] |
Quartz plate | 7.5×10-7 M - 5.6×10-4 M | - | [15] |
Quartz plate | 7×10-1 M - 4×10-9 M | 3×10-11 M | [16] |
Conjugated polymer | 7.5×10-7 M - 7.5×10-4 M | - | [17] |
Copolymer | 4.02×10-7 M - 2.82×10-4 M | - | [18] |
SnO2/ITO | 5×10-7 M - 1×10-3 M | - | [19] |
© 2008 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Liao, Y.-H.; Chou, J.-C. Drift and Hysteresis Characteristics of Drug Sensors Based on Ruthenium Dioxide Membrane. Sensors 2008, 8, 5386-5396. https://doi.org/10.3390/s8095386
Liao Y-H, Chou J-C. Drift and Hysteresis Characteristics of Drug Sensors Based on Ruthenium Dioxide Membrane. Sensors. 2008; 8(9):5386-5396. https://doi.org/10.3390/s8095386
Chicago/Turabian StyleLiao, Yi-Hung, and Jung-Chuan Chou. 2008. "Drift and Hysteresis Characteristics of Drug Sensors Based on Ruthenium Dioxide Membrane" Sensors 8, no. 9: 5386-5396. https://doi.org/10.3390/s8095386
APA StyleLiao, Y. -H., & Chou, J. -C. (2008). Drift and Hysteresis Characteristics of Drug Sensors Based on Ruthenium Dioxide Membrane. Sensors, 8(9), 5386-5396. https://doi.org/10.3390/s8095386