Applications of Nanomaterials in Electrogenerated Chemiluminescence Biosensors
Abstract
:1. Introduction
2. Nanomaterials as modification electrode materials
2.1 Metal nanomaterials
2.2 Carbon nanotubes
2.3 Other nanomaterials
3. Nanomaterials as carrier of ECL probes
3.1 Metal nanoparticles
3.2 Carbon nanotubes
3.3 Polymeric microbeads
3.4 Silica nanoparticles
4. Nanomaterials as ECL-emitting species
4.1 Semiconductor nanomaterials
4.2 Ionic nanomaterials
5. Concluding Remarks
Acknowledgments
References and Notes
- Miao, W.J. Electrogenerated chemiluminescence and its biorelated applications. Chem. Rev. 2008, 108, 2506–2553. [Google Scholar]
- Kuwana, T.; Epstein, B.; Seo, E.T. Electrochemical generation of solution luminescence. J. Phys. Chem. 1963, 67, 2243–2244. [Google Scholar]
- Hercules, D.M. Chemiluminescence resulting from electrochemically generated species. Science 1964, 145, 808–809. [Google Scholar]
- Santhanam, K.S.V.; Bard, A.J. Chemiluminescence of electrogenerated 9,10-Diphenylanthracene anion radical. J. Am. Chem. Soc. 1965, 87, 139–140. [Google Scholar]
- Hazelton, S.G.; Zheng, X.W.; Zhao, J.L.X.J.; Pierce, D.T. Developments and applications of electrogenerated chemiluminescence sensors based on micro- and nanomaterials. Sensors 2008, 8, 5942–5960. [Google Scholar]
- Pyatia, R.; Richter, M.M. ECL—electrochemical luminescence. Annu. Rep. Prog. Chem. Sect. C 2007, 103, 12–78. [Google Scholar]
- Du, Y.; Wang, E. Capillary Electrophoresis and microchip capillary electrophoresis with electrochemical and electrochemiluminescence detection. J. Sep. Sci. 2007, 30, 875–890. [Google Scholar]
- Gorman, B.A.; Francis, P.S.; Barnett, N.W. Tris(2,29-bipyridyl)ruthenium(II) chemiluminescence. Analyst 2006, 131, 616–639. [Google Scholar]
- Yin, X.B.; Dong, S.J.; Wang, E.K. Analytical applications of the electrochemiluminescence of tris (2,2′-bipyridyl) ruthenium and its derivatives. Trends Anal. Chem. 2004, 23, 432–441. [Google Scholar]
- Richter, M.M. Electrochemiluminescence (ECL). Chem. Rev. 2004, 104, 3003–3036. [Google Scholar]
- Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: recommended definitions and classification. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar]
- Miao, W.J.; Bard, A.J. Electrogenerated chemiluminescence. 72. Determination of Immobilized DNA and C-Reactive Protein on Au (111) Electrodes Using Tris (2,2′-bipyridyl)ruthenium(II) Labels. Anal. Chem. 2003, 75, 5825–5834. [Google Scholar]
- Wang, J. Nanoparticle-based electrochemical DNA detection. Anal. Chim. Acta 2003, 500, 247–257. [Google Scholar]
- Rosi, N.L.; Mirkin, C.A. Nanostructures in biodiagnostics. Chem. Rev. 2005, 105, 1547–1562. [Google Scholar]
- Willner, I.; Patolsky, P.; Wasserman, J. Photoelectrochemistry with controlled DNA-cross-linked CdS nanoparticle Arrays. Angew. Chem. Int. Ed. 2001, 40, 1861–1864. [Google Scholar]
- Thomson ISI Web of Science. http://scientific.thomson.com/.
- Scopus. http://www.scopus.com/scopus/search/form.url.
- Chen, D.; Wang, G.; Li, J. Interfacial bioelectrochemistry: fabrication, properties and applications of functional nanostructured biointerfaces. J. Phys. Chem. C. 2007, 111, 2351–2367. [Google Scholar]
- Zhang, L.; Xu, Z.; Sun, X.; Dong, S. A novel alcohol dehydrogenase biosensor based on solid-state electrogenerated chemiluminescence by assembling dehydrogenase to Ru(bpy)32+-Au nanoparticles aggregates. Biosens. Bioelectron. 2007, 22, 1097–1100. [Google Scholar]
- Yin, X.-B.; Qi, B.; Sun, X.; Yang, X.; Wang, E. 4-(Dimethylamino)butyric acid labeling for electrochemiluminescence detection of biological substances by increasing sensitivity with gold nanoparticle amplification. Anal. Chem. 2005, 77, 3525–3530. [Google Scholar]
- Li, Y.; Qi, H.L.; Yang, J.; Zhang, C. X. Detection of DNA immobilized on bare gold electrodes and gold nanoparticle-modified electrodes via electrogenerated chemiluminescence using a ruthenium complex as a tag. Microchim. Acta 2008, in press. [Google Scholar]
- Cui, H.; Xu, Y.; Zhang, Z.F. Multichannel electrochemiluminescence of luminol in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled electrode. Anal. Chem. 2004, 76, 4002–4010. [Google Scholar]
- Cui, H.; Dong, Y.-P. Multichannel electrogenerated chemiluminescence of lucigenin in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled gold electrode. J. Electroanal. Chem. 2006, 595, 37–46. [Google Scholar]
- Qi, H; Zhang, Y; Peng, Y; Zhang, C. Homogenous electrogenerated chemiluminescence immunoassay for human immunoglobulin G using N-(aminobutyl)-N-ethylisoluminol as luminescence label at gold nanoparticles modified paraffin-impregnated graphite electrode. Talanta 2008, 75, 684–690. [Google Scholar]
- Chen, Z.; Zu, Y. Gold nanoparticle-modified ITO electrode for electrogenerated chemiluminescence: Well-preserved transparency and highly enhanced activity. Langmuir 2007, 23, 11387–11390. [Google Scholar]
- Dong, Y.-P.; Cui, H.; Xu, Y. Comparative studies on electrogenerated chemiluminescence of luminol on gold nanoparticle nodified electrodes. Langmuir 2007, 23, 523–529. [Google Scholar]
- Dong, Y.-P.; Cui, H.; Wang, C.-M. Electrogenerated chemiluminescence of luminol on a gold-nanorod-modified gold electrode. J. Phys. Chem. B. 2006, 110, 18408–18414. [Google Scholar]
- Shiraishi, Y.; Toshima, N. Oxidation of ethylene catalyzed by colloidal dispersions of poly(sodium acrylate)-protected silver nanoclusters. Colloid Surface A 2000, 169, 59–66. [Google Scholar]
- Wang, C.M.; Cui, H. Electrogenerated chemiluminescence of luminol in neutral and alkaline aqueous solutions on a silver nanoparticle self-assembled gold electrode. Luminescence 2007, 22, 35–45. [Google Scholar]
- Gill, R.; Polsky, R.; Willner, I. Pt nanoparticles functionalized with nucleic acid act as catalytic labels for the chemiluminescent detection of DNA and proteins. Small 2006, 2, 1037–1041. [Google Scholar]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar]
- Smart, S.K.; Cassady, A.I.; Lu, G.Q.; Martin, D.J. The biocompatibility of carbon nanotubes. Carbon 2006, 44, 1034–1047. [Google Scholar]
- Lin, Z.Y.; Chen, J.H.; Chi, Y.W.; Qui, B.; Lin, J.M.; Chen, G.N. Electrochemiluminescent behavior of luminol on the glassy carbon electrode modified with CoTPP/MWNT composite film. Electrochim. Acta 2008, 53, 6464–6468. [Google Scholar]
- Zhang, L.H.; Guo, Z.H.; Xu, Z. Ai.; Dong, S.J. Highly sensitive electrogenerated chemiluminescence produced at Ru(bpy)32+ in Eastman-AQ55D-carbon nanotube composite film electrode. J. Electroanal. Chem. 2006, 592, 63–67. [Google Scholar]
- Guo, Z.; Dong, S. Electrogenerated chemiluminescence from Ru(Bpy)32+ ion-Exchanged in carbon nanotube/perfluorosulfonated ionomer composite films. Anal. Chem. 2004, 76, 2683–2688. [Google Scholar]
- Lin, Z.Y.; Chen, J.H.; Chen, G.N. An ECL biosensor for glucose based on carbon-nanotube/Nafion film modified glass carbon electrode. Electrochim. Acta 2008, 53, 2396–2401. [Google Scholar]
- Choi, H.N.; Yoon, S.H.; Lyu, Y.–K.; Lee, W.-Y. Electrogenerated chemiluminescence ethanol biosensor based on carbon nanotube-titania-nafion composite film. Electroanalysis 2007, 19, 459–465. [Google Scholar]
- Chen, J.H; Lin, Z.Y.; Chen, G.N. Enhancement of electrochemiluminesence of lucigenin by ascorbic acid at single-wall carbon nanotube film-modified glassy carbon electrode. Electrochim. Acta 2007, 52, 4457–4462. [Google Scholar]
- Tao, Y.; Lin, Z.-J.; Chen, X.-M.; Huang, X.-L.; Oyama, M.; Chen, X.; Wang, X.-R. Functionalized multiwall carbon nanotubes combined with bis(2,2′-bipyridine)-5-amino-1,10-phenanthroline ruthenium(II) as an electrochemiluminescence sensor. Sens. Actuators B 2008, 129, 758–763. [Google Scholar]
- Fang, L.Y.; Lü, Z.Z.; Wei, H.; Wang, E.K. Quantitative electrochemiluminescence detection of proteins: Avidin-based sensor and tris(2,2′-bipyridine) ruthenium(II) label. Biosens. Bioelectron. 2008, 23, 1645–1651. [Google Scholar]
- Huang, R.F.; Zheng, X.W.; Qu, Y.J. Highly selective electrogenerated chemiluminescence (ECL) for sulfide ion determination at multi-wall carbon nanotubes-modified graphite electrode. Anal. Chim. Acta 2007, 582, 267–274. [Google Scholar]
- Wei, H.; Du, Y.; Kang, J.Z.; Wang, E.K. Label free electrochemiluminescence protocol for sensitive DNA detection with a tris(2,2′-bipyridyl)ruthenium(II) modified electrode based on nucleic acid oxidation. Electrochem. Commun. 2007, 9, 1474–1479. [Google Scholar]
- Choi, H.N.; Lee, J.-Y.; Lyu, Y.-K.; Lee, W.-Y. Tris(2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence sensor based on carbon nantube dispersed in sol–gel-derived titania–Nafion composite films. Anal. Chim. Acta 2006, 565, 48–55. [Google Scholar]
- Lin, Z.Y.; Chen, G.N. Determination of carbamates in nature water based on the enhancement of electrochemiluminescent of Ru(bpy)32+ at the multi-wall carbon nanotube-modified electrode. Talanta 2006, 70, 111–115. [Google Scholar]
- Guo, Z.H.; Dong, S.J. Electrogenerated chemiluminescence determination of dopamine and epinephrine in the presence of ascorbic acid at carbon nanotube/Nafion-Ru(bpy) composite film modified glassy carbon electrode. Electroanalysis 2005, 17, 607–612. [Google Scholar]
- Du, Y.; Wei, H.; Kang, J.; Yan, J.; Yin, X.-B.; Yang, X.; Wang, E. Microchip capillary electrophoresis with solid-state electrochemiluminescence Detector. Anal. Chem. 2005, 77, 7993–7997. [Google Scholar]
- Tao, Y.; Lin, Z.-J.; Chen, X.-M.; Chen, X.; Wang, X.-R. Tris(2,2′-bipyridyl)ruthenium(II) electrochemiluminescence sensor based on carbon nanotube/organically modified silicate films. Anal. Chim. Acta 2007, 594, 169–174. [Google Scholar]
- Li, J.; Xu, Y.; Wei, H.; Huo, T.; Wang, E. Electrochemiluminescence sensor based on partial sulfonation of polystyrene with carbon nanotubes. Anal. Chem. 2007, 79, 5439–5443. [Google Scholar]
- Adams, R.N. Electrochemistry at solid electrodes; Marcel Dekker: New York, 1969. [Google Scholar]
- Chen, Y.T.; Lin, Z.Y.; Chen, J.H.; Sun, J.J.; Zhang, L.; Chen, G.N. New capillary electrophoresis–electrochemiluminescence detection system equipped with an electrically heated Ru(bpy)32+/multi-wall-carbon-nanotube paste electrode. J. Chromatogr. A 2007, 1172, 84–91. [Google Scholar]
- Hapiot, P.; Lagrost, C. Electrochemical reactivity in room-temperature ionic liquids. Chem. Rev. 2008, 108, 2238–2264. [Google Scholar]
- Dai, H.; Wang, Y.M.; Wu, X.P.; Zhang, L.; Chen, G.N. An electrochemiluminescent sensor for methamphetamine hydrochloride based on multiwall carbon nanotube/ionic liquid composite electrode. Biosens. Bioelectron. 2008, in press. [Google Scholar]
- Chi, Y.W.; Chen, L.C.; Zheng, L.Y.; Zhang, L.; Chen, G.N. Design and fabrication of a micro-electrochemiluminescent cell for the study of ionic liquid-mediated electrochemiluminescence. Electrochem. Commun. 2008. In Press. [Google Scholar]
- Guo, Z.; Shen, Y.; Wang, M.; Zhao, F.; Dong, S. Electrochemistry and electrogenerated chemiluminescence of SiO2 nanoparticles/Tris(2,2′-bipyridyl)ruthenium multilayer films on indium Tin oxide electrodes. Anal. Chem. 2004, 76, 184–191. [Google Scholar]
- Guo, Z.; Shen, Y.; Zhao, F.; Wang, M.; Dong, S. Electrochemical and electrogenerated chemiluminescence of clay nanoparticIes/Ru(bpy)3 2+ multilayer films on ITO electrodes. Analyst 2004, 129, 657–663. [Google Scholar]
- Kim, D.J.; Lyu, Y.K.; Choi, H.N.; Min, I.H.; Lee, W.Y. Nafion-stabilized magnetic nanoparticles (Fe3O4) for [Ru(bpy)3]2+ (bpy = bipyridine) electrogenerated chemiluminescence sensor. Chem. Commun. 2005, 23, 2966–2968. [Google Scholar]
- Zhuang, Y.F.; Zhang, D.M.; Ju, H.X. Sensitive determination of heroin based on electrogenerated chemiluminescence of tris(2,2-bipyridyl)ruthenium(II) immobilized in zeolite Y modified carbon paste electrode. Analyst 2005, 130, 534–540. [Google Scholar]
- Wang, H.; Zhang, C.X.; Li, Y.; Qi, H.L. Electrogenerated chemiluminescence detection for deoxyribonucleic acid hybridization based on gold nanoparticles carrying multiple probes. Anal. Chim. Acta 2006, 575, 205–211. [Google Scholar]
- Sun, X.P.; Du, Y.; Dong, S.J.; Wang, E.K. Method for effective immobilization of Ru(bpy)32+ on an electrode surface for solid-state electrochemiluminescene detection. Anal. Chem. 2005, 77, 8166–8169. [Google Scholar]
- Wang, X.Y.; Yun, W.; Dong, P.; Zhou, J.M.; He, P.G.; Fang, Y.Y. A Controllable solid-state Ru(bpy)32+-electrochemiluminescence film based on conformation change of ferrocene-labeled DNA molecular beacon. Langmuir 2008, 24, 2200–2205. [Google Scholar]
- Li, Y.; Qi, H.L.; Fang, F.; Zhang, C.X. Ultrasensitive electrogenerated chemiluminescence detection of DNA hybridization using carbon-nanotubes loaded with tris(2,2′-bipyridyl) ruthenium derivative tags. Talanta 2007, 72, 1704–1709. [Google Scholar]
- Miao, W.; Bard, A.J. Electrogenerated Chemiluminescence. 77. DNA hybridization detection at high amplification with [Ru(bpy)3]2+-containing microspheres. Anal. Chem. 2004, 76, 5379–5386. [Google Scholar]
- Miao, W.; Bard, A.J. Electrogenerated chemiluminescence. 80. C-Reactive protein determination at high amplification with [Ru(bpy)3]2+-containing microspheres. Anal. Chem. 2004, 76, 7109–7113. [Google Scholar]
- Zhan, W.; Bard, A.J. Electrogenerated chemiluminescence. 83. immunoassay of human C-Reactive protein by using Ru(bpy)32+-encapsulated liposomes as labels. Anal. Chem. 2007, 79, 459–463. [Google Scholar]
- Santra, S.; Zhang, P.; Wang, K.; Tapec, R.; Tan, W. Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal. Chem. 2001, 73, 4988–4993. [Google Scholar]
- Bagwe, R.P.; Yang, C.; Hilliard, L.R.; Tan, W. Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method. Langmuir 2004, 20, 8336–8342. [Google Scholar]
- Shibata, S.; Taniguchi, T.; Yano, T.; Yamane, M. Formation of water-soluble dye-doped silica particles. J. Sol-Gel Sci. Technol. 1997, 10, 263–268. [Google Scholar]
- Qian, L.; Yang, X.R. One-step synthesis of Ru(2,2-Bipyridine)3Cl2-immobilized silica nanoparticles for use in electrogenerated chemiluminescence detection, advanced functional materials. Adv. Funct. Mater. 2007, 17, 1353–1358. [Google Scholar]
- Guo, S.J.; Wang, E.K. A novel sensitive solid-state electrochemiluminescence sensor material: doped SiO2@MWNTs coaxial nanocable. Electrochem. Commun. 2007, 9, 1252–1257. [Google Scholar]
- Wang, L.; Zhao, W.j.; Tan, W.H. Bioconjugated silica nanoparticles: development and applications. Nano Res. 2008, 1, 99–115. [Google Scholar]
- Honda, K.; Yoshimura, M.; Rao, T.N.; Fujishima, A. Electrogenerated chemiluminescence of the ruthenium Tris(2,2′)bipyridyl/Amines system on a boron-doped diamond electrode. J. Phys. Chem. B 2003, 107, 1653–1663. [Google Scholar]
- Chang, Z.; Zhou, J.M.; Zhao, K.; Zhu, N.N.; He, P.G.; Fang, Y.Z. Ru(bpy)32+-doped silica nanoparticle DNA probe for the electrogenerated chemiluminescence detection of DNA hybridization. Electrochim. Acta 2006, 52, 575–580. [Google Scholar]
- Wei, H.; Zhou, L.L.; Li, J.; Liu, J.F.; Wang, E.K. Electrochemical and electrochemiluminescence study of Ru(bpy)2+3-doped silica nanoparticles with covalently grafted biomacromolecules. J. Colloid Interface. Sci. 2008, 321, 310–314. [Google Scholar]
- Wang, X.Y.; Zhou, J.M.; Yun, W.; Xiao, S.S.; Chang, Z.; He, P.G.; Fang, Y.Z. Detection of thrombin using electrogenerated chemiluminescence based on Ru(bpy)32+-doped silica nanoparticle aptasensor via target protein-induced strand displacement. Anal. Chim. Acta 2007, 598, 242–248. [Google Scholar]
- Wang, X.Y.; Yun, W.; Zhou, J.-M.; Dong, P.; He, P.G.; Fang, Y.Z. Ru(bpy)32+-doped silica nanoparticle aptasensor for detection of thrombin based on electrogenerated chemiluminescence. Chin. J. Chem. 2008, 26, 315–320. [Google Scholar]
- Zhang, L.; Dong, S. Electrogenerated chemiluminescence sensors using Ru(bpy)32+ doped in silica nanoparticles. Anal. Chem. 2006, 78, 5119–5123. [Google Scholar]
- Hun, X.; Zhang, Z.J. Electrogenerated chemiluminescence sensor for metoclopramide determination based on Ru(bpy)32+-doped silica nanoparticles dispersed in Nafion on glassy carbon electrode. J. Pharm. Biomed. 2008, 47, 670–676. [Google Scholar]
- Hun, X.; Zhang, Z.J. Electrogenerated chemiluminescence sensor for itopride with Ru(bpy)32+-doped silica nanoparticles/chitosan composite films modified electrode. Sens. Actuators B 2008, 131, 403–410. [Google Scholar]
- Zhang, L.H.; Dong, S.H. Electrogenerated chemiluminescence sensing platform using Ru(bpy)32+ doped silica nanoparticles and carbon nanotubes. Electrochem. Commun. 2006, 8, 1687–1691. [Google Scholar]
- Zhang, L.H.; Wang, F.; Dong, S.J. Layer-by-layer assembly of functional silica and Au nanoparticles for fabricating electrogenerated chemiluminescence sensor. Electrochim. Acta 2008, 53, 6423–6427. [Google Scholar]
- Khramov, A.N.; Collinson, M.M. Electrogenerated chemiluminescence of tris(2,2′-bipyridyl)ruthenium(II) ion-exchanged in Nafion-silica composite films. Anal. Chem. 2000, 72, 2943–2948. [Google Scholar]
- Li, M.; Chen, Z.; Yam, V.W.; Zu, Y. Multifunctional ruthenium (II) polypyridine complex-based core– shell magnetic silica nanocomposites: magnetism, luminescence, and electrochemiluminescence. ACS Nano 2008, 2, 905–912. [Google Scholar]
- Zhang, L.; Liu, B.; Dong, S. Bifunctional nanostructure of magnetic core luminescent shell and its application as solid-state electrochemiluminescence sensor material. J. Phys. Chem. B 2007, 111, 10448–10452. [Google Scholar]
- Zhang, L.L.; Zheng, X.W. A novel electrogenerated chemiluminescence sensor for pyrogallol with core-shell luminol-doped silica nanoparticles modified electrode by the self-assembled technique. Anal. Chim. Acta 2006, 570, 207–213. [Google Scholar]
- Zhang, L.-L.; Zheng, X.-W.; Guo, Z.-H. A novel electrogenerated chemiluminescence reaction scheme using core-shell luminol-based SiO2 nanoparticles as a regulator and its analytical application. Chin. J. Chem. 2007, 25, 351–355. [Google Scholar]
- Qian, K.-J.; Zhang, L.; Yang, M.-L.; He, P.-G.; Fang, Y.-Z. Preparation of luminol-doped nanoparticle and its application in DNA hybridization analysis. Chin. J. Chem. 2004, 22, 702–707. [Google Scholar]
- Bard, A.J. Electrogenerated Chemiluminesence; Marcel Dekker, Inc.: New York, USA, 2004. [Google Scholar]
- Ding, Z.; Quinn, B.M.; Haram, S.K.; Pell, L.E.; Korgel, B.A.; Bard, A.J. Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 2002, 296, 1293–1297. [Google Scholar]
- Jamieson, T.; Bakhshi, R.; Petrova, D.; Pocock, R.; Imani, M.; Seifalian, A.M. Biological applications of quantum dots. Biomaterials 2007, 28, 4717–4732. [Google Scholar]
- Huo, Q. A perspective on bioconjugated nanoparticles and quantum dots. Colloid Surface B 2007, 59, 1–10. [Google Scholar]
- Myung, N.; Lu, X.; Johnston, K.P.; Bard, A.J. Electrogenerated chemiluminescence of Ge nanocrystals. Nano Lett. 2004, 4, 183–185. [Google Scholar]
- Poznyak, S.K.; Talapin, D.V.; Shevchenko, E.V.; Weller, H. Quantum dot chemiluminescence. Nano Lett. 2004, 4, 693–698. [Google Scholar]
- Bae, Y.; Myung, N.; Bard, A.J. Electrochemistry and electrogenerated chemiluminescence of CdTe nanoparticles. Nano. Lett. 2004, 4, 1153–1161. [Google Scholar]
- Ren, T.; Xu, J.Z.; Tu, Y.F.; Xu, S.; Zhu, J.J. Electrogenerated chemiluminescence of CdS spherical assemblies. Electrochem. Commun. 2005, 7, 5–9. [Google Scholar]
- Zhou, B.; Liu, B.; Jiang, L.-P.; Zhu, J.-J. Ultrasonic-assisted size-controllable synthesis of Bi2Te3 nanoflakes with electrogenerated chemiluminescence. Ultrason. Sonochem. 2007, 14, 229–234. [Google Scholar]
- Miao, J.-J.; Ren, T.; Dong, L.; Zhu, J.-J.; Chen, H.-Y. Double-template synthesis of CdS nanotubes with strong electrogenerated chemiluminescence. Small 2005, 1, 802–805. [Google Scholar]
- Zou, G.; Ju, H. Electrogenerated chemiluminescence from a CdSe nanocrystal film and its sensing application in aqueous solution. Anal. Chem. 2004, 76, 6871–6876. [Google Scholar]
- Ding, S.N.; Xu, J.J.; Chen, H.Y. Enhanced solid-state electrochemiluminescence of CdS nanocrystals composited with carbon nanotubes in H2O2 solution. Chem. Commun. 2006, 34, 3631–3633. [Google Scholar]
- Jie, G.-F.; Liu, B.; Miao, J.-J.; Zhu, J.-J. Electrogenerated chemiluminescence from CdS nanotubes and its sensing application in aqueous solution. Talanta 2007, 71, 1476–1480. [Google Scholar]
- Shen, L.; Cui, X.; Qi, H.; Zhang, C. Electrogenerated chemiluminescence of ZnS nanoparticles in alkaline aqueous solution. J. Phys. Chem. C 2007, 111, 8172–8175. [Google Scholar]
- Jie, G.; Zhang, J.; Wang, D.; Cheng, C.; Chen, H.-Y.; Zhu, J.-J. Electrochemiluminescence immunosensor based on CdSe nanocomposites. Anal. Chem. 2008, 80, 4033–4039. [Google Scholar]
- Hua, L.J.; Han, H; Chen, H.B. Enhanced electrochemiluminescence of CdTe quantum dots with carbon nanotube film, its sensing of methimazole. Electrochim. Acta 2008, in press. [Google Scholar]
- Zhang, L.; Zou, X.; Ying, E.; Dong, S. Quantum dot electrochemiluminescence in aqueous solution at lower potential and its sensing application. J. Phys. Chem. C 2008, 112, 4451–4454. [Google Scholar]
- Chang, Y.-L; Palacios, R.E.; Fan, F.-R. F.; Bard, A.J.; Barbara, P.F. Electrogenerated chemiluminescence of single conjugated polymer nanoparticles. J. Am. Chem. Soc. 2008, in press. [Google Scholar]
- Bard, A.J.; Ding, Z.; Guyot-Sionnest, P.; Liebau, F.; Myung, N.; Peng, X.; Santamaría-Pérez, D.; Thessing, J.; Vegas, A.; Mingos, D.M.P. Semiconductor Nanocrystals and Silicate Nanoparticles (Structural Bonding); Springer: Berlin, Germany, 2005. [Google Scholar]
- Yu, J.; Fan, F.-R. F.; Pan, S.; Lynch, V.M.; Omer, K.M.; Bard, A.J. Spontaneous formation and electrogenerated chemiluminescence of tris(bipyridine) Ru(II) derivative nanobelts. J. Am. Chem. Soc. 2008, 130, 7196–7197. [Google Scholar]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Qi, H.; Peng, Y.; Gao, Q.; Zhang, C. Applications of Nanomaterials in Electrogenerated Chemiluminescence Biosensors. Sensors 2009, 9, 674-695. https://doi.org/10.3390/s90100674
Qi H, Peng Y, Gao Q, Zhang C. Applications of Nanomaterials in Electrogenerated Chemiluminescence Biosensors. Sensors. 2009; 9(1):674-695. https://doi.org/10.3390/s90100674
Chicago/Turabian StyleQi, Honglan, Yage Peng, Qiang Gao, and Chengxiao Zhang. 2009. "Applications of Nanomaterials in Electrogenerated Chemiluminescence Biosensors" Sensors 9, no. 1: 674-695. https://doi.org/10.3390/s90100674
APA StyleQi, H., Peng, Y., Gao, Q., & Zhang, C. (2009). Applications of Nanomaterials in Electrogenerated Chemiluminescence Biosensors. Sensors, 9(1), 674-695. https://doi.org/10.3390/s90100674