Aptamer-Functionalized Nano-Biosensors
Abstract
:1. Introduction
2. Aptamer Nanosensors for Small Molecules
2.1. Adenine Nucleotides and Their Derivatives
2.1.1. Colorimetry
2.1.2. Fluorescence
2.1.3. Mass Spectrometry
2.2. Cocaine
3. Aptamer Nanosensors for Metal Ions
3.1. Lead Ions (Pb2+)
3.2. Mercuric Ions (Hg2+)
3.3. Potassium Ions (K+)
4. Aptamer Nanosensors for Proteins and Cells
4.1. Thrombin
4.1.1. Absorption
4.1.2. Fluorescence
4.1.3. Electrochemistry
4.1.4. Other Techniques
4.2. Platelet-Derived Growth Factors (PDGFs)
4.2.1. Absorption
4.2.2. Fluorescence
4.2.3. Electrochemistry
4.3. Other Proteins
4.4. Cells
5. Conclusions
Acknowledgments
References
- Tombelli, S.; Minunni, M.; Mascini, M. Aptamers-based assays for diagnostics, environmental and food analysis. Biomol. Eng. 2007, 24, 191–220. [Google Scholar]
- Famulok, M.; Hartig, J.S.; Mayer, G. Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem. Rev. 2007, 107, 3715–3743. [Google Scholar]
- Mairal, T.; Özalp, V.C.; Sánchez, P.L.; Mir, M.; Katakis, I.; O'Sullivan, C.K. Aptamers: molecular tools for analytical applications. Anal. Bioanal. Chem. 2008, 390, 989–1007. [Google Scholar]
- Mok, W.; Li, Y. Recent progress in nucleic acid aptamer-based biosensors and bioassays. Sensors 2008, 8, 7050–7084. [Google Scholar]
- Thiel, K.W.; Giangrande, P.H. Therapeutic applications of DNA and RNA aptamers. Oligonucleotides 2009, 19, 209–222. [Google Scholar]
- Mayer, G. The chemical biology of aptamers. Angew. Chem. Int. Ed. 2009, 48, 2672–2689. [Google Scholar]
- Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249, 505–510. [Google Scholar]
- Gopinath, S.C.B. Methods developed for SELEX. Anal. Bioanal. Chem. 2007, 387, 171–182. [Google Scholar]
- Stoltenburg, R.; Reinemann, C.; Strehlitz, B. SELEX—A (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol. Eng. 2007, 24, 381–410. [Google Scholar]
- Hamula, C.L.A.; Guthrie, J.W.; Zhang, H.; Li, X.F.; Le, X.C. Selection and analytical applications of aptamers. Trends Anal. Chem. 2006, 25, 681–691. [Google Scholar]
- Tombelli, S.; Minunni, M.; Mascini, M. Analytical applications of aptamers. Biosens. Bioelectron. 2005, 20, 2424–2434. [Google Scholar]
- Willner, I.; Zayats, M. Electronic aptamer-based sensors. Angew. Chem. Int. Ed. 2007, 46, 6408–6418. [Google Scholar]
- Palchetti, I.; Mascini, M. Nucleic acid biosensors for environmental pollution monitoring. Analyst 2008, 113, 846–854. [Google Scholar]
- Liu, J.; Cao, Z.; Lu, Y. Functional nucleic acid sensors. Chem. Rev. 2009, 109, 1948–1998. [Google Scholar]
- Wang, H.; Yang, R.; Yang, L.; Tan, W. Nucleic acid conjugated nanomaterials for enhanced molecular recognition. ACS Nano 2009, 3, 2451–2460. [Google Scholar]
- Lin, Y.-W.; Liu, C.W.; Chang, H.T. DNA functionalized gold nanoparticles for bioanalysis. Anal. Methods 2009, 1, 14–24. [Google Scholar]
- Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M.A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025–1102. [Google Scholar]
- Lu, Y.; Liu, J. Smart nanomaterials inspired by biology: dynamic assembly of error-free nanomaterials in response to multiple chemical and biological stimuli. Acc. Chem. Res. 2007, 40, 315–323. [Google Scholar]
- Baron, R.; Willner, B.; Willner, I. Biomolecule—nanoparticle hybrids as functional units for nanobiotechnology. Chem. Commun. 2007, 4, 323–332. [Google Scholar]
- Stewart, M.E.; Anderton, C.R.; Thompson, L.B.; Maria, J.; Gray, S.K.; Rogers, J.A.; Nuzzo, R.G. Nanostructured plasmonic sensors. Chem. Rev. 2008, 108, 494–521. [Google Scholar]
- Wang, Z.; Lu, Y. Functional DNA directed assembly of nanomaterials for biosensing. J. Mater. Chem. 2009, 19, 1788–1798. [Google Scholar]
- Lu, Y.; Liu, J. Functional DNA nanotechnology: emerging applications of DNAzymes and aptamers. Curr. Opin. Biotechnol. 2006, 17, 580–588. [Google Scholar]
- Lee, J.-O.; So, H.M.; Jeon, E.K.; Chang, H.; Won, K.; Kim, Y.H. Aptamers as molecular recognition elements for electrical nanobiosensors. Anal. Bioanal. Chem. 2008, 390, 1023–1032. [Google Scholar]
- Jeon, J.; Lim, D.K.; Nam, J.M. Functional nanomaterial-based amplified bio-detection strategies. J. Mater. Chem. 2009, 19, 2107–2117. [Google Scholar]
- Huang, Y.F.; Huang, K.M.; Chang, H.T. Synthesis and characterization of Au core-Au-Ag shell nanoparticles from gold seeds: Impacts of glycine concentration and pH. J. Colloid Interface Sci. 2006, 301, 145–154. [Google Scholar]
- Huang, Y.F.; Lin, Y.W.; Chang, H.T. Growth of various Au-Ag nanocomposites from gold seeds in amino acid solutions. Nanotechnology 2006, 17, 4885–4894. [Google Scholar]
- Medley, C.D.; Smith, J.E.; Tang, Z.; Wu, Y.; Bamrungsap, S.; Tan, W. Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal. Chem. 2008, 80, 1067–1072. [Google Scholar]
- Hill., H.D.; Hurst, S.J.; Mirkin, C.A. Curvature-induced base pair “slipping” effects in DNA-nanoparticle hybridization. Nano Lett. 2009, 9, 317–321. [Google Scholar]
- Wang, Y.; Li, D.; Ren, W.; Liu, Z.; Dong, S.; Wang, E. Ultrasensitive colorimetric detection of protein by aptamer-Au nanoparticles conjugates based on a dot-blot assay. Chem. Commun. 2008, 2520–2522. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, C.; Zhao, X.S. A simple and sensitive biosensor based on silver enhancement of aptamer-gold nanoparticle aggregation. Electroanalysis 2009, 21, 1316–1320. [Google Scholar]
- Li, L.; Li, B.; Qi, Y.; Jin, Y. Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe. Anal. Bioanal. Chem. 2009, 393, 2051–2057. [Google Scholar]
- Liu, J.; Lu, Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew. Chem. Int. Ed. 2006, 45, 90–94. [Google Scholar]
- Liu, J.; Mazumdar, D.; Lu, Y. A simple and sensitive “dipstick” test in serum based on lateral flow separation of aptamer-linked nanostructures. Angew. Chem. Int. Ed. 2006, 45, 7955–7959. [Google Scholar]
- Zhao, W.; Chiuman, W.; Brook, M.A.; Li, Y. Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation. Chem Bio Chem 2008, 8, 727–731. [Google Scholar]
- Zhao, W.; Chiuman, W.; Lam, J.C.F.; McManus, S.A.; Chen, W.; Cui, Y.; Pelton, R.; Brook, M.A.; Li, Y. DNA aptamer folding on gold nanoparticles: From colloid chemistry to biosensors. J. Am. Chem. Soc. 2008, 130, 3610–3618. [Google Scholar]
- Wang, J.; Zhou, H.S. Aptamer-based Au nanoparticles-enhanced surface plasmon resonance detection of small molecules. Anal. Chem. 2008, 80, 7174–7178. [Google Scholar]
- Zhang, S.; Xia, J.; Li, X. Electrochemical biosensor for detection of adenosine based on structure-switching aptamer and amplification with reporter probe DNA modified Au nanoparticles. Anal. Chem. 2008, 80, 8382–8388. [Google Scholar]
- Liu, J.; Lee, J.H.; Lu, Y. Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes. Anal. Chem. 2007, 79, 4120–4125. [Google Scholar]
- Zhang, J.; Wang, L.; Pan, D.; Song, S.; Boey, F.Y.C.; Zhang, H.; Fan, C. Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small 2008, 4, 1196–1200. [Google Scholar]
- Freenman, R.; Li, Y.; Tel-Vered, R.; Sharon, E.; Elbaz, J.; Willner, I. Self-assembly of supramolecular aptamer structures for optical or electrochemical sensing. Analyst 2009, 134, 653–656. [Google Scholar]
- Zhang, C.Y.; Johnson, L.W. Single quantum-dot-based aptameric nanosensor for cocaine. Anal. Chem. 2009, 81, 3051–3055. [Google Scholar]
- Li, X.; Qi, H.; Shen, L.; Gao, Q.; Zhang, C. Electrochemical aptasensor for the determination of cocaine incorporating gold nanoparticles modification. Electroanalysis 2008, 20, 1475–1482. [Google Scholar]
- Wang, J.; Wang, L.; Liu, X.; Liang, Z.; Song, S.; Li, W.; Li, G.; Fan, C. A gold nanoparticle-based aptamer target binding readout for ATP assay. Adv. Mater. 2007, 19, 3943–3946. [Google Scholar]
- Chen, S.J.; Huang, Y.F.; Huang, C.C.; Lee, K.H.; Lin, Z.H.; Chang, H.T. Colorimetric determination of urinary adenosine using aptamer-modified gold nanoparticles. Biosens. Bioelectron. 2008, 23, 1749–1753. [Google Scholar]
- Huang, Y.F.; Chang, H.T. Analysis of adenosine triphosphate and glutathione through gold nanoparticles assisted laser desorption/ionization mass spectrometry. Anal. Chem. 2007, 79, 4852–4859. [Google Scholar]
- Chen, Z.; Li, G.; Zhang, L.; Jiang, J.; Li, Z.; Peng, Z.; Deng, L. A new method for the detection of ATP using a quantum-dot-tagged aptamer. Anal. Bioanal. Chem. 2008, 392, 1185–1188. [Google Scholar]
- Song, Y.; Zhao, C.; Ren, J.; Qu, X. Rapid and ultra-sensitive detection of AMP using a fluorescent and magnetic nano-silica sandwich complex. Chem. Commun. 2009, 1975–1977. [Google Scholar] [CrossRef]
- Lee, J-S.; Ulmann, P.A.; Han, M.S.; Mirkin, C.A. A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine. Nano Lett. 2008, 8, 529–533. [Google Scholar]
- Lee, J.-S.; Han, M.S.; Mirkin, C.A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew. Chem. Int. Ed. 2007, 46, 4093–4096. [Google Scholar]
- Lee, J.-S.; Mirkin, C.A. Chip-based scanometric detection of mercuric ion using DNA-functionalized gold nanoparticles. Anal. Chem. 2008, 80, 6805–6808. [Google Scholar]
- Liu, C.-W.; Huang, C.C.; Chang, H.T. Control over surface DNA density on gold nanoparticles allows selective and sensitive detection of mercury(II). Langmuir 2008, 24, 8346–8350. [Google Scholar]
- Xue, X.; Wang, F.; Liu, X. One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. J. Am. Chem. Soc. 2008, 130, 3244–3245. [Google Scholar]
- Liu, C.W.; Hsieh, Y.T.; Huang, C.C.; Lin, Z.H.; Chang, H.T. Detection of mercury(II) based on Hg2+-DNA complexes inducing the aggregation of gold nanoparticles. Chem. Commun. 2008, 2242–2244. [Google Scholar] [CrossRef]
- Li, D.; Wieckowska, A.; Willner, I. Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. Angew. Chem. Int. Ed. 2008, 47, 3927–3931. [Google Scholar]
- Wang, H.; Wang, Y.; Jin, J.; Yang, R. Gold nanoparticle-based colorimetric and “turn-on” fluorescent probe for mercury(II) ions in aqueous solution. Anal. Chem. 2008, 80, 9021–9028. [Google Scholar]
- Wang, L.; Liu, X.; Hu, X.; Song, S.; Fan, C. Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chem. Commun. 2006, 3780–3782. [Google Scholar] [CrossRef]
- Liu, J.; Lu, Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc. 2003, 125, 6642–6643. [Google Scholar]
- Liu, J.; Lu, Y. Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J. Am. Chem. Soc. 2004, 126, 12298–12305. [Google Scholar]
- Liu, J.; Lu, Y. Stimuli-responsive disassembly of nanoparticle aggregates for light-up colorimetric sensing. J. Am. Chem. Soc. 2005, 127, 12677–12683. [Google Scholar]
- Wang, Z.; Lee, J.H.; Lu, Y. Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme. Adv. Mater. 2008, 20, 3263–3267. [Google Scholar]
- Lowe, J.E.; Cummings, R.G.; Adams, D.H.; Hull-Ryde, E.A. Evidence that ischemic cell death begins in the subendocardium independent of variations in collateral flow or wall tension. Circulation 1983, 68, 190–202. [Google Scholar]
- Pérez-Ruiz, T.; Martínez-Lozano, C.; Tomás, V.; Martín, J. Determination of ATP via the photochemical generation of hydrogen peroxide using flow injection luminol chemiluminescence detection. Anal. Bioanal. Chem. 2003, 377, 189–194. [Google Scholar]
- Liu, C.-W.; Chang, H.-T. Protein-conjugated quantum dots for detecting trypsin and trypsin inhibitor through fluorescence resonance energy transfer. Open Anal. Chem. J. 2007, 1, 1–6. [Google Scholar]
- Huang, C.-C.; Yang, Z.; Lee, K.H.; Chang, H.T. Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). Angew. Chem. Int. Ed. 2007, 46, 6824–6828. [Google Scholar]
- Huang, C.C.; Chen, C.T.; Shiang, Y.C.; Lin, Z.H.; Chang, H.T. Synthesis of fluorescent carbohydrate-protected Au nanodots for detection of concanavalin A and Escherichia coli. Anal. Chem. 2009, 81, 875–882. [Google Scholar]
- Richards, C.I.; Choi, S.; Hsiang, J.C.; Antoku, Y.; Vosch, T.; Bongiorno, A.; Tzeng, Y.L.; Dickson, R.M. Oligonucleotide-stabilized Ag nanocluster fluorophores. J. Am. Chem. Soc. 2008, 130, 5038–5039. [Google Scholar]
- Michalet, X.; Pinaud, F.F.; Bentolila, L.A.; Tsay, J.M.; Doose, S.; Li, J.J.; Sundaresan, G.; Wu, A.M.; Gambhir, S.S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544. [Google Scholar]
- Chiu, T.C.; Huang, L.S.; Lin, P.C.; Chen, Y.C.; Chen, Y.J.; Lin, C.C.; Chang, H.T. Nanomaterial based affinity matrix-assisted laser desorption/ionization mass spectrometry for biomolecules and pathogenic bacteria. Recent Patents Nanotechnol. 2007, 1, 99–111. [Google Scholar]
- Fox, B.S.; Kantak, K.M.; Edwards, M.A.; Black, K.M.; Bollinger, B.K.; Botka, A.J.; French, T.L.; Thompson, T.L.; Schad, V.C.; Greenstein, J.L.; Gefter, M.L.; Exley, M.A.; Swain, P.A.; Briner, T.J. Efficacy of a therapeutic cocaine vaccine in rodent models. Nat. Med. 1996, 2, 1129–1132. [Google Scholar]
- Shlyahovsky, B.; Li, D.; Weizmann, Y.; Nowarski, R.; Kotler, M.; Willner, I. Spotlighting of cocaine by an autonomous aptamer-based machine. J. Am. Chem. Soc. 2007, 129, 3814–3815. [Google Scholar]
- Freeman, R.; Sharon, E.; Tel-Vered, R.; Willner, I. Supramolecular cocaine-aptamer complexes activate biocatalytic cascades. J. Am. Chem. Soc. 2009, 131, 5028–5029. [Google Scholar]
- Zhou, Q.; Zhang, J.; Fu, J.; Shi, J.; Jiang, G. Biomonitoring: An appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal. Chim. Acta 2008, 606, 135–150. [Google Scholar]
- Needlemen, H. Hunam Lead Exposure; CRC Press: Boca Raton, Fl, 1991. [Google Scholar]
- Hoyle, I.; Handy, R.D. Dose-dependent inorganic mercury absorption by isolated perfused intestine of rainbow trout, Oncorhynchus mykiss, involves both amiloride-sensitive and energy-dependent pathways. Aquat. Toxicol. 2005, 72, 147–159. [Google Scholar]
- Kofuji, P.; Newman, E.A. Potassium buffering in the central nervous system. Neuroscience 2004, 129, 1045–1056. [Google Scholar]
- Elbaz, J.; Shlyahovsky, B.; Willner, I. A DNAzyme cascade for the amplified detection of Pb2+ ions or L-histidine. Chem. Commun. 2008, 1569–1571. [Google Scholar] [CrossRef]
- Ueyama, H.; Takagi, M.; Takenaka, S. A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with guanine quartet—potassium ion complex formation. J. Am. Chem. Soc. 2002, 124, 14286–14287. [Google Scholar]
- He, F.; Tang, Y.; Wang, S.; Li., Y.; Zhu, D. Fluorescent amplifying recognition for DNA G-quadruplex folding with a cationic conjugated polymer: A platform for homogeneous potassium detection. J. Am. Chem. Soc. 2005, 127, 12343–12346. [Google Scholar]
- Bunka, D.H.J.; Stockley, P.G. Aptamers come of age—at last. Nat. Rev. Microbiol. 2006, 4, 588–596. [Google Scholar]
- Vater, A.; Klussmann, S. Toward third-generation aptamers: Spiegelmers and their therapeutic prospect. Curr. Opin. Drug Discov. Devel. 2003, 6, 253–261. [Google Scholar]
- Proske, D.; Blank, M.; Buhmann, R.; Resch, A. Aptamers—basic research, drug development, and clinical applications. Appl. Microbiol. Biotechnol. 2005, 69, 367–374. [Google Scholar]
- Martos, V.; Castreño, P.; Valero, J.; de Mendoza, J. Binding to protein surfaces by supramolecular multivalent scaffolds. Curr. Opin. Chem. Biol. 2008, 12, 698–706. [Google Scholar]
- Balamurugan, S; Obubuafo, A; Soper, S.A.; Spivak, D.A. Surface immobilization methods for aptamer diagnostic applications. Anal. Bioanal. Chem. 2008, 390, 1009–1021. [Google Scholar]
- Hernandez, F.J.; Dondapati, S.K.; Ozalp, V.C.; Pinto, A.; O'Sullivan, C.K.; Klar, T.A.; Katakis, I. Label free optical sensor for Avidin based on single gold nanoparticles functionalized with aptamers. J. Biophoton. 2009, 2, 227–231. [Google Scholar]
- Maehashi, K.; Katsura, T.; Kerman, K.; Takamura, Y.; Matsumoto, K.; Tamiya, E. Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Anal. Chem. 2007, 79, 782–787. [Google Scholar]
- Chandra, S.; Gopinath, B. Anti-coagulant aptamers. Thromb. Res. 2008, 122, 838–847. [Google Scholar]
- Cera, E.D. Thrombin. Mol. Aspects Med. 2008, 29, 203–254. [Google Scholar]
- Lombardi, A.; de Simone, G.; Galdiero, S.; Staiano, N.; Nastri, F.; Pavone, V. From natural to synthetic multisite thrombin inhibitors. Biopolymers 1999, 51, 19–39. [Google Scholar]
- Petrera, N.S.; Stafford, A.R.; Leslie, B.A.; Kretz, C.A.; Fredenburgh, J.C.; Weitz, J.I. Long range communication between exosites 1 and 2 modulates thrombin function. J. Bio. Chem. 2009, 284, 25620–25629. [Google Scholar]
- Tegos, T.J.; Kalodiki, E.; Daskalopoulou, S.-S.; Nicolaides, A.N. Stroke: Epidemiology, clinical picture, and risk factors Part I of III. Angiology 2000, 51, 793–808. [Google Scholar]
- Bock, L.C.; Griffin, L.C.; Latham, J.A.; Vermaas, E.H.; Toole, J.J. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 1992, 355, 564–566. [Google Scholar]
- Tasset, D.M.; Kubik, M.F.; Steiner, W. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. J. Mol. Biol. 1997, 272, 688–698. [Google Scholar]
- Wei, H.; Li, B.; Li, J.; Wang, E.; Dong, S. Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chem. Commun. 2007, 3735–3737. [Google Scholar] [CrossRef]
- Wang, Y.; Li, D.; Ren, W.; Liu, Z.; Dong, S.; Wang, E. Ultrasensitive colorimetric detection of protein by aptamer–Au nanoparticles conjugates based on a dot-blot assay. Chem. Commun. 2008, 2520–2522. [Google Scholar] [CrossRef]
- Jana, N.R.; Ying, J.Y. Synthesis of functionalized Au nanoparticles for protein detection. Adv. Mater. 2008, 20, 430–434. [Google Scholar]
- Xu, H.; Mao, X.; Zeng, Q.; Wang, S.; Kawde, A.N.; Liu, G. Aptamer-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for protein analysis. Anal. Chem. 2009, 81, 669–675. [Google Scholar]
- Dulkeith, E.; Morteani, A.C.; Niedereichholz, T.; Klar, T.A.; Feldmann, J.; Levi, S.A.; van Veggel, F.C.J.M.; Reinhoudt, D.N.; Möller, M.; Gittins, D.I. Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects. Phys. Rev. Lett. 2002, 89, 203002. [Google Scholar]
- Wang, W.; Chen, C.; Qian, M.; Zhao, X.S. Aptamer biosensor for protein detection using gold nanoparticles. Anal. Biochem. 2008, 373, 213–219. [Google Scholar]
- Choi, J.H.; Chen, K.H.; Strano, M.S. Aptamer-capped nanocrystal quantum dots: A new method for label-free protein detection. J. Am. Chem. Soc. 2006, 128, 15584–15585. [Google Scholar]
- Huang, S.; Chen, Y. Ultrasensitive fluorescence detection of single protein molecules manipulated electrically on Au nanowire. Nano Lett. 2008, 8, 2829–2833. [Google Scholar]
- de-los-Santos-Álvarez, N.; Lobo-Castañón, M.J.; Miranda-Ordieres, A.J.; Tuñón-Blanco, P. Aptamers as recognition elements for label-free analytical devices. Trends Anal. Chem. 2008, 27, 437–446. [Google Scholar]
- Polsky, R.; Gill, R.; Kaganovsky, L.; Willner, I. Nucleic acid-functionalized Pt nanoparticles: Catalytic labels for the amplified electrochemical detection of biomolecules. Anal. Chem. 2006, 78, 2268–2271. [Google Scholar]
- He, P.; Shen, L.; Cao, Y.; Li, D. Ultrasensitive electrochemical detection of proteins by amplification of aptamer-nanoparticle bio bar codes. Anal. Chem. 2007, 79, 8024–8029. [Google Scholar]
- Deng, C.; Chen, J.; Nie, Z.; Wang, M.; Chu, X.; Chen, X.; Xiao, X.; Lei, C.; Yao, S. Impedimetric aptasensor with femtomolar sensitivity based on the enlargement of surface-charged gold nanoparticles. Anal. Chem. 2009, 81, 739–745. [Google Scholar]
- de la Escosura-Muñiz, A.; Ambrosi, A.; Merkoçi, A. Electrochemical analysis with nanoparticle-based biosystems. Trends Anal. Chem. 2008, 27, 568–584. [Google Scholar]
- Hansen, J.A.; Wang, J.; Kawde, A.-N.; Xiang, Y.; Gothelf, K.V.; Collins, G. Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. J. Am. Chem. Soc. 2006, 128, 2228–2229. [Google Scholar]
- Brown, R.J.C.; Milton, M.J.T. Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS). J. Raman. Spectrosc. 2008, 39, 1313–1326. [Google Scholar]
- Wang, Y.; Wei, H.; Li, B.; Ren, W.; Guo, S.; Dong, S.; Wang, E. SERS opens a new way in aptasensor for protein recognition with high sensitivity and selectivity. Chem. Commun. 2007, 5220–5222. [Google Scholar] [CrossRef]
- Cho, H.; Baker, B.R.; Wachsmann-Hogiu, S.; Pagba, C.V.; Laurence, T.A.; Lane, S.M.; Lee, L.P.; Tok, J.B.-H. Aptamer-based SERRS sensor for thrombin detection. Nano Lett. 2008, 8, 4386–4390. [Google Scholar]
- Lin, M.M.; Kim, D.K.; El Haj, A.J.; Dobson, J. Development of superparamagnetic iron oxide nanoparticles (SPIONS) for translation to clinical applications. IEEE Trans. Nanobiosci. 2008, 7, 298–305. [Google Scholar]
- Thorek, D.L.J.; Chen, A.K.; Czupryna, J.; Tsourkas, A. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Annu. Rev. Biomed. Eng. 2006, 34, 23–38. [Google Scholar]
- Josephson, L.; Lewis, J.; Jacobs, P.; Hahn, P.F.; Stark, D.D. The effects of iron oxides on proton relaxivity. Magn. Reson. Imaging 1988, 6, 647–653. [Google Scholar]
- Yigit, M.V.; Mazumdar, D.; Lu, Y. MRI detection of thrombin with aptamer functionalized superparamagnetic iron oxide nanoparticles. Bioconjugate Chem. 2008, 19, 412–417. [Google Scholar]
- Curreli, M.; Zhang, R.; Ishikawa, F.N.; Chang, H.K.; Cote, R.J.; Zhou, C.; Thompson, M.E. Real-time, label-free detection of biological entities using nanowire-based FETs. IEEE Trans. Nanotechnol. 2008, 7, 651–667. [Google Scholar]
- So, H.-M.; Won, K.; Kim, Y.H.; Kim, B.-K.; Ryu, B.H.; Na, P.S.; Kim, H.; Lee, J.O. Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. J. Am. Chem. Soc. 2005, 127, 11906–11907. [Google Scholar]
- Andrae, J.; Gallini, R.; Betsholtz, C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 2008, 22, 1276–1312. [Google Scholar]
- Alvarez, R.H.; Kantarjian, H.M.; Cortes, J.E. Biology of platelet-derived growth factor and its involvement in disease. Mayo Clin. Proc. 2006, 81, 1241–1257. [Google Scholar]
- Singh, J.P.; Chaikin, M.A.; Stiles, C.D. Phylogenetic analysis of platelet-derived growth factor by radio- receptor assay. J. Cell Biol. 1982, 95, 667–671. [Google Scholar]
- Betsholtz, C.; Westermark, B.; Ek, B.; Heldin, C.H. Coexpression of a PDGF-like growth factor and PDGF receptors in a human osteosarcoma cell line: implications for autocrine receptor activation. Cell 1984, 39, 447–457. [Google Scholar]
- Vassbotn, F.S.; Östman, A.; Siegbahn, A.; Holmsen, H.; Heldin, C.-H. Neomycin is a platelet-derived growth factor (PDGF) antagonist that allows discrimination of PDGF alpha- and beta-receptor signals in cells expressing both receptor types. J. Biol. Chem. 1992, 267, 15635–15641. [Google Scholar]
- Engström, U.; Engström, Å.; Ernlund, A.; Westermark, B.; Heldin, C.-H. Identification of a peptide antagonist for platelet-derived growth factor. J. Biol. Chem. 1992, 267, 16581–16587. [Google Scholar]
- Yang, C.J.; Jockusch, S.; Vicens, M.; Turro, N.J.; Tan, W. Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 17278–17283. [Google Scholar]
- Jiang, Y.; Fang, X.; Bai, C. Signaling aptamer/protein binding by a molecular light switch complex. Anal. Chem. 2004, 76, 5230–5235. [Google Scholar]
- Vicens, M.C.; Sen, A.; Vanderlaan, A.; Drake, T.J.; Tan, W. Investigation of molecular beacon aptamer-based bioassay for platelet-derived growth factor detection. Chem Bio Chem 2005, 6, 900–907. [Google Scholar]
- Green, L.S.; Jellinek, D.; Jenison, R.; Östman, A.; Heldin, C.H.; Janjic, N. Inhibitory DNA ligands to platelet-derived growth factor B-chain. Biochemistry 1996, 35, 14413–14424. [Google Scholar]
- Huang, C.C.; Huang, Y.F.; Cao, Z.; Tan, W.; Chang, H.T. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal. Chem. 2005, 77, 5735–5741. [Google Scholar]
- Huang, C.C.; Chiu, S.H.; Huang, Y.F.; Chang, H.T. Aptamer-functionalized gold nanoparticles for turn-on light switch detection of platelet-derived growth factor. Anal. Chem. 2007, 79, 4798–4804. [Google Scholar]
- Kim, G.I.; Kim, K.W.; Oh, M.K.; Sung, Y.M. The detection of platelet derived growth factor using decoupling of quencher-oligonucleotide from aptamer/quantum dot bioconjugates. Nanotechnology 2009, 20, 175503. [Google Scholar]
- Zheng, J.; Nicovich, P.R.; Dickson, R.M. Highly fluorescent noble-metal quantum dots. Annu. Rev. Phys. Chem. 2007, 58, 409–431. [Google Scholar]
- Negishi, Y.; Nobusada, K.; Tsukuda, T. Glutathione-protected gold clusters revisited: Bridging the gap between gold(I)–thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261–5270. [Google Scholar]
- Wang, G.; Guo, R.; Kalyuzhny, G.; Choi, J.P.; Murray, R.W. NIR luminescence intensities increase linearly with proportion of polar thiolate ligands in protecting monolayers of Au38 and Au140 quantum dots. J. Phys. Chem. B 2006, 110, 20282–20289. [Google Scholar]
- Huang, C.C.; Chiang, C.K.; Lin, Z.H.; Lee, K.H.; Chang, H.T. Bioconjugated gold nanodots and nanoparticles for protein assays based on photoluminescence quenching. Anal. Chem. 2008, 80, 1497–1504. [Google Scholar]
- Huang, C.C.; Liao, H.Y.; Shiang, Y.C.; Lin, Z.H.; Yang, Z.; Chang, H.T. Synthesis of wavelength-tunable luminescent gold and gold/silver nanodots. J. Mater. Chem. 2009, 19, 755–759. [Google Scholar]
- Wang, J.; Meng, W.; Zheng, X.; Liu, S.; Li, G. Combination of aptamer with gold nanoparticles for electrochemical signal amplification: Application to sensitive detection of platelet-derived growth factor. Biosens. Bioelectron. 2009, 24, 1598–1602. [Google Scholar]
- Wang, J.; Li, L.; Xu, Y.; Cheng, G.; He, P.; Fang, Y. Simultaneously fluorescence detecting thrombin and lysozyme based on magnetic nanoparticle condensation. Talanta 2009, 79, 557–561. [Google Scholar]
- Wang, J.; Munir, A.; Li, Z.; Zhou, H.S. Aptamer-Au NPs conjugates-enhanced SPR sensing for the ultrasensitive sandwich immunoassay. Biosens. Bioelectron. 2009, 25, 124–129. [Google Scholar]
- Maehashi, K.; Matsumoto, K.; Takamura, Y.; Tamiya, E. Aptamer-based label-free immunosensors using carbon nanotube field-effect transistors. Electroanalysis 2009, 21, 1285–1290. [Google Scholar]
- Shangguan, D.; Li, Y.; Tang, Z.; Cao, Z.; Mallikaratchy, P.; Sefah, K.; Yang, C.; Tan, W. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 11838–11843. [Google Scholar]
- Chen, H.; Medley, C.D.; Sefah, K.; Shangguan, D.; Tang, Z.; Smith, J.E.; Meng, L.; Tan, W. Molecular recognition of small-cell lung cancer cells using aptamers. Chem Med Chem 2008, 3, 991–1001. [Google Scholar]
- Shangguan, D.; Meng, L.; Cao, Z.; Xiao, Z.; Fang, X.; Li, Y.; Cardona, D.; Witek, R.P.; Liu, C.; Tan, W. Identification of liver cancer-specific aptamers using whole live cells. Anal. Chem. 2008, 80, 721–728. [Google Scholar]
- Tang, Z.; Shangguan, D.; Wang, K.; Shi, H.; Sefah, K.; Mallikaratchy, P.; Chen, W.; Li, Y.; Tan, W. Selection of aptamers for molecular recognition and characterization of cancer cells. Anal. Chem. 2007, 79, 4900–4907. [Google Scholar]
- Daniels, D.A.; Chen, H.; Hicke, B.J.; Swiderek, K.M.; Gold, L. A tenascin-C aptamer identified by tumor cell SELEX: Systematic evolution of ligands by exponential enrichment. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 15416–15421. [Google Scholar]
- Shamah, S.M.; Healy, J.M.; Cload, S.T. Complex target SELEX. Acc. Chem. Res. 2008, 41, 130–138. [Google Scholar]
- Guo, K.T.; Paul, A.; Schichor, C.; Ziemer, G.; Wendel, H.P. Cell-SELEX: Novel perspectives of aptamer-based therapeutics. Int. J. Mol. Sci. 2008, 9, 668–678. [Google Scholar]
- Phillips, J.A.; Lopez-Colon, D.; Zhu, Z.; Xu, Y.; Tan, W. Applications of aptamers in cancer cell biology. Anal. Chim. Acta 2008, 621, 101–108. [Google Scholar]
- Nery, A.A.; Wrenger, C.; Ulrich, H. Recognition of biomarkers and cell-specific molecular signatures: Aptamers as capture agents. J. Sep. Sci. 2009, 32, 1523–1530. [Google Scholar]
- Chen, X.; Huang, Y.F.; Tan, W. Using aptamer-nanoparticle conjugates for cancer cells detection. J. Biomed. Nanotech. 2009, 4, 400–409. [Google Scholar]
- Farokhzad, O.C.; Karp, J.M.; Langer, R. Nanoparticle–aptamer bioconjugates for cancer targeting. Expert Opin. Drug Deliv. 2006, 3, 311–324. [Google Scholar]
- Huang, Y.F.; Lin, Y.W.; Lin, Z.H.; Chang, H.T. Aptamer-modified gold nanoparticles for targeting breast cancer cells through light scattering. J. Nanopart. Res. 2009, 11, 775–783. [Google Scholar]
- Yan, J.; Estevez, M.C.; Smith, J.E.; Wang, K.; He, X.; Wang, L.; Tan, W. Dye-doped nanoparticles for bioanalysis. Nanotoday 2007, 2, 44–50. [Google Scholar]
- Yao, G.; Wang, L.; Wu, Y.; Smith, J.; Xu, J.; Zhao, W.; Lee, E.; Tan, W. FloDots: Luminescent nanoparticles. Anal. Bioanal. Chem. 2006, 385, 518–524. [Google Scholar]
- Herr, J.K.; Smith, J.E.; Medley, C.D.; Shangguan, D.H.; Tan, W. Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal. Chem. 2006, 78, 2918–2924. [Google Scholar]
- Smith, J.E.; Medley, C.D.; Tang, Z.; Shangguan, D.; Lofton, C.; Tan, W. Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. Anal. Chem. 2007, 79, 3075–3082. [Google Scholar]
- Chen, X.; Estévez, M.C.; Zhu, Z.; Huang, Y.F.; Chen, Y.; Wang, L.; Tan, W. Using aptamer-conjugated fluorescence resonance energy transfer nanopaticles for multiplexed cancer cell monitoring. Anal. Chem. 2009, 81, 7009–7014. [Google Scholar]
- Zheng, D.; Seferos, D.S.; Giljohann, D.A.; Patel, P.C.; Mirkin, C.A. Aptamer nano-flares for molecular detection in living cells. Nano Lett. 2009, 9, 3258–3261. [Google Scholar]
Probe | Target | Detection | Time | LOD | Ref |
---|---|---|---|---|---|
Apt-Au NPs | adenosine | colorimetric | 10 s | 0.1 mM | [32] |
Apt-Au NPs | adenosine | colorimetric | 5 min | 20 μM | [33] |
Apt-Au NPs | adenosine | colorimetric | 1 min | 10 μM | [34] |
Apt-Au NPs | adenosine | colorimetric | 10 min | 20 μM | [35] |
Apt-Au NPs | adenosine | SPR | 30 min | 1 nM | [36] |
Apt-Au NPs | adenosine | electrochemical | 90 min | 180 pM | [37] |
Apt-QD & Au NPs | adenosine | fluorescence | 1 min | 50 μM | [38] |
Apt-Au NPs | cocaine | colorimetric | 10 min | 20 μM | [39] |
Apt-Au NPs | cocaine | colorimetric | 10 s | 25 μM | [32] |
Apt-Au NPs | cocaine | colorimetric | 5 min | 10 μM | [33] |
Apt-QD | cocaine | fluorescence | 1 min | 120 μM | [38] |
Apt-QD & Atto 590 | cocaine | fluorescence | 15 min | 1 μM | [40] |
Apt-QD & Cy5 & Iowa Black RQ | cocaine | fluorescence | - | 0.5 μM | [41] |
Au NPs & Fc-Apt | cocaine | electrochemical | 5 min | 0.5 μM | [42] |
Apt-Au NPs | ATP | colorimetric | 30 min | 0.6 μM | [43] |
Apt-Au NPs | ATP | colorimetric | 30 min | 10 nM | [44] |
Apt-Au NPs & Au NPs | ATP | SALDI-MS | 10 min | 0.48 μM | [45] |
Apt-QD & Cy5 | ATP | fluorescence | - | 24 μM | [46] |
Apt-SiO2@Fe3O4 | AMP | fluorescence | - | 0.1 μM | [47] |
Apt-Au NPs & DNA-Au NP-Hg2+ aggregates | cysteine | colorimetric | - | 100 nM | [48] |
Apt-Au NPs | Hg2+ | colorimetric | - | 100 nM | [49] |
Apt-Au NPs | Hg2+ | colorimetric | 30 min | 10 nM | [50] |
Apt-Au NPs | Hg2+ | colorimetric | 10 min | 25 nM | [51] |
Apt-Au NPs | Hg2+ | colorimetric | 5 min | 0.6 nM | [31] |
Apt-Au NPs | Hg2+ | colorimetric | - | 1 μM | [52] |
Apt-Au NP | Hg2+ | colorimetric | - | 250 nM | [53] |
Apt-Au NPs & DNAzyme | Hg2+ | colorimetric | - | 1 nM | [54] |
Au NPs & Dye-Apt | Hg2+ | fluorescence | 30 min | 40 nM | [55] |
Apt-Au NPs | K+ | colorimetric | 4 min | 1 mM | [56] |
Apt-Au NPs | K+ | colorimetric | 10 min | 0.5 mM | [35] |
Apt-Au NPs & DNAzyme | Pb2+ | colorimetric | - | 100 nM | [57] |
Apt-Au NPs & DNAzyme | Pb2+ | colorimetric | 10 min | 0.4 μM | [58] |
Apt-Au NPs & DNAzyme | Pb2+ | colorimetric | 5 min | 0.1 μM | [59] |
Apt-Au NPs & DNAzyme | Pb2+ | colorimetric | 6 min | 120 nM | [60] |
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Chiu, T.-C.; Huang, C.-C. Aptamer-Functionalized Nano-Biosensors. Sensors 2009, 9, 10356-10388. https://doi.org/10.3390/s91210356
Chiu T-C, Huang C-C. Aptamer-Functionalized Nano-Biosensors. Sensors. 2009; 9(12):10356-10388. https://doi.org/10.3390/s91210356
Chicago/Turabian StyleChiu, Tai-Chia, and Chih-Ching Huang. 2009. "Aptamer-Functionalized Nano-Biosensors" Sensors 9, no. 12: 10356-10388. https://doi.org/10.3390/s91210356
APA StyleChiu, T. -C., & Huang, C. -C. (2009). Aptamer-Functionalized Nano-Biosensors. Sensors, 9(12), 10356-10388. https://doi.org/10.3390/s91210356