Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications
Abstract
:1. Introduction
2. Room-Temperature Compound Semiconductor Radiation Detectors
2.1. X-ray and gamma ray detection with semiconductors: principles of operation
3. CdTe Detectors
3.1. Epitaxial growth technology for CdTe detectors
4. CdZnTe Detectors
4.1. CdZnTe crystals grown by the boron oxide encapsulated vertical Bridgman technique
4.2. Boron Oxide grown CdZnTe detectors
5. Single Charge Carrier Sensing Detectors
6. Astrophysical Applications
6.1. GRI 3-D CdZnTe detector prototype
6.2. The POLCA(POLarisation with Cdznte Array) detector
6.3. CdZnTe pixel detectors for hard X-ray telescopes
7. Medical Applications
7.1. Nuclear Medicine
7.2. Mammography
8. Discussion
References
- Knoll, G.F. Radiation Detection and Measurement, 3rd Ed. ed; Wiley: New York, NY, USA, 1999; pp. 354–404. [Google Scholar]
- McGregor, D.S.; Hermon, H. Room-temperature compound semiconductor radiation detectors. Nucl. Instrum. Methods Phys. Res. A 1997, 395, 101–124. [Google Scholar]
- Owens, A.; Peacock, A. Compound semiconductor radiation detectors. Nucl. Instrum. Methods Phys. Res. A 2004, 531, 18–37. [Google Scholar]
- Van Heerden, P.J. The crystal counter. Dissertation, Utrecht University, Utrecht, Holland, 1945. [Google Scholar]
- James, R.B.; Siffert, P. (Eds.) 11th International Workshop on Room Temperature Semiconductors and Associated Electronics. In Nucl. Instrum. Methods Phys. Res. A; 2001; Volume 458, pp. 1–603.
- Phlips, B. (Ed.) 15th International Workshop on Room-Temperature Semiconductor X- and Gamma-Ray Detectors. In IEEE Nucl. Sci. Symp.Conf. Rec.; 2006; Volume 6, pp. 3585–3939.
- Boone, G.M.; Chavez, A.E. Comparison of x-ray cross sections for diagnostic and therapeutic medical physics. Med. Phys. 1996, 23, 1997–2005. [Google Scholar]
- Shockley, W. Currents to conductors induced by a moving point charge. J. Appl. Phys 1938, 9, 635–636. [Google Scholar]
- Ramo, S. Currents induced by electron motion. Proc. IRE 1939, 27, 584–585. [Google Scholar]
- Cavalleri, G.; Gatti, E.; Fabri, G.; Svelto, V. Extension of Ramo theorem as applied to induced charge in semiconductor detectors. Nucl. Instrum. Methods 1971, 92, 137–140. [Google Scholar]
- He, Z. Review of the Shockley-Ramo theorem and its application in semiconductor gamma ray detectors. Nucl. Instrum. Methods Phys. Res. A 2001, 463, 250–267. [Google Scholar]
- Jackson, J.D. Classical Electrodynamics, 2rd Ed. ed; Wiley: New York, NY, USA, 1999; pp. 70–72. [Google Scholar]
- Hecht, K. Zum Mechanismus des lichtelektrischen Primärstromes in isolierenden Kristallen. Z. Phys. 1932, 77, 235–245. [Google Scholar]
- Devanathan, R.; Corrales, L.R.; Gao, F.; Weber, W.J. Signal variance in gamma-ray detectors — A review. Nucl. Instrum. Methods Phys. Res. A 2006, 565, 637–649. [Google Scholar]
- Kozorezov, A.G.; Wigmore, J.K.; Owens, A.; den Hartog, R.; Peacock, A.; Al-Jawhari, H.A. Resolution degradation of semiconductor detectors due to carrier trapping. Nucl. Instrum. Methods Phys. Res. A 2005, 546, 207–212. [Google Scholar]
- Akutagawa, W.; Zanio, K.; Mayer, J.W. CdTe as a gamma detector. Nucl. Instrum. Methods 1967, 55, 383–385. [Google Scholar]
- Hage-Ali, M.; Siffert, P. Growth methods of CdTe nuclear detector materials. In Semiconductors for Room Temperature Nuclear Detector applications; Schlesinger, T.E., James, R.B., Eds.; Academic Press: San Diego, CA, USA, 1995; Volume 43, pp. 219–257. [Google Scholar]
- Malm, H.L.; Martini, M. Polarization phenomena in CdTe nuclear detectors. IEEE Trans. Nucl. Sci. 1974, 21, 322–330. [Google Scholar]
- Niraula, M.; Nakamura, A.; Aoki, T.; Tomita, Y.; Hatanaka, Y. Stability issues of high-energy resolution diode type CdTe nuclear radiation detectors in a long-term operation. Nucl. Instrum. Methods Phys. Res. A 2002, 491, 168–175. [Google Scholar]
- Lovergine, N.; Cola, A.; Prete, P.; Tapfer, L.; Bayhan, M.; Mancini, A.M. On hydrogen transport VPE-grown CdTe epilayers for fabrication of 1-100 keV X-ray detectors. Nucl. Instrum. Methods Phys. Res. A 2001, 458, 1–6. [Google Scholar]
- Lovergine, N.; Marzo, F.; Mancini, A.M; Prete, P. Development of a CdTe-CZT epitaxial technology for fabrication of large area RT 1-100 keV X-ray photon detectors. Proceedings of the 21st Instrumentation and Measurements Technology Conference 2004 (IMTC-2004), Como, Italy, May 18-20, 2004; 3, pp. 1873–1878.
- Lovergine, N.; Prete, P.; Tapfer, L.; Marzo, F.; Mancini, A.M. Hydrogen transport vapour growth and properties of thick CdTe epilayers for RT X-ray detector applications. Crystal Res. Technol. 2005, 40, 1018–1022. [Google Scholar]
- Hails, J.E.; Russell, G.J.; Brinkman, A.W.; Woods, J. A comparison of the structure of CdTe and (Hg, Cd)Te layers grown by MOVPE on {111}A and {111}B CdTe substrates. J. Cryst. Growth 1990, 86, 516–521. [Google Scholar]
- Tatsuoka, H.; Kuwabara, H.; Nakanishi, Y.; Fujiyasu, H. Growth of CdTe(111)B homoepitaxial layers by hot-wall epitaxy. J. Appl. Phys. 1991, 69, 6472–6477. [Google Scholar]
- Niraula, M.; Nakamura, A.; Aoki, T.; Hatanaka, Y. Low-temperature growth and doping of CdTe epilayers on CdTe substrates in a remote-plasma-assisted MOCVD system for nuclear radiation detector applications. Phys. Stat. Solidi (B) 2002, 229, 83–87. [Google Scholar]
- Traversa, M.; Marzo, F.; Prete, P.; Tapfer, L.; Cappello, A.; Lovergine, N.; Mancini, A.M. MOVPE growth optimisation of CdTe epitaxial layers for p-i-n diode X-ray detector fabrication. Phys. Stat. Solidi 2006, 3, 754–757. [Google Scholar]
- Lovergine, N.; Traversa, M.; Paiano, P.; Farella, I.; Prete, P.; Cola, A.; Quaranta, F.; Mancini, A.M. Development of a homoepitaxial technology for fabrication of X-and γ -ray detectors based on CdTe p-i-n diodes. Nuclear Phys. B (Proc. Suppl.) 2007, 166C, 244–247. [Google Scholar]
- Traversa, M.; Tapfer, L.; Paiano, P.; Prete, P.; Marzo, F.; Lovergine, N.; Mancini, A.M. Substrate treatment and precursor stoichiometry effects on the homoepitaxy of CdTe grown by MOVPE on detector-grade (111)B-CdTe crystals. Appl. Phys. A 2008, 91, 23–28. [Google Scholar]
- Traversa, M.; Prete, P.; Farella, I.; Paiano, P.; Marzo, F.; Cola, A.; Lovergine, N.; Mancini, A.M. A MOVPE technology for fabrication of CdTe-based homoepitaxial p-i-n diode structures as nuclear radiation detectors. Proceedings of IEEE International Workshop on Advances in Sensors and Interfaces; 2007; pp. 162–166. [Google Scholar]
- Farella, I.; Cola, A.; Lovergine, N.; Mancini, A.M. unpublished data.
- Farella, I.; Montagna, G.; Mancini, A.M.; Cola, A. Study on instability phenomena in CdTe diode-like detectors. IEEE Nucl. Sci. Symp. Conf. Rec. 2008, 154–161. [Google Scholar]
- James, R.B.; Schlesinger, T.E.; Lund, J.; Schieber, M. Cd1-xZnxTe spectrometers for gamma and x-ray applications; Schlesinger, T.E., James, R.B., Eds.; Accademic Press: San Diego, California, USA, 1995; Volume 43, pp. 335–381. [Google Scholar]
- Schlesinger, T.E.; Toney, J.E.; Yoon, H.; Lee, E.Y.; Brunett, B.A.; Franks, L.; James, R.B. Cadmium zinc telluride and its use as a nuclear radiation material. Mater. Sci. Eng. R 2001, 32, 103–189. [Google Scholar]
- Doty, F.P.; Butler, J.F.; Schetzina, J.F.; Bowers, K.A. Properties of CdZnTe crystals grown by a high pressure Bridgman method. J. Vac. Sci. Technol. B 1992, 10, 1418–1422. [Google Scholar]
- Casagrande, L.G.; Di Marzio, D.; Lee, M.B.; Larson, D.J., Jr.; Dudley, M.; Fanning, T. Vertical Bridgman growth and characterization of large-diameter single-crystal CdTe. J. Cryst. Growth 1993, 128, 576–581. [Google Scholar]
- Lay, K.Y.; Nichols, D.; Devitt, S.; Dean, B.E.; Johnson, C.J. High quality single crystal CdTe grown by a modified horizontal Bridgman technique. J. Cryst. Growth 1988, 86, 118–126. [Google Scholar]
- Wilcox, W.R.; Regel, L.L. Detached solidification. Microgravity Sci. Technol. 1995, VIII, 56–61. [Google Scholar]
- Duffar, T.; Serrano, M.D.; Moore, C.D.; Camassel, J.; Contreras, S.; Dusserre, P.; Rivoallant, A.; Tanner, B.K. Bridgman solidification of GaSb in space. J. Cryst. Growth 1998, 192, 63–72. [Google Scholar]
- Pätzold, O.; Jenkner, K.; Scholz, S.; Cröll, A. Detached growth behavior of 2-in germanium crystals. J. Cryst. Growth 2005, 277, 37–43. [Google Scholar]
- Fiederle, M.; Duffar, T.; Garandet, J.P.; Babentsov, V.; Fauler, A.; Benz, K.W.; Dusserre, P.; Corregidor, V.; Dieguez, E.; Delaye, P.; Roosen, G.; Chevrier, V.; Lunay, J.C. Dewetted growth and characterisation of high-resistivity CdTe. J. Cryst. Growth 2004, 267, 429–435. [Google Scholar]
- Zappettini, A.; Zha, M.; Pavesi, M.; Bissoli, F.; Zanotti, L.; Auricchio, N.; Caroli, E. Boron Oxide Encapsulated Vertical Bridgman: A method for preventing crystal-crucible contact in the CdZnTe growth. IEEE Trans. Nucl. Sci. 2007, 54, 782–785. [Google Scholar]
- Zappettini, A.; Zha, M.; Pavesi, M.; Zanotti, L. Boron oxide fully encapsulated CdZnTe crystals grown by the vertical Bridgman technique. J. Cryst. Growth 2007, 307, 283–288. [Google Scholar]
- Zha, M.; Zappettini, A.; Calestani, D.; Marchini, L.; Zanotti, L.; Paorici, C. Full encapsulated CdZnTe crystals by the vertical Bridgman method. J. Cryst. Growth 2008, 310, 2072–2075. [Google Scholar]
- Zha, M.; Bissoli, F.; Zappettini, A.; Zuccalli, G.; Zanotti, L.; Paorici, C. Heat treatment in semi-closed ampoule for obtaining stoichiometrically controlled cadmium telluride. J. Cryst. Growth 2002, 237-239, 1720–1725. [Google Scholar]
- Nakagawa, K.; Maeda, K.; Takeuchi, S. Observation of dislocations in cadmium telluride by cathode luminescence microscopy. Appl. Phys. Letters 1979, 34, 574–575. [Google Scholar]
- Rudolph, P. Fundamental studies on Bridgman growth of CdTe. Prog. Crystal Growth 1995, 29, 276–377. [Google Scholar]
- Sen, S.; Konkel, W.H.; Tighe, S.J.; Bland, I.G.; Sharma, S.R.; Taylor, R.E. Crystal growth of large-area single-crystal CdTe and CdZnTe by the computer-controlled vertical modified-Bridgman process. J. Cryst. Growth 1990, 86, 111–117. [Google Scholar]
- Auricchio, N.; Marchini, L.; Caroli, E.; Donati, A.; Zappettini, A.; Zanichelli, M.; Quadrini, M. Spectroscopic response of CZT detectors obtained by the boron encapsulated vertical Bridgman method. IEEE Nucl. Sci. Symp. Conf. Rec. 2008, 250–253. [Google Scholar]
- Zappettini, A.; Zha, M.Z.; Marchini, L.; Calestani, D.; Mosca, R.; Gombia, E.; Zanotti, L.; Zanichelli, M.; Pavesi, M.; Auricchio, N.; Caroli, E. Boron oxide encapsulated vertical Bridgman grown CdZnTe crystals as X-ray detector material. IEEE Nucl. Sci. Symp. Conf. Rec. 2008, 118–121. [Google Scholar]
- Auricchio, N.; Caroli, E.; De Cesare, G.; Donati, A.; Dusi, W.; Hage-Ali, M.; Landini, G.; Perillo, E.; Siffert, P. Investigation of response behavior in CdTe detectors versus inter-electrode charge formation position. IEEE Trans. Nucl. Sci. 1999, 46, 853–857. [Google Scholar]
- Jordanov, V.T.; Pantazis, J.A.; Huber, A. Compact circuit for pulse rise-time discrimination. Nucl. Instrum. Meth. Phys. Res. A 1996, 380, 353–357. [Google Scholar]
- Richter, M.; Siffert, P. High resolution gamma ray spectroscopy with CdTe detector systems. Nucl. Instrum. Methods Phys. Res. A 1992, 322, 529–537. [Google Scholar]
- Auricchio, N.; Amati, L.; Basili, A.; Caroli, E.; Donati, A.; Franceschini, T.; Frontera, F.; Landini, G.; Roggio, A.; Schiavone, F.; Stephen, J.B.; Ventura, G. Twin shaping filter techniques to compensate the signals from CZT/CdTe detectors. IEEE Trans. Nucl. Sci. 2005, 52, 1982–1988. [Google Scholar]
- McGregor, D.S.; He, Z.; Seifert, H.A.; Wehe, D.K.; Rojeski, R.A. Single charge carrier type sensing with a parallel strip pseudo-frisch-grid CdZnTe semiconductor radiation detector. Appl. Phys.Lett. 1998, 12, 192–794. [Google Scholar]
- Bolotnikov, A.E.; Camarda, G.C.; Carini, G.A.; Fiederle, M.; Li, L.; McGregor, D.S.; McNeil, W.; Wright, G.W.; James, R.B. Performance characteristics of frisch-ring CdZnTe detectors. IEEE Trans. Nucl. Sci. 2006, 53, 607–614. [Google Scholar]
- Barrett, H.H.; Eskin, J.D.; Barber, H.B. Charge transport in arrays of semiconductor gamma-rays detectors. Phys. Rev. Lett. 1995, 75, 156–159. [Google Scholar]
- Kuvvetli, I.; Budtz-Jørgensen, C. Pixelated CdZnTe drift detectors. IEEE Trans. Nucl. Sci. 2005, 52, 1975–1981. [Google Scholar]
- Abbene, L.; Del Sordo, S.; Agnetta, G.; Biondo, B.; Caroli, E.; Mangano, A.; Russo, F.; Stephen, J.B.; Ventura, G.; Carlino, A.; Gerardi, G.; Bertuccio, G. Investigation on pixellated CZT detectors coupled with a low power readout ASIC. IEEE Nucl. Sci. Symp. Conf. Rec. 2008, 478–483. [Google Scholar]
- Luke, P.N. Unipolar charge sensing with coplanar electrodes - application to semiconductor detectors. IEEE Trans. Nucl. Sci. 1995, 42, 207–213. [Google Scholar]
- Shor, A.; Eisen, Y.; Mardor, I. Optimum spectroscopic performance from CZT γ- and X-ray detectors with pad and strip segmentation. Nucl. Instrum. Meth. Phys. Res. A 1999, 428, 182–182. [Google Scholar]
- Perillo, E.; Cola, A.; Donati, A.; Dusi, W.; Landini, G.; Raulo, A.; Ventura, G.; Vitulli, S. Spectroscopic response of a CdTe microstrip detector when irradiated atvarious impinging angles. Nucl. Instrum. Meth. Phys. Res. A 2004, 531, 125–133. [Google Scholar]
- Lingren, C.L.; Apotovsky, B.; Butler, J.F.; Conwell, R.L.; Doty, F.P.; Friesenhahn, S.J.; Oganesyan, A.; Pi, B.; Zhao, S. Cadmium-zinc telluride, multiple-electrode detectors achieve good energy resolution with high sensitivity at room-temperature. IEEE Trans. Nucl. Sci. 1998, 45, 433–437. [Google Scholar]
- Kim, H.; Cirignano, L.; Shah, K.; Squillante, M.; Wong, P. Investigation of the energy resolution and charge collection efficiency of Cd(Zn)Te detectors with three electrodes. IEEE Trans. Nucl. Sci. 2004, 51, 1229–1234. [Google Scholar]
- Abbene, L.; Del Sordo, S.; Fauci, F.; Gerardi, G.; La Manna, A.; Raso, G.; Cola, A.; Perillo, E.; Raulo, A.; Gostilo, V.; Stumbo, S. Spectroscopic response of a CdZnTe multiple electrode detector. Nucl. Instrum. Meth. Phys. Res. A 2007, 583, 324–331. [Google Scholar]
- Van Pamelen, M.A.J.; Budtz-Jørgensen, C. CdZnTe drift detector with correction for hole trapping. Nucl. Instrum. Meth. Phys. Res. A 1998, 411, 197–200. [Google Scholar]
- Frisch, O. British Atomic Energy Report; Unpublished report No. BR-49; UK, 1944. [Google Scholar]
- Abbene, L.; La Manna, A.; Fauci, F.; Gerardi, G.; Stumbo, S.; Raso, G. X-ray spectroscopy and dosimetry with a portable CdTe device. Nucl. Instrum. Methods Phys. Res. A 2007, 571, 373–377. [Google Scholar]
- Vision, C. Space Science for Europe 2015-2025. ESA Brochure 2005, BR-247, 1–111. [Google Scholar]
- Ubertini, P.; Lebrun, F.; Di Cocco, G.; Bazzano, A.; Bird, A.J.; Broenstad, K.; Goldwurm, A.; La Rosa, G.; Labanti, C.; Laurent, P.; Mirabel, I.F.; Quadrini, E.M.; Ramsey, B.; Reglero, V.; Sabau, L.; Sacco, B.; Staubert, R.; Vigroux, L.; Weisskopf, M.C.; Zdziarski, A.A. IBIS: The imager on-board INTEGRAL. Astron. Astrophys. 2003, 411, L131–L139. [Google Scholar]
- Ferrando, P.; Goldwurm, A.; Laurent, P.; Limousin, O.; Martignac, J.; Pinsard, F.; Rio, Y.; Roques, J.P.; Citterio, O.; Pareschi, G.; Tagliaferri, G.; Fiore, F.; Malaguti, G.; Briel, U.; Hasinger, G.; Strueder, L. SIMBOL-X: a formation flying mission for hard-x-ray astrophysics. Proc. SPIE 2005, 5900, 157–164. [Google Scholar]
- Knodleseder, J.; von Ballmoos, P.; Frontiera, F.; Bazzano, A.; Christensen, F.; Hernanz, M.; Wunderer, C.B. The GRI proposal. CV07 2007, 1–44. [Google Scholar]
- Gehrels, N; Chincarini, G.; Giommi, P.; Mason, K.O.; Nousek, J.A.; Wells, A.A.; White, N.E.; Barthelmy, S.D.; Burrows, D.N.; Cominsky, L.R.; Hurley, K.C.; Marshall, F.E.; Meszaros, P.; Roming, P.W.A.; Angelini, L.; Barbier, L.M.; Belloni, T.; Campana, S.; Caraveo, P.A.; Chester, M.M.; Citterio, O.; Cline, T.L.; Cropper, M.S.; Cummings, J.R.; Dean, A.J.; Feigelson, E.D.; Fenimore, E.E.; Frail, D.A.; Fruchter, A.S.; Garmire, G.P.; Gendreau, K.; Ghisellini, G.; Greiner, J.; Hill, J.E.; Hunsberger, S.D.; Krimm, H.A.; Kulkarni, S.R.; Kumar, P.; Lebrun, F.; Lloyd-Ronning, N.M.; Markwardt, C.B.; Mattson, B.J.; Mushotzky, R.F.; Norris, J.P.; Osborne, J.; Paczynski, B.; Palmer, D.M.; Park, H.S.; Parsons, A.M.; Paul, J.; Rees, M.J.; Reynolds, C.S.; Rhoads, J.E.; Sasseen, T.P.; Schaefer, B.E.; Short, A.T.; Smale, A.P.; Smith, I.A.; Stella, L.; Tagliaferri, G.; Takahashi, T.; Tashiro, M.; Townsley, L.K.; Tueller, J.; Turner, M.J.L.; Vietri, M.; Voges, W.; Ward, M.J.; Willingale, R.; Zerbi, F.M.; Zhang, W.W. The Swift gamma-ray burst mission. Astrophys. J. 2004, 611, 1005–1020. [Google Scholar]
- Koglin, J.E.; Christensen, F.E.; Craig, W.W.; Decker, T.R.; Hailey, C.J.; Harrison, F.A.; Hawthorn, C.; Jensen, C.P.; Madsen, K.K.; Stern, M.; Tajiri, G. Taylor, M.D.NuSTAR hard x-ray optics. Proc. SPIE 2005, 5900, 59000X1–59000X10. [Google Scholar]
- Amati, L.; Auricchio, N.; Caroli, E.; Basili, A.; Bogliolo, A.; di Domenico, G.; Franceschini, T.; Guidorzi, C.; Landini, G.; Masetti, N.; Montanari, E.; Orlandini, M.; Palazzi, E.; Silvestri, S.; Stephen, J. B.; Ventura, G. The gamma ray burst monitor for LOBSTER-ISS. Adv. Sp. Res. 2006, 38, 1333–1337. [Google Scholar]
- Piro, L.; den Herder, J.W.; Ohashi, T.; Amati, L.; Atteia, J.L.; Barthelmy, S.; Barbera, M.; Barret, D.; Basso, S.; Boer, M.; Borgani, S.; Boyarskiy, O.; Branchini, E.; Branduardi-Raymont, G.; Briggs, M.; Brunetti, G.; Budtz-Jorgensen, C.; Burrows, D.; Campana, S.; Caroli, E.; Chincarini, G.; Christensen, F.; Cocchi, M.; Comastri, A.; Corsi, A.; Cotroneo, V.; Conconi, P.; Colasanti, L.; Cusumano, G.; de Rosa, A.; Del Santo, M.; Ettori, S.; Ezoe, Y.; Ferrari, L.; Feroci, M.; Finger, M.; Fishman, G.; Fujimoto, R.; Galeazzi, M.; Galli, A.; Gatti, F.; Gehrels, N.; Gendre, B.; Ghirlanda, G.; Ghisellini, G.; Giommi, P.; Girardi, M.; Guzzo, L.; Haardt, F.; Hepburn, I.; Hermsen, W.; Hoevers, H.; Holland, A.; in't Zand, J.; Ishisaki, Y.; Kawahara, H.; Kawai, N.; Kaastra, J.; Kippen, M.; de Korte, P.A. J.; Kouveliotou, C.; Kusenko, A.; Labanti, C.; Lieu, R.; Macculi, C.; Makishima, K.; Matt, G.; Mazzotta, P.; McCammon, D.; Méndez, M.; Mineo, T.; Mitchell, S.; Mitsuda, K.; Molendi, S.; Moscardini, L.; Mushotzky, R.; Natalucci, L.; Nicastro, F.; O'Brien, P.; Osborne, J.; Paerels, F.; Page, M.; Paltani, S.; Pareschi, G.; Perinati, E.; Perola, C.; Ponman, T.; Rasmussen, A.; Roncarelli, M.; Rosati, P.; Ruchayskiy, O.; Quadrini, E.; Sakurai, I.; Salvaterra, R.; Sasaki, S.; Sato, G.; Schaye, J.; Schmitt, J.; Sciortino, S.; Shaposhnikov, M.; Shinozaki, K.; Spiga, D.; Suto, Y.; Tagliaferri, G.; Takahashi, T.; Takei, Y.; Tawara, Y.; Tozzi, P.; Tsunemi, H.; Tsuru, T.; Ubertini, P.; Ursino, E.; Viel, M.; Vink, J.; White, N.; Willingale, R.; Wijers, R.; Yoshikawa, K.; Yamasaki, N. EDGE: Explorer of diffuse emission and gamma-ray burst explosions. Exp. Astron. 2009, 23, 67–89. [Google Scholar]
- Shorohov, M.; Tsirkunova, I.; Loupilov, A.; Gostilo, V.; Budtz-Jørgensen, C.; Kuvvetli, I. Performance updating of CdZnTe strip-drift detectors. Nucl. Instrum. Meth. Phys. Res. A 2007, 576, 80–82. [Google Scholar]
- Caroli, E.; Auricchio, N.; Budtz-Jorgensen, C.; Curado da Silva, R. M.; Del Sordo, S.; Donati, A.; Kuvvetli, I.; Natalucci, L.; Quadrini, E.M.; Stephen, J.B.; Ventura, G.; Zappettini, A. A three-dimensional CZT detector as a focal plane prototype for a Laue Lens telescope. Proc. SPIE 2008, 7011, 70113G–70122G. [Google Scholar]
- Dean, J.; Clark, D.J.; Stephen, J.B.; McBride, V.A.; Bassani, L.; Bazzano, A.; Bird, A.J.; Hill, A.B.; Shaw, S.E.; Ubertini, P. Polarized gamma-ray emission from the crab. Science 2008, 321, 1183–1185. [Google Scholar]
- Curado da Silva, R.M.; Caroli, E.; Stephen, J.B.; Siffert, P. CHIPER, a polarimetric telescope concept for hard X-ray astronomy. Exp. Astron. 2003, 15, 45–65. [Google Scholar]
- Curado da Silva, R.M.; Caroli, E.; Stephen, J.B.; Pisa, A.; Auricchio, N.; Del Sordo, S.; Frontera, F.; Honkimäki, V.; Schiavone, F.; Donati, A.; Trindade, A.M.F.; Ventura, G. Polarimetric performance of a Laue lens gamma-ray CdZnTe focal plane prototipe. J. Appl. Phys. 2008, 084903, 1–7. [Google Scholar]
- Del Sordo, S.; Abbene, L.; Zora, M.; Agnetta, G.; Biondo, B.; Mangano, A.; Russo, F.; Caroli, E.; Auricchio, N.; Donati, A.; Schiavone, F.; Stephen, J.B.; Ventura, G.; Bertuccio, G.; Caccia, S.; Sampietro, M. Characterization of a CZT focal plane small prototype for hard X-ray telescope. IEEE Trans. Nucl. Sci. 2005, 52, 3091–3095. [Google Scholar]
- Del Sordo, S.; Strazzeri, M.; Agnetta, G.; Biondo, B.; Celi, F.; Giarrusso, S.; Mangano, A.; Russo, F.; Caroli, E.; Donati, A.; Schiavone, F.; Stephen, J.B.; Ventura, G.; Abbene, L.; Fauci, F.; Raso, G.; Pareschi, G. Spectroscopic performances of 16 × 16 pixel CZT imaging hard-X-ray detectors. Nuovo Cimento B 2004, 119, 257–270. [Google Scholar]
- Pareschi, G.; Di Cocco, G.; Caroli, E.; Citterio, O.; Cotroneo, V.; Del Sordo, S.; Frontera, F.; Gizzi, L.; Malaguti, G.; Silvestri, S.; Spiga, D. The HEXIT (high energy X-ray imaging telescope) balloon-borne mission. Proceedings of 16th ESA Symp. European Rocket and Balloon Programmes and Related Research, Sankt Gallen, Switzerland, June 2-5, 2003; pp. 179–184.
- Schlesinger, T.E.; James, R.B. Semiconductors for Room Temperature Nuclear Detector Applications. In Semiconductors and Semimetals; Willardson, R.K., Weber, E.R., Beer, A.C., Eds.; Accademic Press: San Diego, California, USA, 1995; Volume 43, pp. 14–16. [Google Scholar]
- Eisen, Y.; Shor, A.; Mardor, I. CdTe and CdZnTe gamma ray detectors for medical and industrial imaging systems. Nucl. Instrum. Methods Phys. Res. A 1999, 428, 158–170. [Google Scholar]
- Scheiber, C.; Giakos, G.C. Medical applications of CdTe and CdZnTe detectors. Nucl. Instrum. Methods Phys. Res. A 2001, 458, 12–25. [Google Scholar]
- Anger, H.O. Scintillation Camera. Rev. Sci. Instrum. 1958, 29, 27–33. [Google Scholar]
- Butler, J.F.; Lingren, C.L.; Friesenhahn, S.J.; Doty, F.P.; Ashburn, W.L.; Conwell, R.L.; Augustine, F.L.; Apotovsky, B.; Pi, B.; Collins, T.; Zhao, S.; Isaacson, C. CdZnTe solid-state gamma camera. IEEE Trans. Nucl. Sci. 1998, 45, 359–363. [Google Scholar]
- Barber, H.B. Applications of semiconductor detectors to nuclear medicine. Nucl. Instrum. Methods Phys. Res. A 1999, 436, 102–110. [Google Scholar]
- Scheiber, C. CdTe and CdZnTe detectors in nuclear medicine. Nucl. Instrum. Methods Phys. Res. A 2000, 448, 513–524. [Google Scholar]
- Eisen, Y.; Shor, A.; Gilath, C.; Tsabarim, M.; Chouraqui, P.; Hellman, C.; Lubin, E. A gamma camera based on CdTe detectors. Nucl. Instrum. Methods Phys. Res. A 1996, 380, 474–478. [Google Scholar]
- Eisen, Y.; Mardor, I.; Shor, A.; Baum, Z.; Bar, D.; Feldman, G.; Cohen, H.; Issac, E.; Haham-Zada, R.; Blitz, S.; Cohen, Y.; Glick, B.; Falk, R.; Roudebush, S.; Blevis, I. NUCAM3 — a gamma camera based on segmented monolithic CdZnTe detectors. IEEE Trans. Nucl. Sci. 2002, 49, 1728–1732. [Google Scholar]
- Verger, L.; Gentet, M.C.; Gerfault, L.; Guillemaud, R.; Mestais, C.; Monnet, O.; Montemont, G.; Petroz, G.; Rostaing, J.P.; Rustique, J. Performance and perspectives of a CdZnTe-based gamma camera for medical imaging. IEEE Trans. Nucl. Sci 2004, 51, 3111–3117. [Google Scholar]
- Guérin, L.; Verger, L.; Rebuffel, V.; Monnet, O. A new architecture for pixellated solid state gamma camera used in nuclear medicine. IEEE Trans. Nucl. Sci. 2008, 55, 1573–1579. [Google Scholar]
- Zhang, F.; He, Z.; Xu, D.; Meng, L.J. Feasibility study of using two 3-D position sensitive CZT detectors for small animal PET. IEEE Nucl. Sci. Symp. Conf. Rec. 2005, 1582–1585. [Google Scholar]
- Vaska, P.; Dragone, A.; Lee, W.; Kim, D.H.; Pratte, J.F.; Cui, Y.G.; Fried, J.; Krishnamoorthy, S.; Bolotnikov, A.; Park, S.J.; O'Connor, P.; Dilmanian, F.A.; James, R.B. A Prototype CZT-Based PET Scanner for High Resolution Mouse Brain Imaging. IEEE Nucl. Sci. Symp. Conf. Rec. 2007, 3816–3819. [Google Scholar]
- Verger, L.; d'Aillon, E.G.; Monnet, O.; Montemont, G.; Pelliciari, B. New trends in γ-ray imaging with CdZnTe/CdTe at CEA-Leti. Nucl. Instrum. Methods Phys. Res. A 2007, 571, 33–43. [Google Scholar]
- Drezet, A.; Monnet, O.; Mathy, F.; Montemont, G.; Verger, L. CdZnTe detectors for small field of view positron emission tomographic imaging. Nucl. Instrum. Methods Phys. Res. A 2007, 571, 465–470. [Google Scholar]
- Lewellen, T.K. Recent developments in PET detector technology. Phys. Med. Biol. 2008, 53, R287–R317. [Google Scholar]
- Miyajima, S.; Imagawa, K.; Matsumoto, M. CdZnTe detector in diagnostic x-ray spectroscopy. Med. Phys. 2002, 29, 1421–1429. [Google Scholar]
- Miyajima, S. Thin CdTe detector in diagnostic x-ray spectroscopy. Med. Phys. 2003, 30, 771–777. [Google Scholar]
- Bottigli, U.; Golosio, B.; Masala, G.L.; Oliva, P.; Stumbo, S.; Delogu, P.; Fantacci, M.E.; Abbene, L.; Fauci, F.; Raso, G. Comparison of two portable solid state detectors with an improved collimation and alignment device for mammographic x-ray spectroscopy. Med. Phys. 2006, 33, 3469–3477. [Google Scholar]
- Johns, H.E.; Cunningham, J.R. The Physics of Radiology, 4th Ed.; Charles, C., Thomas, S., Eds.; 1983; pp. 279–289. [Google Scholar]
- Hell, E.; Knupfer, W.; Mattern, D. The evolution of scintillating medical detectors. Nucl. Instrum. Methods Phys. Res. A 2000, 454, 40–48. [Google Scholar]
- Birch, R.; Marshall, M. Computation of bremsstrahlung X-ray spectra and comparison with spectra measured with a Ge(Li) detector. Phys. Med. Biol. 1979, 24, 505–517. [Google Scholar]
- Aoki, K.; Koyama, M. Measurement of diagnostic x-ray spectra using a silicon photodiode. Med. Phys. 1989, 16, 529–536. [Google Scholar]
- Gerardi, G.; Abbene, L.; La Manna, A.; Fauci, F.; Raso, G. Digital filtering and analysis for a semiconductor X-ray detector data acquisition. Nucl. Instrum. Methods Phys. Res. A 2007, 571, 378–380. [Google Scholar]
- Abbene, L. L'esperimento XPRESS. Atti IV Congr. Naz. AIFM 2005, 1, 254–256. [Google Scholar]
Material | Si | Ge | GaAs | CdTe | Cd0.9Zn0.1Te | HgI2 | TlBr |
---|---|---|---|---|---|---|---|
Crystal structure | Cubic | Cubic | Cubic (ZB) | Cubic (ZB) | Cubic (ZB) | Tetragonal | Cubic (CsCl) |
Growth method* | C | C | CVD | THM | HPB, THM | VAM | BM |
Atomic number | 14 | 32 | 31, 33 | 48, 52 | 48, 30, 52 | 80, 53 | 81, 35 |
Density (g/cm3) | 2.33 | 5.33 | 5.32 | 6.20 | 5.78 | 6.4 | 7.56 |
Band gap (eV) | 1.12 | 0.67 | 1.43 | 1.44 | 1.57 | 2.13 | 2.68 |
Pair creation energy (eV) | 3.62 | 2.96 | 4.2 | 4.43 | 4.6 | 4.2 | 6.5 |
Resistivity (Ω cm) | 104 | 50 | 107 | 109 | 1010 | 1013 | 1012 |
μeτe (cm2/V) | > 1 | > 1 | 10-5 | 10-3 | 10-3 - 10-2 | 10-4 | 10-5 |
μhτh (cm2/V) | ∼ 1 | > 1 | 10-6 | 10-4 | 10-5 | 10-5 | 10-6 |
Gamma cameras | Characteristics | ||
---|---|---|---|
Detector properties | Energy resolution at 140 keV (%) | Intrinsic spatial resolution (mm) | |
Anger type camera [94] | NaI(Tl) 9.5 mm thick | 11 | 3.5 |
NUCAM [91] | 40 × 32 array of CdTe detectors; pixel size (4 × 4 mm2) | 5 | * |
Digirad 2020tc Imager™ [88] | 64 CdZnTe modules (25 × 25 × 5 mm3); each module 8 × 8 array of pixel | 4 | * |
NUCAM3 [92] | 528 CdZnTe pixel detectors; (8.5 × 8.5 × 5 mm3) 4 × 4 array of pixel | 4.5 | 2.1 |
PEGASE [93] | Groups of 16 single CdZnTe detectors (4 × 4 × 6 mm3) | 4.7 | * |
PET Detectors | Characteristics | |
---|---|---|
Time resolution (FWHM) | Energy resolution at 511 keV (%) | |
LSO; 0.975 × 0.975 × 12.5 mm3 [98] | 3 ns | 15 |
CdZnTe; 16 × 5 × 10 mm3.Anode segmented [96] | 10 ns | 2 |
CdZnTe; 16 × 20 × 0.9mm3 Anode and cathode segmented [98] | 2.6 ns | 2 |
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Del Sordo, S.; Abbene, L.; Caroli, E.; Mancini, A.M.; Zappettini, A.; Ubertini, P. Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications. Sensors 2009, 9, 3491-3526. https://doi.org/10.3390/s90503491
Del Sordo S, Abbene L, Caroli E, Mancini AM, Zappettini A, Ubertini P. Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications. Sensors. 2009; 9(5):3491-3526. https://doi.org/10.3390/s90503491
Chicago/Turabian StyleDel Sordo, Stefano, Leonardo Abbene, Ezio Caroli, Anna Maria Mancini, Andrea Zappettini, and Pietro Ubertini. 2009. "Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications" Sensors 9, no. 5: 3491-3526. https://doi.org/10.3390/s90503491
APA StyleDel Sordo, S., Abbene, L., Caroli, E., Mancini, A. M., Zappettini, A., & Ubertini, P. (2009). Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications. Sensors, 9(5), 3491-3526. https://doi.org/10.3390/s90503491