Development of an Electrogenerated Chemiluminescence Biosensor using Carboxylic acid-functionalized MWCNT and Au Nanoparticles
Abstract
:1. Introduction
2. Experimental
2.1. Reagents
2.2. Preparation of the COOH-F-MWCNT by RIGP
2.3 Preparation of Au Nanoparticles by the Radiation-induced Reduction Method
2.4. Fabrication of ECL Biosensor
2.5. Instrumentation
3. Results and Discussion
4. Conclusions
- The sensing range of the prepared biosensor for ethanol was in the range of 5.0×10−6 M −5.0×10−3 M on CV detection.
- The sensing range of the prepared biosensor for ethanol was in the range of 1.0×10−4 M −5.0×10−3 M on ECL detection.
- Relative response of ethanol to interference such as citric acid, ascorbic acid, acetic acid, and oxalic acid were below 117%.
- The prepared biosensor using COOH-F-MWCNT and Au nanoparticles exhibited a wide linear range, high sensitivity, and good stability.
- The COOH-F-MWCNT prepared by RIGP and Au nanoparticles prepared by radiation-induced reduction can be used for biosensor materials.
- The prepared biosensor using COOH-F-MWCNT and Au nanoparticles could be used to measure ethanol-levels in soju and beer.
Acknowledgments
References
- Azevedo, A.M.; Prazeres, D.F.; Cabral, M.S.; Fonseca, P. Ethanol biosensors based on alcohol oxidase. Biosens. Bioelectron 2005, 21, 235–247. [Google Scholar]
- Amelio, M. Alcohol in Food and Beverages. Nollet, L.M.L., Ed.; 1996; Volume 1, pp. 551–599. [Google Scholar]
- Salgado, A.M.; Folly, R.O.M.; Valdman, B.; Cos, O.; Valero, F. Colorimetric method for the determination of ethanol by Flow Injection Analysis. Biotechnol. Lett 2000, 22, 327–330. [Google Scholar]
- Pérez-Ponce, A.; Garrigues, S.; Guardia, M. Direct vapor generation Fourier transform infrared spectrometric determination of ethanol in blood. Anal. Chim. Acta 1996, 336, 123–129. [Google Scholar]
- Zilly, M.; Langmann, P.; Lenker, U.; Satzinger, V.; Schirmer, D.; Klinker, H. Highly sensitive gas chromatographic determination of ethanol in human urine samples. J. Chromatogr. B 2003, 798, 179–186. [Google Scholar]
- Zhuang, Z.; Su, X.; Yuan, H.; Sun, Q.; Xiao, D.; Choi, M.M.F. An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst 2008, 133, 126–132. [Google Scholar]
- Kurniawan, F.; Tsakova, V.; Mirsky, V.M. Gold Nanoparticles in Nonenzymatic Electrochemical Detection of Sugars. Electroanalysis 2006, 18, 1937–1942. [Google Scholar]
- Rong, L.Q.; Yang, C.; Qian, Q.Y.; Xia, X.H. Study of the nonenzymatic glucose sensor based on highly dispersed Pt nanoparticles supported on carbon nanotubes. Talanta 2007, 72, 819–824. [Google Scholar]
- Ye, J.S.; Wen, Y.; Zhang, W.D.; Gan, L.M.; Xu, G.Q.; Sheu, F.S. Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes. Electrochem. Comm 2004, 6, 66–70. [Google Scholar]
- Tan, C.K.; Loh, K.P.; John, T.T.L. Direct amperometric detection of glucose on a multiple-branching carbon nanotube forest. Analyst 2008, 133, 448–451. [Google Scholar]
- Chakraborty, S.; Raj, C.R. Mediated electrocatalytic oxidation of bioanalytes and biosensing of glutamate using functionalized multiwall carbon nanotubes-biopolymer nanocomposite. J. Electroanal. Chem 2007, 609, 155–162. [Google Scholar]
- Male, K.B.; Hrapovic, S.; Luong, J.H.T. Electrochemically-assisted deposition of oxidases on platinum nanoparticle/multi-walled carbon nanotube-modified electrodes. Analyst 2007, 132, 1254–1261. [Google Scholar]
- Arvinte, A.; Sesay, A.M.; Virtanen, V.; Bala, C. Evaluation of Meldola Blue-Carbon Nanotube-Sol-Gel Composite for Electrochemical NADH Sensors and Their Application for Lactate Dehydrogenase-Based Biosensors. Electroanalysis 2008, 20, 2355–2362. [Google Scholar]
- Liu, Y.; Wang, M.K.; Zhao, F.; Xu, Z.A.; Dong, S.J. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosens. Bioelectron 2005, 21, 984–988. [Google Scholar]
- Yamamoto, K.; Shi, G.Y.; Zhou, T.S.; Xu, F.; Xu, J.M.; Kato, T.; Jin, J.Y.; Jin, L.T. Study of carbon nanotubes–HRP modified electrode and its application for novel on-line biosensors. Analyst 2003, 128, 249–254. [Google Scholar]
- Guan, W.J.; Li, Y.; Chen, Y.Q.; Zhang, X.B.; Hu, G.Q. Glucose biosensor based on multi-wall carbon nanotubes and screen printed carbon electrodes. Biosens. Bioelectron 2005, 21, 508–512. [Google Scholar]
- Patolsky, F.; Weizmann, Y.; Willner, I. Long-Range Electrical Contacting of Redox Enzymes by SWCNT Connectors. Angew. Chem. Int. Ed 2004, 43, 2113–2117. [Google Scholar]
- Zhang, Y.J.; Shen, Y.F.; Li, J.H.; Niu, L.; Dong, S.J.; Ivaska, A. Electrochemical Functionalization of Single-Walled Carbon Nanotubes in Large Quantities at a Room-Temperature Ionic Liquid Supported Three-Dimensional Network Electrode. Langmuir 2005, 21, 4797–4800. [Google Scholar]
- Malmsten, M.; Larsson, A. Immobilization of trypsin on porous glycidyl methacrylate beads: effects of polymer hydrophilization. Colloid. Surf. B. Biointer 2000, 18, 277–284. [Google Scholar]
- Choi, S.H.; Nho, Y.C. Radiation-induced graft copolymerization of binary monomer mixture containing acrylonitrile onto polyethylene films. Radiat. Phys. Chem 2000, 58, 157–168. [Google Scholar]
- Choi, S.H.; Lee, K.P.; Kang, H.D. Immobilization of Lipase on a Polymeric Microsphere with an Epoxy Group Prepared by Radiation-Induced Polymerization. J. Appl. Polym. Sci 2003, 88, 1153–1161. [Google Scholar]
- Gu, H.Y.; Yu, A.M.; Chen, H.Y. Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid–cysteamine-modified gold electrode. J. Electroanal. Chem 2001, 516, 119–126. [Google Scholar]
- Feng, H.; Wang, H.; Zhang, Y.; Yan, B.N.; Shen, G.L.; Yu, R.Q. A Direct Electrochemical Biosensing Platform Constructed by Incorporating Carbon Nanotubes and Gold Nanoparticles onto Redox Poly(thionine) Film. Anal. Sci 2007, 23, 235–239. [Google Scholar]
- Lee, K.P.; Gopalan, A.I.; Santhosh, P.; Manesh, K.M.; Kim, J.H.; Kim, K.S. Fabrication and Electrocatalysis of Self-Assembly Directed Gold Nanoparticles Anchored Carbon Nanotubes Modified Electrode. J. Nanosci. Nanotechnol 2006, 6, 1575–1583. [Google Scholar]
- Wang, Z.J.; Li, M.; Su, P.P.; Zhang, Y.J.; Shen, Y.F.; Han, D.X.; Ivaska, A.; Niu, L. Direct electron transfer of horseradish peroxidase and its electrocatalysis based on carbon nanotube/thionine/gold composites. Electrochem. Commun 2008, 10, 306–310. [Google Scholar]
- Qu, L.T.; Dai, L.M.; Osawa, E. Shape/Size-Controlled Syntheses of Metal Nanoparticles for Site-Selective Modification of Carbon Nanotubes. J. Am. Chem. Soc 2006, 128, 5523–5532. [Google Scholar]
- Jia, J.B.; Wang, B.Q.; Wu, A.G.; Cheng, G.J.; Li, Z.; Dong, S.J. A Method to Construct a Third-Generation Horseradish Peroxidase Biosensor: Self-Assembling Gold Nanoparticles to Three-Dimensional Sol-Gel Network. Anal. Chem 2002, 74, 2217–2223. [Google Scholar]
- Li, T.H.; Park, H.G.; Choi, S.H. γ-Irradiation-induced preparation of Ag and Au nanoparticles and their characterizations. Mater. Chem. Phys 2007, 105, 325–330. [Google Scholar]
- Enüstün, B.V.; Turkevich, J. Coagulation of Colloidal Gold. J. Am. Chem. Soc 1963, 85, 3317–3328. [Google Scholar]
- Yin, X.B.; Qiu, H.B.; Sun, X.H.; Yan, J.L.; Liu, J.F.; Wang, E.K. Capillary Electrophoresis Coupled with Electrochemiluminescence Detection Using Porous Etched Joint. Anal. Chem 2004, 76, 3846–3850. [Google Scholar]
- Zhang, L.H.; Xu, Z.A.; Dong, S.J. Electrogenerated chemiluminescence biosensor based on Ru(bpy)32+ and dehydrogenase immobilized in sol–gel/chitosan/poly(sodium 4-styrene sulfonate) composite material. Anal. Chim. Acta 2006, 575, 52–56. [Google Scholar]
- Guo, Z.H.; Dong, S.J. Electrogenerated Chemiluminescence from Ru(Bpy)32+ Ion-Exchanged in Carbon Nanotube/Perfluorosulfonated Ionomer Composite Films. Anal. Chem 2004, 76, 2683–2688. [Google Scholar]
- Choi, H.N.; Lee, J.Y.; Lyu, Y.K.; Lee, W.Y. Tris(2,2_-bipyridyl)ruthenium(II) electrogenerated chemiluminescence sensor based on carbon nantube dispersed in sol–gel-derived titania–Nafion composite films. Anal. Chim. Acta 2006, 565, 48–55. [Google Scholar]
- Li, N.; Yuan, R.; Chai, Y.Q.; Chen, S.H.; An, H.Z.; Li, W.J. New Antibody Immobilization Strategy Based on Gold Nanoparticles and Azure I/Multi-Walled Carbon Nanotube Composite Membranes for an Amperometric Enzyme Immunosensor. J. Phys. Chem. C 2007, 111, 8443–8450. [Google Scholar]
- Kim, S.H.; Oh, J.H.; Yoo, B.; Jung, D.J.; Piao, M.H.; Choi, S.H. Fabrication of Chemiluminescence Sensor Based on the Funcinalized MWCNT-Nafion Composite Film. Adv. Mater. Res 2008, 47–50, 1474–1477. [Google Scholar]
- Park, J.; Lee, H.; Lee, K.S.; Lee, X.Y.; Shin, M.C.; Kim, T.H.; Kim, S.R. Determination of breath alcohol using a differential-type amperometric biosensor based on alcohol dehydrogenase. Anal. Chim. Acta 1999, 390, 83–91. [Google Scholar]
- Manso, J.; Luz Mena, M.; Yáñez-Sedeño, P.; Pingarrón, J.M. Alcohol dehydrogenase amperometric biosensor based on a colloidal gold–carbon nanotubes composite electrode. Electrochim. Acta 2008, 53, 4007–4012. [Google Scholar]
- Gouveria-Caridade, C.; Pauliukaite, R.; Brett, C.M.A. Development of electrochemical oxidase biosensors based on carbon nanotube-modified carbon film electrodes for glucose and ethanol. Electrochim. Acta 2008, 53, 6732–6739. [Google Scholar]
- Zhang, L.H.; Xu, Z.A.; Sun, X.P.; Dong, S.J. A novel alcohol dehydrogenase biosensor based on solid-state electrogenerated chemiluminescence by assembling dehydrogenase to Ru(bpy)32+–Au nanoparticles aggregates. Biosens. Bioelectron 2007, 22, 1097–1100. [Google Scholar]
© 2009 by the authors; licensee MDPI, Basel, Switzerland This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Piao, M.-H.; Yang, D.-S.; Yoon, K.-R.; Lee, S.-H.; Choi, S.-H. Development of an Electrogenerated Chemiluminescence Biosensor using Carboxylic acid-functionalized MWCNT and Au Nanoparticles. Sensors 2009, 9, 1662-1677. https://doi.org/10.3390/s90301662
Piao M-H, Yang D-S, Yoon K-R, Lee S-H, Choi S-H. Development of an Electrogenerated Chemiluminescence Biosensor using Carboxylic acid-functionalized MWCNT and Au Nanoparticles. Sensors. 2009; 9(3):1662-1677. https://doi.org/10.3390/s90301662
Chicago/Turabian StylePiao, Ming-Hua, Dae-Soo Yang, Kuk-Ro Yoon, Seung-Ho Lee, and Seong-Ho Choi. 2009. "Development of an Electrogenerated Chemiluminescence Biosensor using Carboxylic acid-functionalized MWCNT and Au Nanoparticles" Sensors 9, no. 3: 1662-1677. https://doi.org/10.3390/s90301662
APA StylePiao, M. -H., Yang, D. -S., Yoon, K. -R., Lee, S. -H., & Choi, S. -H. (2009). Development of an Electrogenerated Chemiluminescence Biosensor using Carboxylic acid-functionalized MWCNT and Au Nanoparticles. Sensors, 9(3), 1662-1677. https://doi.org/10.3390/s90301662